blob: 4af9556c15501c72fc05c8e92ec86321b0bb0f54 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/msl/generator_impl.h"
#include <algorithm>
#include <limits>
#include <utility>
#include <vector>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/block_statement.h"
#include "src/ast/bool_literal.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/constant_id_decoration.h"
#include "src/ast/continue_statement.h"
#include "src/ast/else_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/function.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/location_decoration.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/sint_literal.h"
#include "src/ast/struct_member_offset_decoration.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/access_control_type.h"
#include "src/ast/type/alias_type.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/depth_texture_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/multisampled_texture_type.h"
#include "src/ast/type/pointer_type.h"
#include "src/ast/type/sampled_texture_type.h"
#include "src/ast/type/sampler_type.h"
#include "src/ast/type/storage_texture_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type/void_type.h"
#include "src/ast/uint_literal.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable.h"
#include "src/ast/variable_decl_statement.h"
#include "src/writer/float_to_string.h"
namespace tint {
namespace writer {
namespace msl {
namespace {
const char kInStructNameSuffix[] = "in";
const char kOutStructNameSuffix[] = "out";
const char kTintStructInVarPrefix[] = "tint_in";
const char kTintStructOutVarPrefix[] = "tint_out";
bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) {
if (stmts->empty()) {
return false;
}
return stmts->last()->Is<ast::BreakStatement>() ||
stmts->last()->Is<ast::FallthroughStatement>();
}
uint32_t adjust_for_alignment(uint32_t count, uint32_t alignment) {
const auto spill = count % alignment;
if (spill == 0) {
return count;
}
return count + alignment - spill;
}
} // namespace
GeneratorImpl::GeneratorImpl(ast::Module* module)
: TextGenerator(), module_(module) {}
GeneratorImpl::~GeneratorImpl() = default;
std::string GeneratorImpl::generate_name(const std::string& prefix) {
std::string name = prefix;
uint32_t i = 0;
while (namer_.IsMapped(name)) {
name = prefix + "_" + std::to_string(i);
++i;
}
namer_.RegisterRemappedName(name);
return name;
}
bool GeneratorImpl::Generate() {
out_ << "#include <metal_stdlib>" << std::endl << std::endl;
for (auto* global : module_->global_variables()) {
global_variables_.set(global->name(), global);
}
for (auto* const ty : module_->constructed_types()) {
if (!EmitConstructedType(ty)) {
return false;
}
}
if (!module_->constructed_types().empty()) {
out_ << std::endl;
}
for (auto* var : module_->global_variables()) {
if (!var->is_const()) {
continue;
}
if (!EmitProgramConstVariable(var)) {
return false;
}
}
// Make sure all entry point data is emitted before the entry point functions
for (auto* func : module_->functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointData(func)) {
return false;
}
}
for (auto* func : module_->functions()) {
if (!EmitFunction(func)) {
return false;
}
}
for (auto* func : module_->functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointFunction(func)) {
return false;
}
out_ << std::endl;
}
return true;
}
uint32_t GeneratorImpl::calculate_largest_alignment(ast::type::Struct* type) {
auto* stct = type->As<ast::type::Struct>()->impl();
uint32_t largest_alignment = 0;
for (auto* mem : stct->members()) {
auto align = calculate_alignment_size(mem->type());
if (align == 0) {
return 0;
}
if (!mem->type()->Is<ast::type::Struct>()) {
largest_alignment = std::max(largest_alignment, align);
} else {
largest_alignment = std::max(
largest_alignment,
calculate_largest_alignment(mem->type()->As<ast::type::Struct>()));
}
}
return largest_alignment;
}
uint32_t GeneratorImpl::calculate_alignment_size(ast::type::Type* type) {
if (auto* alias = type->As<ast::type::Alias>()) {
return calculate_alignment_size(alias->type());
}
if (auto* ary = type->As<ast::type::Array>()) {
// TODO(dsinclair): Handle array stride and adjust for alignment.
uint32_t type_size = calculate_alignment_size(ary->type());
return ary->size() * type_size;
}
if (type->Is<ast::type::Bool>()) {
return 1;
}
if (type->Is<ast::type::Pointer>()) {
return 0;
}
if (type->Is<ast::type::F32>() || type->Is<ast::type::I32>() ||
type->Is<ast::type::U32>()) {
return 4;
}
if (auto* mat = type->As<ast::type::Matrix>()) {
// TODO(dsinclair): Handle MatrixStride
// https://github.com/gpuweb/gpuweb/issues/773
uint32_t type_size = calculate_alignment_size(mat->type());
return mat->rows() * mat->columns() * type_size;
}
if (auto* stct_ty = type->As<ast::type::Struct>()) {
auto* stct = stct_ty->impl();
uint32_t count = 0;
uint32_t largest_alignment = 0;
// Offset decorations in WGSL must be in increasing order.
