blob: 16758bfbdc9f3e25173cec410f46940ca5b74f19 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_RESOLVER_RESOLVER_H_
#define SRC_RESOLVER_RESOLVER_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "src/intrinsic_table.h"
#include "src/program_builder.h"
#include "src/scope_stack.h"
#include "src/sem/binding_point.h"
#include "src/sem/block_statement.h"
#include "src/sem/function.h"
#include "src/sem/struct.h"
#include "src/utils/unique_vector.h"
namespace tint {
// Forward declarations
namespace ast {
class ArrayAccessorExpression;
class BinaryExpression;
class BitcastExpression;
class CallExpression;
class CaseStatement;
class CallStatement;
class ConstructorExpression;
class Function;
class IdentifierExpression;
class LoopStatement;
class MemberAccessorExpression;
class ReturnStatement;
class SwitchStatement;
class UnaryOpExpression;
class Variable;
} // namespace ast
namespace sem {
class Array;
class Atomic;
class Intrinsic;
class Statement;
} // namespace sem
namespace resolver {
/// Resolves types for all items in the given tint program
class Resolver {
public:
/// Constructor
/// @param builder the program builder
explicit Resolver(ProgramBuilder* builder);
/// Destructor
~Resolver();
/// @returns error messages from the resolver
std::string error() const { return diagnostics_.str(); }
/// @returns true if the resolver was successful
bool Resolve();
/// @param type the given type
/// @returns true if the given type is a plain type
bool IsPlain(const sem::Type* type) const;
/// @param type the given type
/// @returns true if the given type is a atomic-free plain type
bool IsAtomicFreePlain(const sem::Type* type) const;
/// @param type the given type
/// @returns true if the given type is storable
bool IsStorable(const sem::Type* type) const;
/// @param type the given type
/// @returns true if the given type is host-shareable
bool IsHostShareable(const sem::Type* type) const;
private:
/// Describes the context in which a variable is declared
enum class VariableKind { kParameter, kLocal, kGlobal };
/// Structure holding semantic information about a variable.
/// Used to build the sem::Variable nodes at the end of resolving.
struct VariableInfo {
VariableInfo(const ast::Variable* decl,
sem::Type* type,
const std::string& type_name,
ast::StorageClass storage_class,
ast::Access ac,
VariableKind k);
~VariableInfo();
ast::Variable const* const declaration;
sem::Type* type;
std::string const type_name;
ast::StorageClass storage_class;
ast::Access const access;
std::vector<ast::IdentifierExpression*> users;
sem::BindingPoint binding_point;
VariableKind kind;
};
struct IntrinsicCallInfo {
const ast::CallExpression* call;
const sem::Intrinsic* intrinsic;
};
/// Structure holding semantic information about a function.
/// Used to build the sem::Function nodes at the end of resolving.
struct FunctionInfo {
explicit FunctionInfo(ast::Function* decl);
~FunctionInfo();
ast::Function* const declaration;
std::vector<VariableInfo*> parameters;
UniqueVector<VariableInfo*> referenced_module_vars;
UniqueVector<VariableInfo*> local_referenced_module_vars;
std::vector<const ast::ReturnStatement*> return_statements;
std::vector<const ast::CallExpression*> callsites;
sem::Type* return_type = nullptr;
std::string return_type_name;
std::array<sem::WorkgroupDimension, 3> workgroup_size;
std::vector<IntrinsicCallInfo> intrinsic_calls;
// List of transitive calls this function makes
UniqueVector<FunctionInfo*> transitive_calls;
// List of entry point functions that transitively call this function
UniqueVector<FunctionInfo*> ancestor_entry_points;
};
/// Structure holding semantic information about an expression.
/// Used to build the sem::Expression nodes at the end of resolving.
struct ExpressionInfo {
sem::Type const* type;
std::string const type_name; // Declared type name
sem::Statement* statement;
};
/// Structure holding semantic information about a call expression to an
/// ast::Function.