for (auto* mem : stct->members()) {
for (auto* deco : mem->decorations()) {
if (auto* offset = deco->As<ast::StructMemberOffsetDecoration>()) {
count = offset->offset();
}
}
auto align = calculate_alignment_size(mem->type());
if (align == 0) {
return 0;
}
if (auto* str = mem->type()->As<ast::type::Struct>()) {
largest_alignment =
std::max(largest_alignment, calculate_largest_alignment(str));
} else {
largest_alignment = std::max(largest_alignment, align);
}
// Round up to the alignment size
count = adjust_for_alignment(count, align);
count += align;
}
// Round struct up to largest align size
count = adjust_for_alignment(count, largest_alignment);
return count;
}
if (auto* vec = type->As<ast::type::Vector>()) {
uint32_t type_size = calculate_alignment_size(vec->type());
if (vec->size() == 2) {
return 2 * type_size;
}
return 4 * type_size;
}
return 0;
}
bool GeneratorImpl::EmitConstructedType(const ast::type::Type* ty) {
make_indent();
if (auto* alias = ty->As<ast::type::Alias>()) {
out_ << "typedef ";
if (!EmitType(alias->type(), "")) {
return false;
}
out_ << " " << namer_.NameFor(alias->name()) << ";" << std::endl;
} else if (auto* str = ty->As<ast::type::Struct>()) {
if (!EmitStructType(str)) {
return false;
}
} else {
error_ = "unknown alias type: " + ty->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitArrayAccessor(ast::ArrayAccessorExpression* expr) {
if (!EmitExpression(expr->array())) {
return false;
}
out_ << "[";
if (!EmitExpression(expr->idx_expr())) {
return false;
}
out_ << "]";
return true;
}
bool GeneratorImpl::EmitBitcast(ast::BitcastExpression* expr) {
out_ << "as_type<";
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << ">(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitAssign(ast::AssignmentStatement* stmt) {
make_indent();
if (!EmitExpression(stmt->lhs())) {
return false;
}
out_ << " = ";
if (!EmitExpression(stmt->rhs())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBinary(ast::BinaryExpression* expr) {
out_ << "(";
if (!EmitExpression(expr->lhs())) {
return false;
}
out_ << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out_ << "&";
break;
case ast::BinaryOp::kOr:
out_ << "|";
break;
case ast::BinaryOp::kXor:
out_ << "^";
break;
case ast::BinaryOp::kLogicalAnd:
out_ << "&&";
break;
case ast::BinaryOp::kLogicalOr:
out_ << "||";
break;
case ast::BinaryOp::kEqual:
out_ << "==";
break;
case ast::BinaryOp::kNotEqual:
out_ << "!=";
break;
case ast::BinaryOp::kLessThan:
out_ << "<";
break;
case ast::BinaryOp::kGreaterThan:
out_ << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out_ << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out_ << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out_ << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out_ << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out_ << "+";
break;
case ast::BinaryOp::kSubtract:
out_ << "-";
break;
case ast::BinaryOp::kMultiply:
out_ << "*";
break;
case ast::BinaryOp::kDivide:
out_ << "/";
break;
case ast::BinaryOp::kModulo:
out_ << "%";
break;
case ast::BinaryOp::kNone:
error_ = "missing binary operation type";
return false;
}
out_ << " ";
if (!EmitExpression(expr->rhs())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitBreak(ast::BreakStatement*) {
make_indent();
out_ << "break;" << std::endl;
return true;
}
std::string GeneratorImpl::current_ep_var_name(VarType type) {
std::string name = "";
switch (type) {
case VarType::kIn: {
auto in_it = ep_sym_to_in_data_.find(current_ep_sym_.value());
if (in_it != ep_sym_to_in_data_.end()) {
name = in_it->second.var_name;
}
break;
}
case VarType::kOut: {
auto out_it = ep_sym_to_out_data_.find(current_ep_sym_.value());
if (out_it != ep_sym_to_out_data_.end()) {
name = out_it->second.var_name;
}
break;
}
}
return name;
}
std::string GeneratorImpl::generate_intrinsic_name(ast::Intrinsic intrinsic) {
if (intrinsic == ast::Intrinsic::kAny) {
return "any";
}
if (intrinsic == ast::Intrinsic::kAll) {
return "all";
}
if (intrinsic == ast::Intrinsic::kCountOneBits) {
return "popcount";
}
if (intrinsic == ast::Intrinsic::kDot) {
return "dot";
}
if (intrinsic == ast::Intrinsic::kDpdy ||
intrinsic == ast::Intrinsic::kDpdyFine ||
intrinsic == ast::Intrinsic::kDpdyCoarse) {
return "dfdy";
}
if (intrinsic == ast::Intrinsic::kDpdx ||
intrinsic == ast::Intrinsic::kDpdxFine ||
intrinsic == ast::Intrinsic::kDpdxCoarse) {
return "dfdx";
}
if (intrinsic == ast::Intrinsic::kFwidth ||
intrinsic == ast::Intrinsic::kFwidthFine ||
intrinsic == ast::Intrinsic::kFwidthCoarse) {
return "fwidth";
}
if (intrinsic == ast::Intrinsic::kIsFinite) {
return "isfinite";
}
if (intrinsic == ast::Intrinsic::kIsInf) {
return "isinf";
}
if (intrinsic == ast::Intrinsic::kIsNan) {
return "isnan";
}
if (intrinsic == ast::Intrinsic::kIsNormal) {
return "isnormal";
}
if (intrinsic == ast::Intrinsic::kReverseBits) {
return "reverse_bits";
}
if (intrinsic == ast::Intrinsic::kSelect) {
return "select";
}
return "";
}
bool GeneratorImpl::EmitCall(ast::CallExpression* expr) {
auto* ident = expr->func()->As<ast::IdentifierExpression>();
if (ident == nullptr) {
error_ = "invalid function name";
return 0;
}
if (ident->IsIntrinsic()) {
const auto& params = expr->params();
if (ident->intrinsic() == ast::Intrinsic::kOuterProduct) {
error_ = "outer_product not supported yet";
return false;
// TODO(dsinclair): This gets tricky. We need to generate two variables to
// hold the outer_product expressions, but we maybe inside an expression
// ourselves. So, this will need to, possibly, output the variables
// _before_ the expression which contains the outer product.
//
// This then has the follow on, what if we have `(false &&
// outer_product())` in that case, we shouldn't evaluate the expressions
// at all because of short circuting.