/// Used to build the sem::Call nodes at the end of resolving.
struct FunctionCallInfo {
FunctionInfo* function;
sem::Statement* statement;
};
/// Structure holding semantic information about a block (i.e. scope), such as
/// parent block and variables declared in the block.
/// Used to validate variable scoping rules.
struct BlockInfo {
enum class Type { kGeneric, kLoop, kLoopContinuing, kSwitchCase };
BlockInfo(const ast::BlockStatement* block, Type type, BlockInfo* parent);
~BlockInfo();
template <typename Pred>
BlockInfo* FindFirstParent(Pred&& pred) {
BlockInfo* curr = this;
while (curr && !pred(curr)) {
curr = curr->parent;
}
return curr;
}
BlockInfo* FindFirstParent(BlockInfo::Type ty) {
return FindFirstParent(
[ty](auto* block_info) { return block_info->type == ty; });
}
ast::BlockStatement const* const block;
Type const type;
BlockInfo* const parent;
std::vector<const ast::Variable*> decls;
// first_continue is set to the index of the first variable in decls
// declared after the first continue statement in a loop block, if any.
constexpr static size_t kNoContinue = size_t(~0);
size_t first_continue = kNoContinue;
};
// Structure holding information for a TypeDecl
struct TypeDeclInfo {
ast::TypeDecl const* const ast;
sem::Type* const sem;
};
// Structure holding a pointer to the sem::Struct and an index to a member of
// that structure.
struct StructMember {
sem::Struct* structure;
size_t index;
};
/// Resolves the program, without creating final the semantic nodes.
/// @returns true on success, false on error
bool ResolveInternal();
bool ValidatePipelineStages();
/// Creates the nodes and adds them to the sem::Info mappings of the
/// ProgramBuilder.
void CreateSemanticNodes() const;
/// Retrieves information for the requested import.
/// @param src the source of the import
/// @param path the import path
/// @param name the method name to get information on
/// @param params the parameters to the method call
/// @param id out parameter for the external call ID. Must not be a nullptr.
/// @returns the return type of `name` in `path` or nullptr on error.
sem::Type* GetImportData(const Source& src,
const std::string& path,
const std::string& name,
const ast::ExpressionList& params,
uint32_t* id);
void set_referenced_from_function_if_needed(VariableInfo* var, bool local);
// AST and Type traversal methods
// Each return true on success, false on failure.
bool ArrayAccessor(ast::ArrayAccessorExpression*);
bool Assignment(ast::AssignmentStatement* a);
bool Binary(ast::BinaryExpression*);
bool Bitcast(ast::BitcastExpression*);
bool Call(ast::CallExpression*);
bool CaseStatement(ast::CaseStatement*);
bool Constructor(ast::ConstructorExpression*);
bool Expression(ast::Expression*);
bool Expressions(const ast::ExpressionList&);
bool Function(ast::Function*);
bool GlobalVariable(ast::Variable* var);
bool Identifier(ast::IdentifierExpression*);
bool IfStatement(ast::IfStatement*);
bool IntrinsicCall(ast::CallExpression*, sem::IntrinsicType);
bool FunctionCall(const ast::CallExpression* call);
bool LoopStatement(ast::LoopStatement*);
bool MemberAccessor(ast::MemberAccessorExpression*);
bool Parameter(ast::Variable* param);
bool Return(ast::ReturnStatement* ret);
bool Statement(ast::Statement*);
bool Statements(const ast::StatementList&);
bool Switch(ast::SwitchStatement* s);
bool UnaryOp(ast::UnaryOpExpression*);
bool VariableDeclStatement(const ast::VariableDeclStatement*);
// AST and Type validation methods
// Each return true on success, false on failure.
bool ValidateArray(const sem::Array* arr, const Source& source);
bool ValidateArrayStrideDecoration(const ast::StrideDecoration* deco,
uint32_t el_size,
uint32_t el_align,
const Source& source);
bool ValidateAtomic(const ast::Atomic* a, const sem::Atomic* s);
bool ValidateAtomicUses();
bool ValidateAssignment(const ast::AssignmentStatement* a);
bool ValidateBuiltinDecoration(const ast::BuiltinDecoration* deco,
const sem::Type* storage_type);
bool ValidateCallStatement(ast::CallStatement* stmt);
bool ValidateEntryPoint(const ast::Function* func, const FunctionInfo* info);
bool ValidateFunction(const ast::Function* func, const FunctionInfo* info);
bool ValidateGlobalVariable(const VariableInfo* var);
bool ValidateInterpolateDecoration(const ast::InterpolateDecoration* deco,
const sem::Type* storage_type);
bool ValidateMatrix(const sem::Matrix* matirx_type, const Source& source);
bool ValidateMatrixConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Matrix* matrix_type);
bool ValidateParameter(const ast::Function* func, const VariableInfo* info);
bool ValidateReturn(const ast::ReturnStatement* ret);
bool ValidateStatements(const ast::StatementList& stmts);
bool ValidateStorageTexture(const ast::StorageTexture* t);
bool ValidateStructure(const sem::Struct* str);
bool ValidateSwitch(const ast::SwitchStatement* s);
bool ValidateVariable(const VariableInfo* info);
bool ValidateVariableConstructor(const ast::Variable* var,
const sem::Type* storage_type,
const std::string& type_name,
const sem::Type* rhs_type,
const std::string& rhs_type_name);
bool ValidateVectorConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Vector* vec_type);
bool ValidateScalarConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Type* type);
bool ValidateArrayConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Array* arr_type);
bool ValidateTypeDecl(const ast::TypeDecl* named_type) const;
bool ValidateNoDuplicateDecorations(const ast::DecorationList& decorations);
/// @returns the sem::Type for the ast::Type `ty`, building it if it
/// hasn't been constructed already. If an error is raised, nullptr is
/// returned.
/// @param ty the ast::Type
sem::Type* Type(const ast::Type* ty);
/// @param named_type the named type to resolve
/// @returns the resolved semantic type
sem::Type* TypeDecl(const ast::TypeDecl* named_type);
/// Builds and returns the semantic information for the array `arr`.
/// This method does not mark the ast::Array node, nor attach the generated
/// semantic information to the AST node.
/// @returns the semantic Array information, or nullptr if an error is raised.
/// @param arr the Array to get semantic information for
sem::Array* Array(const ast::Array* arr);
/// Builds and returns the semantic information for the structure `str`.
/// This method does not mark the ast::Struct node, nor attach the generated
/// semantic information to the AST node.
/// @returns the semantic Struct information, or nullptr if an error is
/// raised. raised, nullptr is returned.
sem::Struct* Structure(const ast::Struct* str);
/// @returns the VariableInfo for the variable `var`, building it if it hasn't
/// been constructed already. If an error is raised, nullptr is returned.
/// @note this method does not resolve the decorations as these are
/// context-dependent (global, local, parameter)
/// @param var the variable to create or return the `VariableInfo` for
/// @param kind what kind of variable we are declaring
VariableInfo* Variable(ast::Variable* var, VariableKind kind);
/// Records the storage class usage for the given type, and any transient
/// dependencies of the type. Validates that the type can be used for the
/// given storage class, erroring if it cannot.
/// @param sc the storage class to apply to the type and transitent types
/// @param ty the type to apply the storage class on
/// @param usage the Source of the root variable declaration that uses the
/// given type and storage class. Used for generating sensible error messages.