//
// So .... this turns out to be hard ...
// // We create variables to hold the two parameters in case they're
// // function calls with side effects.
// auto* param0 = param[0].get();
// auto* name0 = generate_name("outer_product_expr_0");
// auto* param1 = param[1].get();
// auto* name1 = generate_name("outer_product_expr_1");
// make_indent();
// if (!EmitType(expr->result_type(), "")) {
// return false;
// }
// out_ << "(";
// auto param1_type = params[1]->result_type()->UnwrapPtrIfNeeded();
// if (!param1_type->Is<ast::type::Vector>()) {
// error_ = "invalid param type in outer_product got: " +
// param1_type->type_name();
// return false;
// }
// for (uint32_t i = 0; i <
// param1_type->As<ast::type::Vector>()->size(); ++i) {
// if (i > 0) {
// out_ << ", ";
// }
// if (!EmitExpression(params[0].get())) {
// return false;
// }
// out_ << " * ";
// if (!EmitExpression(params[1].get())) {
// return false;
// }
// out_ << "[" << i << "]";
// }
// out_ << ")";
} else {
auto name = generate_intrinsic_name(ident->intrinsic());
if (name.empty()) {
if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) {
return EmitTextureCall(expr);
}
name = generate_builtin_name(ident);
if (name.empty()) {
return false;
}
}
make_indent();
out_ << name << "(";
bool first = true;
for (auto* param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param)) {
return false;
}
}
out_ << ")";
}
return true;
}
auto name = ident->name();
auto caller_sym = module_->GetSymbol(name);
auto it = ep_func_name_remapped_.find(current_ep_sym_.to_str() + "_" +
caller_sym.to_str());
if (it != ep_func_name_remapped_.end()) {
name = it->second;
}
auto* func = module_->FindFunctionBySymbol(module_->GetSymbol(ident->name()));
if (func == nullptr) {
error_ = "Unable to find function: " + name;
return false;
}
out_ << name << "(";
bool first = true;
if (has_referenced_in_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kIn);
if (!var_name.empty()) {
out_ << var_name;
first = false;
}
}
if (has_referenced_out_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kOut);
if (!var_name.empty()) {
if (!first) {
out_ << ", ";
}
first = false;
out_ << var_name;
}
}
for (const auto& data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
out_ << var->name();
}
for (const auto& data : func->referenced_uniform_variables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << var->name();
}
for (const auto& data : func->referenced_storagebuffer_variables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << var->name();
}
const auto& params = expr->params();
for (auto* param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param)) {
return false;
}
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitTextureCall(ast::CallExpression* expr) {
auto* ident = expr->func()->As<ast::IdentifierExpression>();
auto params = expr->params();
auto* signature = static_cast<const ast::intrinsic::TextureSignature*>(
ident->intrinsic_signature());
auto& pidx = signature->params.idx;
auto const kNotUsed = ast::intrinsic::TextureSignature::Parameters::kNotUsed;
if (!EmitExpression(params[pidx.texture]))
return false;
bool lod_param_is_named = true;
switch (ident->intrinsic()) {
case ast::Intrinsic::kTextureSample:
case ast::Intrinsic::kTextureSampleBias:
case ast::Intrinsic::kTextureSampleLevel:
case ast::Intrinsic::kTextureSampleGrad:
out_ << ".sample(";
break;
case ast::Intrinsic::kTextureSampleCompare:
out_ << ".sample_compare(";
break;
case ast::Intrinsic::kTextureLoad:
out_ << ".read(";
lod_param_is_named = false;
break;
case ast::Intrinsic::kTextureStore:
out_ << ".write(";
break;
default:
error_ = "Internal compiler error: Unhandled texture intrinsic '" +
ident->name() + "'";
return false;
}
bool first_arg = true;
auto maybe_write_comma = [&] {
if (!first_arg) {
out_ << ", ";
}
first_arg = false;
};
for (auto idx : {pidx.value, pidx.sampler, pidx.coords, pidx.array_index,
pidx.depth_ref, pidx.sample_index}) {
if (idx != kNotUsed) {
maybe_write_comma();
if (!EmitExpression(params[idx]))
return false;
}
}
if (pidx.bias != kNotUsed) {
maybe_write_comma();
out_ << "bias(";
if (!EmitExpression(params[pidx.bias])) {
return false;
}
out_ << ")";
}
if (pidx.level != kNotUsed) {
maybe_write_comma();
if (lod_param_is_named) {
out_ << "level(";
}
if (!EmitExpression(params[pidx.level])) {
return false;
}
if (lod_param_is_named) {
out_ << ")";
}
}
if (pidx.ddx != kNotUsed) {
auto dim = params[pidx.texture]
->result_type()
->UnwrapPtrIfNeeded()
->As<ast::type::Texture>()
->dim();
switch (dim) {
case ast::type::TextureDimension::k2d:
case ast::type::TextureDimension::k2dArray:
maybe_write_comma();
out_ << "gradient2d(";
break;
case ast::type::TextureDimension::k3d:
maybe_write_comma();
out_ << "gradient3d(";
break;
case ast::type::TextureDimension::kCube:
case ast::type::TextureDimension::kCubeArray:
maybe_write_comma();
out_ << "gradientcube(";
break;
default: {
std::stringstream err;
err << "MSL does not support gradients for " << dim << " textures";
error_ = err.str();
return false;
}
}
if (!EmitExpression(params[pidx.ddx])) {
return false;
}
out_ << ", ";
if (!EmitExpression(params[pidx.ddy])) {
return false;
}
out_ << ")";
}
if (pidx.offset != kNotUsed) {