/// @returns true on success, false on error
bool ApplyStorageClassUsageToType(ast::StorageClass sc,
sem::Type* ty,
const Source& usage);
/// @param align the output default alignment in bytes for the type `ty`
/// @param size the output default size in bytes for the type `ty`
/// @returns true on success, false on error
bool DefaultAlignAndSize(const sem::Type* ty,
uint32_t& align,
uint32_t& size);
/// @param storage_class the storage class
/// @returns the default access control for the given storage class
ast::AccessControl DefaultAccessForStorageClass(
ast::StorageClass storage_class);
/// @returns the resolved type of the ast::Expression `expr`
/// @param expr the expression
sem::Type* TypeOf(const ast::Expression* expr);
/// @returns the declared type name of the ast::Expression `expr`
/// @param expr the type name
std::string TypeNameOf(const ast::Expression* expr);
/// @returns the semantic type of the AST literal `lit`
/// @param lit the literal
sem::Type* TypeOf(const ast::Literal* lit);
/// Creates a sem::Expression node with the resolved type `type`, and
/// assigns this semantic node to the expression `expr`.
/// @param expr the expression
/// @param type the resolved type
void SetType(const ast::Expression* expr, const sem::Type* type);
/// Creates a sem::Expression node with the resolved type `type`, the declared
/// type name `type_name` and assigns this semantic node to the expression
/// `expr`.
/// @param expr the expression
/// @param type the resolved type
/// @param type_name the declared type name
void SetType(const ast::Expression* expr,
const sem::Type* type,
const std::string& type_name);
/// Resolve the value of a scalar const_expr.
/// @param expr the expression
/// @param result pointer to the where the result will be stored
/// @returns true on success, false on error
template <typename T>
bool GetScalarConstExprValue(ast::Expression* expr, T* result);
/// Constructs a new semantic BlockStatement with the given type and with
/// #current_block_ as its parent, assigns this to #current_block_, and then
/// calls `callback`. The original #current_block_ is restored on exit.
template <typename F>
bool BlockScope(const ast::BlockStatement* block, F&& callback);
/// Returns a human-readable string representation of the vector type name
/// with the given parameters.
/// @param size the vector dimension
/// @param element_type scalar vector sub-element type
/// @return pretty string representation
std::string VectorPretty(uint32_t size, const sem::Type* element_type);
/// Mark records that the given AST node has been visited, and asserts that
/// the given node has not already been seen. Diamonds in the AST are illegal.
/// @param node the AST node.
void Mark(const ast::Node* node);
/// Adds the given error message to the diagnostics
/// [DEPRECATED] Remove all codes
void AddError(const char* code,
const std::string& msg,
const Source& source) const;
/// Adds the given error message to the diagnostics
void AddError(const std::string& msg, const Source& source) const;
/// Adds the given warning message to the diagnostics
void AddWarning(const std::string& msg, const Source& source) const;
/// Adds the given note message to the diagnostics
void AddNote(const std::string& msg, const Source& source) const;
template <typename CALLBACK>
void TraverseCallChain(FunctionInfo* from,
FunctionInfo* to,
CALLBACK&& callback) const;
ProgramBuilder* const builder_;
diag::List& diagnostics_;
std::unique_ptr<IntrinsicTable> const intrinsic_table_;
sem::BlockStatement* current_block_ = nullptr;
ScopeStack<VariableInfo*> variable_stack_;
std::unordered_map<Symbol, FunctionInfo*> symbol_to_function_;
std::vector<FunctionInfo*> entry_points_;
std::vector<StructMember> atomic_members_;
std::unordered_map<const ast::Function*, FunctionInfo*> function_to_info_;
std::unordered_map<const ast::Variable*, VariableInfo*> variable_to_info_;
std::unordered_map<const ast::CallExpression*, FunctionCallInfo>
function_calls_;
std::unordered_map<const ast::Expression*, ExpressionInfo> expr_info_;
std::unordered_map<Symbol, TypeDeclInfo> named_type_info_;
std::unordered_set<const ast::Node*> marked_;
std::unordered_map<uint32_t, const VariableInfo*> constant_ids_;
FunctionInfo* current_function_ = nullptr;
sem::Statement* current_statement_ = nullptr;
BlockAllocator<VariableInfo> variable_infos_;
BlockAllocator<FunctionInfo> function_infos_;
};
} // namespace resolver
} // namespace tint
#endif // SRC_RESOLVER_RESOLVER_H_