maybe_write_comma();
if (!EmitExpression(params[pidx.offset])) {
return false;
}
}
out_ << ")";
return true;
}
std::string GeneratorImpl::generate_builtin_name(
ast::IdentifierExpression* ident) {
std::string out = "metal::";
switch (ident->intrinsic()) {
case ast::Intrinsic::kAcos:
case ast::Intrinsic::kAsin:
case ast::Intrinsic::kAtan:
case ast::Intrinsic::kAtan2:
case ast::Intrinsic::kCeil:
case ast::Intrinsic::kCos:
case ast::Intrinsic::kCosh:
case ast::Intrinsic::kCross:
case ast::Intrinsic::kDeterminant:
case ast::Intrinsic::kDistance:
case ast::Intrinsic::kExp:
case ast::Intrinsic::kExp2:
case ast::Intrinsic::kFloor:
case ast::Intrinsic::kFma:
case ast::Intrinsic::kFract:
case ast::Intrinsic::kLength:
case ast::Intrinsic::kLog:
case ast::Intrinsic::kLog2:
case ast::Intrinsic::kMix:
case ast::Intrinsic::kNormalize:
case ast::Intrinsic::kPow:
case ast::Intrinsic::kReflect:
case ast::Intrinsic::kRound:
case ast::Intrinsic::kSin:
case ast::Intrinsic::kSinh:
case ast::Intrinsic::kSqrt:
case ast::Intrinsic::kStep:
case ast::Intrinsic::kTan:
case ast::Intrinsic::kTanh:
case ast::Intrinsic::kTrunc:
case ast::Intrinsic::kSign:
case ast::Intrinsic::kClamp:
out += ident->name();
break;
case ast::Intrinsic::kAbs:
if (ident->result_type()->Is<ast::type::F32>()) {
out += "fabs";
} else if (ident->result_type()->Is<ast::type::U32>() ||
ident->result_type()->Is<ast::type::I32>()) {
out += "abs";
}
break;
case ast::Intrinsic::kMax:
if (ident->result_type()->Is<ast::type::F32>()) {
out += "fmax";
} else if (ident->result_type()->Is<ast::type::U32>() ||
ident->result_type()->Is<ast::type::I32>()) {
out += "max";
}
break;
case ast::Intrinsic::kMin:
if (ident->result_type()->Is<ast::type::F32>()) {
out += "fmin";
} else if (ident->result_type()->Is<ast::type::U32>() ||
ident->result_type()->Is<ast::type::I32>()) {
out += "min";
}
break;
case ast::Intrinsic::kFaceForward:
out += "faceforward";
break;
case ast::Intrinsic::kSmoothStep:
out += "smoothstep";
break;
case ast::Intrinsic::kInverseSqrt:
out += "rsqrt";
break;
default:
error_ = "Unknown import method: " + ident->name();
return "";
}
return out;
}
bool GeneratorImpl::EmitCase(ast::CaseStatement* stmt) {
make_indent();
if (stmt->IsDefault()) {
out_ << "default:";
} else {
bool first = true;
for (auto* selector : stmt->selectors()) {
if (!first) {
out_ << std::endl;
make_indent();
}
first = false;
out_ << "case ";
if (!EmitLiteral(selector)) {
return false;
}
out_ << ":";
}
}
out_ << " {" << std::endl;
increment_indent();
for (auto* s : *stmt->body()) {
if (!EmitStatement(s)) {
return false;
}
}
if (!last_is_break_or_fallthrough(stmt->body())) {
make_indent();
out_ << "break;" << std::endl;
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitConstructor(ast::ConstructorExpression* expr) {
if (auto* scalar = expr->As<ast::ScalarConstructorExpression>()) {
return EmitScalarConstructor(scalar);
}
return EmitTypeConstructor(expr->As<ast::TypeConstructorExpression>());
}
bool GeneratorImpl::EmitContinue(ast::ContinueStatement*) {
make_indent();
out_ << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitTypeConstructor(ast::TypeConstructorExpression* expr) {
if (expr->type()->Is<ast::type::Array>()) {
out_ << "{";
} else {
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << "(";
}
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (expr->values().empty()) {
if (!EmitZeroValue(expr->type())) {
return false;
}
} else {
bool first = true;
for (auto* e : expr->values()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(e)) {
return false;
}
}
}
if (expr->type()->Is<ast::type::Array>()) {
out_ << "}";
} else {
out_ << ")";
}
return true;
}
bool GeneratorImpl::EmitZeroValue(ast::type::Type* type) {
if (type->Is<ast::type::Bool>()) {
out_ << "false";
} else if (type->Is<ast::type::F32>()) {
out_ << "0.0f";
} else if (type->Is<ast::type::I32>()) {
out_ << "0";
} else if (type->Is<ast::type::U32>()) {
out_ << "0u";
} else if (auto* vec = type->As<ast::type::Vector>()) {
return EmitZeroValue(vec->type());
} else if (auto* mat = type->As<ast::type::Matrix>()) {
return EmitZeroValue(mat->type());
} else if (auto* arr = type->As<ast::type::Array>()) {
out_ << "{";
if (!EmitZeroValue(arr->type())) {
return false;
}
out_ << "}";
} else if (type->As<ast::type::Struct>()) {
out_ << "{}";
} else {
error_ = "Invalid type for zero emission: " + type->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitScalarConstructor(
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(expr->literal());
}
bool GeneratorImpl::EmitLiteral(ast::Literal* lit) {
if (auto* l = lit->As<ast::BoolLiteral>()) {
out_ << (l->IsTrue() ? "true" : "false");
} else if (auto* fl = lit->As<ast::FloatLiteral>()) {
out_ << FloatToString(fl->value()) << "f";
} else if (auto* sl = lit->As<ast::SintLiteral>()) {
out_ << sl->value();
} else if (auto* ul = lit->As<ast::UintLiteral>()) {
out_ << ul->value() << "u";
} else {
error_ = "unknown literal type";
return false;
}
return true;
}
bool GeneratorImpl::EmitEntryPointData(ast::Function* func) {
std::vector<std::pair<ast::Variable*, uint32_t>> in_locations;
std::vector<std::pair<ast::Variable*, ast::VariableDecoration*>>
out_variables;
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kInput) {
in_locations.push_back({var, deco->value()});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
out_variables.push_back({var, deco});
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kOutput) {
out_variables.push_back({var, deco});
}
}
if (!in_locations.empty()) {
auto in_struct_name =
generate_name(func->name() + "_" + kInStructNameSuffix);
auto in_var_name = generate_name(kTintStructInVarPrefix);
ep_sym_to_in_data_[func->symbol().value()] = {in_struct_name, in_var_name};
make_indent();
out_ << "struct " << in_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : in_locations) {
auto* var = data.first;
uint32_t loc = data.second;
make_indent();
if (!EmitType(var->type(), var->name())) {
return false;
}
out_ << " " << var->name() << " [[";
if (func->pipeline_stage() == ast::PipelineStage::kVertex) {
out_ << "attribute(" << loc << ")";
} else if (func->pipeline_stage() == ast::PipelineStage::kFragment) {
out_ << "user(locn" << loc << ")";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
if (!out_variables.empty()) {
auto out_struct_name =
generate_name(func->name() + "_" + kOutStructNameSuffix);
auto out_var_name = generate_name(kTintStructOutVarPrefix);
ep_sym_to_out_data_[func->symbol().value()] = {out_struct_name,
out_var_name};
make_indent();
out_ << "struct " << out_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : out_variables) {
auto* var = data.first;
auto* deco = data.second;
make_indent();
if (!EmitType(var->type(), var->name())) {
return false;
}
out_ << " " << var->name() << " [[";
if (auto* location = deco->As<ast::LocationDecoration>()) {
auto loc = location->value();
if (func->pipeline_stage() == ast::PipelineStage::kVertex) {
out_ << "user(locn" << loc << ")";
} else if (func->pipeline_stage() == ast::PipelineStage::kFragment) {
out_ << "color(" << loc << ")";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
} else if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
error_ = "unsupported builtin";
return false;
}
out_ << attr;
} else {
error_ = "unsupported variable decoration for entry point output";
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
return true;
}
bool GeneratorImpl::EmitExpression(ast::Expression* expr) {
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return EmitArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return EmitBinary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return EmitBitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return EmitCall(c);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return EmitConstructor(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return EmitIdentifier(i);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return EmitMemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return EmitUnaryOp(u);
}
error_ = "unknown expression type: " + expr->str();
return false;
}
void GeneratorImpl::EmitStage(ast::PipelineStage stage) {
switch (stage) {
case ast::PipelineStage::kFragment:
out_ << "fragment";
break;
case ast::PipelineStage::kVertex:
out_ << "vertex";
break;
case ast::PipelineStage::kCompute:
out_ << "kernel";
break;
case ast::PipelineStage::kNone:
break;
}
return;
}
bool GeneratorImpl::has_referenced_in_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_out_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_var_needing_struct(ast::Function* func) {
return has_referenced_in_var_needing_struct(func) ||
has_referenced_out_var_needing_struct(func);
}
bool GeneratorImpl::EmitFunction(ast::Function* func) {
make_indent();
// Entry points will be emitted later, skip for now.
if (func->IsEntryPoint()) {
return true;
}
// TODO(dsinclair): This could be smarter. If the input/outputs for multiple
// entry points are the same we could generate a single struct and then have
// this determine it's the same struct and just emit once.
bool emit_duplicate_functions = func->ancestor_entry_points().size() > 0 &&
has_referenced_var_needing_struct(func);
if (emit_duplicate_functions) {
for (const auto& ep_sym : func->ancestor_entry_points()) {
if (!EmitFunctionInternal(func, emit_duplicate_functions, ep_sym)) {
return false;
}
out_ << std::endl;
}
} else {
// Emit as non-duplicated
if (!EmitFunctionInternal(func, false, Symbol())) {
return false;
}
out_ << std::endl;
}
return true;
}
bool GeneratorImpl::EmitFunctionInternal(ast::Function* func,
bool emit_duplicate_functions,
Symbol ep_sym) {
auto name = func->symbol().to_str();
if (!EmitType(func->return_type(), "")) {
return false;
}
out_ << " ";
if (emit_duplicate_functions) {
auto func_name = name;
auto ep_name = ep_sym.to_str();
// TODO(dsinclair): The SymbolToName should go away and just use
// to_str() here when the conversion is complete.
name = generate_name(func->name() + "_" + module_->SymbolToName(ep_sym));
ep_func_name_remapped_[ep_name + "_" + func_name] = name;
} else {
// TODO(dsinclair): this should be updated to a remapped name
name = namer_.NameFor(func->name());
}
out_ << name << "(";
bool first = true;
// If we're emitting duplicate functions that means the function takes
// the stage_in or stage_out value from the entry point, emit them.
//
// We emit both of them if they're there regardless of if they're both used.
if (emit_duplicate_functions) {
auto in_it = ep_sym_to_in_data_.find(ep_sym.value());
if (in_it != ep_sym_to_in_data_.end()) {
out_ << "thread " << in_it->second.struct_name << "& "
<< in_it->second.var_name;
first = false;
}
auto out_it = ep_sym_to_out_data_.find(ep_sym.value());
if (out_it != ep_sym_to_out_data_.end()) {
if (!first) {
out_ << ", ";
}
out_ << "thread " << out_it->second.struct_name << "& "
<< out_it->second.var_name;
first = false;
}
}
for (const auto& data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
out_ << "thread ";
if (!EmitType(var->type(), "")) {
return false;
}
out_ << "& " << var->name();
}
for (const auto& data : func->referenced_uniform_variables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << "constant ";
// TODO(dsinclair): Can arrays be uniform? If so, fix this ...
if (!EmitType(var->type(), "")) {
return false;
}
out_ << "& " << var->name();
}
for (const auto& data : func->referenced_storagebuffer_variables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
auto* ac = var->type()->As<ast::type::AccessControl>();
if (ac == nullptr) {
error_ = "invalid type for storage buffer, expected access control";
return false;
}
if (ac->IsReadOnly()) {
out_ << "const ";
}
out_ << "device ";
if (!EmitType(ac->type(), "")) {
return false;
}
out_ << "& " << var->name();
}
for (auto* v : func->params()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitType(v->type(), v->name())) {
return false;
}
// Array name is output as part of the type
if (!v->type()->Is<ast::type::Array>()) {
out_ << " " << v->name();
}
}
out_ << ") ";
current_ep_sym_ = ep_sym;
if (!EmitBlockAndNewline(func->body())) {
return false;
}
current_ep_sym_ = Symbol();
return true;
}
std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const {
switch (builtin) {
case ast::Builtin::kPosition:
return "position";
case ast::Builtin::kVertexIdx:
return "vertex_id";
case ast::Builtin::kInstanceIdx:
return "instance_id";
case ast::Builtin::kFrontFacing:
return "front_facing";
case ast::Builtin::kFragCoord:
return "position";
case ast::Builtin::kFragDepth:
return "depth(any)";
case ast::Builtin::kLocalInvocationId:
return "thread_position_in_threadgroup";
case ast::Builtin::kLocalInvocationIdx:
return "thread_index_in_threadgroup";
case ast::Builtin::kGlobalInvocationId:
return "thread_position_in_grid";
default:
break;
}
return "";
}
bool GeneratorImpl::EmitEntryPointFunction(ast::Function* func) {
make_indent();
current_ep_sym_ = func->symbol();
EmitStage(func->pipeline_stage());
out_ << " ";
// This is an entry point, the return type is the entry point output structure
// if one exists, or void otherwise.
auto out_data = ep_sym_to_out_data_.find(current_ep_sym_.value());
bool has_out_data = out_data != ep_sym_to_out_data_.end();
if (has_out_data) {
out_ << out_data->second.struct_name;
} else {
out_ << "void";
}
out_ << " " << namer_.NameFor(func->name()) << "(";
bool first = true;
auto in_data = ep_sym_to_in_data_.find(current_ep_sym_.value());
if (in_data != ep_sym_to_in_data_.end()) {
out_ << in_data->second.struct_name << " " << in_data->second.var_name
<< " [[stage_in]]";
first = false;
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
auto* builtin = data.second;
if (!EmitType(var->type(), "")) {
return false;
}
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
error_ = "unknown builtin";
return false;
}
out_ << " " << var->name() << " [[" << attr << "]]";
}
for (auto data : func->referenced_uniform_variables()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
if (binding == nullptr) {
error_ = "unable to find binding information for uniform: " + var->name();
return false;
}
// auto* set = data.second.set;
out_ << "constant ";
// TODO(dsinclair): Can you have a uniform array? If so, this needs to be
// updated to handle arrays property.
if (!EmitType(var->type(), "")) {
return false;
}
out_ << "& " << var->name() << " [[buffer(" << binding->value() << ")]]";
}
for (auto data : func->referenced_storagebuffer_variables()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
// auto* set = data.second.set;
auto* ac = var->type()->As<ast::type::AccessControl>();
if (ac == nullptr) {
error_ = "invalid type for storage buffer, expected access control";
return false;
}
if (ac->IsReadOnly()) {
out_ << "const ";
}
out_ << "device ";
if (!EmitType(ac->type(), "")) {
return false;
}
out_ << "& " << var->name() << " [[buffer(" << binding->value() << ")]]";
}
out_ << ") {" << std::endl;
increment_indent();
if (has_out_data) {
make_indent();
out_ << out_data->second.struct_name << " " << out_data->second.var_name
<< " = {};" << std::endl;
}
generating_entry_point_ = true;
for (auto* s : *func->body()) {
if (!EmitStatement(s)) {
return false;
}
}
generating_entry_point_ = false;
decrement_indent();
make_indent();
out_ << "}" << std::endl;
current_ep_sym_ = Symbol();
return true;
}
bool GeneratorImpl::global_is_in_struct(ast::Variable* var) const {
bool in_or_out_struct_has_location =
var != nullptr && var->HasLocationDecoration() &&
(var->storage_class() == ast::StorageClass::kInput ||
var->storage_class() == ast::StorageClass::kOutput);
bool in_struct_has_builtin =
var != nullptr && var->HasBuiltinDecoration() &&
var->storage_class() == ast::StorageClass::kOutput;
return in_or_out_struct_has_location || in_struct_has_builtin;
}
bool GeneratorImpl::EmitIdentifier(ast::IdentifierExpression* expr) {
auto* ident = expr->As<ast::IdentifierExpression>();
ast::Variable* var = nullptr;
if (global_variables_.get(ident->name(), &var)) {
if (global_is_in_struct(var)) {
auto var_type = var->storage_class() == ast::StorageClass::kInput
? VarType::kIn
: VarType::kOut;
auto name = current_ep_var_name(var_type);
if (name.empty()) {
error_ = "unable to find entry point data for variable";
return false;
}
out_ << name << ".";
}
}
out_ << namer_.NameFor(ident->name());
return true;
}
bool GeneratorImpl::EmitLoop(ast::LoopStatement* stmt) {
loop_emission_counter_++;
std::string guard = namer_.NameFor("tint_msl_is_first_" +
std::to_string(loop_emission_counter_));
if (stmt->has_continuing()) {
make_indent();
// Continuing variables get their own scope.
out_ << "{" << std::endl;
increment_indent();
make_indent();
out_ << "bool " << guard << " = true;" << std::endl;
// A continuing block may use variables declared in the method body. As a
// first pass, if we have a continuing, we pull all declarations outside
// the for loop into the continuing scope. Then, the variable declarations
// will be turned into assignments.
for (auto* s : *(stmt->body())) {
if (auto* decl = s->As<ast::VariableDeclStatement>()) {
if (!EmitVariable(decl->variable(), true)) {
return false;
}
}
}
}
make_indent();
out_ << "for(;;) {" << std::endl;
increment_indent();
if (stmt->has_continuing()) {
make_indent();
out_ << "if (!" << guard << ") ";
if (!EmitBlockAndNewline(stmt->continuing())) {
return false;
}
make_indent();
out_ << guard << " = false;" << std::endl;
out_ << std::endl;
}
for (auto* s : *(stmt->body())) {
// If we have a continuing block we've already emitted the variable
// declaration before the loop, so treat it as an assignment.
auto* decl = s->As<ast::VariableDeclStatement>();
if (decl != nullptr && stmt->has_continuing()) {
make_indent();
auto* var = decl->variable();
out_ << var->name() << " = ";
if (var->constructor() != nullptr) {
if (!EmitExpression(var->constructor())) {
return false;
}
} else {
if (!EmitZeroValue(var->type())) {
return false;
}
}
out_ << ";" << std::endl;
continue;
}
if (!EmitStatement(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
// Close the scope for any continuing variables.
if (stmt->has_continuing()) {
decrement_indent();
make_indent();
out_ << "}" << std::endl;
}
return true;
}
bool GeneratorImpl::EmitDiscard(ast::DiscardStatement*) {
make_indent();
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
out_ << "discard_fragment();" << std::endl;
return true;
}
bool GeneratorImpl::EmitElse(ast::ElseStatement* stmt) {
if (stmt->HasCondition()) {
out_ << " else if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
} else {
out_ << " else ";
}
return EmitBlock(stmt->body());
}
bool GeneratorImpl::EmitIf(ast::IfStatement* stmt) {
make_indent();
out_ << "if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
if (!EmitBlock(stmt->body())) {
return false;
}
for (auto* e : stmt->else_statements()) {
if (!EmitElse(e)) {
return false;
}
}
out_ << std::endl;
return true;
}
bool GeneratorImpl::EmitMemberAccessor(ast::MemberAccessorExpression* expr) {
if (!EmitExpression(expr->structure())) {
return false;
}
out_ << ".";
return EmitExpression(expr->member());
}
bool GeneratorImpl::EmitReturn(ast::ReturnStatement* stmt) {
make_indent();
out_ << "return";
if (generating_entry_point_) {
auto out_data = ep_sym_to_out_data_.find(current_ep_sym_.value());
if (out_data != ep_sym_to_out_data_.end()) {
out_ << " " << out_data->second.var_name;
}
} else if (stmt->has_value()) {
out_ << " ";
if (!EmitExpression(stmt->value())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) {
out_ << "{" << std::endl;
increment_indent();
for (auto* s : *stmt) {
if (!EmitStatement(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}";
return true;
}
bool GeneratorImpl::EmitBlockAndNewline(const ast::BlockStatement* stmt) {
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitIndentedBlockAndNewline(ast::BlockStatement* stmt) {
make_indent();
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitStatement(ast::Statement* stmt) {
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return EmitAssign(a);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return EmitIndentedBlockAndNewline(b);
}
if (auto* b = stmt->As<ast::BreakStatement>()) {
return EmitBreak(b);
}
if (auto* c = stmt->As<ast::CallStatement>()) {
make_indent();
if (!EmitCall(c->expr())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
if (auto* c = stmt->As<ast::ContinueStatement>()) {
return EmitContinue(c);
}
if (auto* d = stmt->As<ast::DiscardStatement>()) {
return EmitDiscard(d);
}
if (stmt->As<ast::FallthroughStatement>()) {
make_indent();
out_ << "/* fallthrough */" << std::endl;
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return EmitIf(i);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return EmitLoop(l);
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return EmitReturn(r);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return EmitSwitch(s);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
return EmitVariable(v->variable(), false);
}
error_ = "unknown statement type: " + stmt->str();
return false;
}
bool GeneratorImpl::EmitSwitch(ast::SwitchStatement* stmt) {
make_indent();
out_ << "switch(";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") {" << std::endl;
increment_indent();
for (auto* s : stmt->body()) {
if (!EmitCase(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitType(ast::type::Type* type, const std::string& name) {
if (auto* alias = type->As<ast::type::Alias>()) {
out_ << namer_.NameFor(alias->name());
} else if (auto* ary = type->As<ast::type::Array>()) {
ast::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (auto* arr = base_type->As<ast::type::Array>()) {
if (arr->IsRuntimeArray()) {
sizes.push_back(1);
} else {
sizes.push_back(arr->size());
}
base_type = arr->type();
}
if (!EmitType(base_type, "")) {
return false;
}
if (!name.empty()) {
out_ << " " << namer_.NameFor(name);
}
for (uint32_t size : sizes) {
out_ << "[" << size << "]";
}
} else if (type->Is<ast::type::Bool>()) {
out_ << "bool";
} else if (type->Is<ast::type::F32>()) {
out_ << "float";
} else if (type->Is<ast::type::I32>()) {
out_ << "int";
} else if (auto* mat = type->As<ast::type::Matrix>()) {
if (!EmitType(mat->type(), "")) {
return false;
}
out_ << mat->columns() << "x" << mat->rows();
} else if (auto* ptr = type->As<ast::type::Pointer>()) {
// TODO(dsinclair): Storage class?
if (!EmitType(ptr->type(), "")) {
return false;
}
out_ << "*";
} else if (type->Is<ast::type::Sampler>()) {
out_ << "sampler";
} else if (auto* str = type->As<ast::type::Struct>()) {
// The struct type emits as just the name. The declaration would be emitted
// as part of emitting the constructed types.
out_ << str->name();
} else if (auto* tex = type->As<ast::type::Texture>()) {
if (tex->Is<ast::type::DepthTexture>()) {
out_ << "depth";
} else {
out_ << "texture";
}
switch (tex->dim()) {
case ast::type::TextureDimension::k1d:
out_ << "1d";
break;
case ast::type::TextureDimension::k1dArray:
out_ << "1d_array";
break;
case ast::type::TextureDimension::k2d:
out_ << "2d";
break;
case ast::type::TextureDimension::k2dArray:
out_ << "2d_array";
break;
case ast::type::TextureDimension::k3d:
out_ << "3d";
break;
case ast::type::TextureDimension::kCube:
out_ << "cube";
break;
case ast::type::TextureDimension::kCubeArray:
out_ << "cube_array";
break;
default:
error_ = "Invalid texture dimensions";
return false;
}
if (tex->Is<ast::type::MultisampledTexture>()) {
out_ << "_ms";
}
out_ << "<";
if (tex->Is<ast::type::DepthTexture>()) {
out_ << "float, access::sample";
} else if (auto* storage = tex->As<ast::type::StorageTexture>()) {
if (!EmitType(storage->type(), "")) {
return false;
}
out_ << ", access::";
if (storage->access() == ast::AccessControl::kReadOnly) {
out_ << "read";
} else if (storage->access() == ast::AccessControl::kWriteOnly) {
out_ << "write";
} else {
error_ = "Invalid access control for storage texture";
return false;
}
} else if (auto* ms = tex->As<ast::type::MultisampledTexture>()) {
if (!EmitType(ms->type(), "")) {
return false;
}
out_ << ", access::sample";
} else if (auto* sampled = tex->As<ast::type::SampledTexture>()) {
if (!EmitType(sampled->type(), "")) {
return false;
}
out_ << ", access::sample";
} else {
error_ = "invalid texture type";
return false;
}
out_ << ">";
} else if (type->Is<ast::type::U32>()) {
out_ << "uint";
} else if (auto* vec = type->As<ast::type::Vector>()) {
if (!EmitType(vec->type(), "")) {
return false;
}
out_ << vec->size();
} else if (type->Is<ast::type::Void>()) {
out_ << "void";
} else {
error_ = "unknown type in EmitType: " + type->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitStructType(const ast::type::Struct* str) {
// TODO(dsinclair): Block decoration?
// if (str->impl()->decoration() != ast::StructDecoration::kNone) {
// }
out_ << "struct " << str->name() << " {" << std::endl;
increment_indent();
uint32_t current_offset = 0;
uint32_t pad_count = 0;
for (auto* mem : str->impl()->members()) {
make_indent();
for (auto* deco : mem->decorations()) {
if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) {
uint32_t offset = o->offset();
if (offset != current_offset) {
out_ << "int8_t pad_" << pad_count << "[" << (offset - current_offset)
<< "];" << std::endl;
pad_count++;
make_indent();
}
current_offset = offset;
} else {
error_ = "unsupported member decoration: " + deco->str();
return false;
}
}
if (!EmitType(mem->type(), mem->name())) {
return false;
}
auto size = calculate_alignment_size(mem->type());
if (size == 0) {
error_ = "unable to calculate byte size for: " + mem->type()->type_name();
return false;
}
current_offset += size;
// Array member name will be output with the type
if (!mem->type()->Is<ast::type::Array>()) {
out_ << " " << namer_.NameFor(mem->name());
}
out_ << ";" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl;
return true;
}
bool GeneratorImpl::EmitUnaryOp(ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out_ << "!";
break;
case ast::UnaryOp::kNegation:
out_ << "-";
break;
}
out_ << "(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitVariable(ast::Variable* var, bool skip_constructor) {
make_indent();
// TODO(dsinclair): Handle variable decorations
if (!var->decorations().empty()) {
error_ = "Variable decorations are not handled yet";
return false;
}
if (var->is_const()) {
out_ << "const ";
}
if (!EmitType(var->type(), var->name())) {
return false;
}
if (!var->type()->Is<ast::type::Array>()) {
out_ << " " << var->name();
}
if (!skip_constructor) {
out_ << " = ";
if (var->constructor() != nullptr) {
if (!EmitExpression(var->constructor())) {
return false;
}
} else if (var->storage_class() == ast::StorageClass::kPrivate ||
var->storage_class() == ast::StorageClass::kFunction ||
var->storage_class() == ast::StorageClass::kNone ||
var->storage_class() == ast::StorageClass::kOutput) {
if (!EmitZeroValue(var->type())) {
return false;
}
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitProgramConstVariable(const ast::Variable* var) {
make_indent();
for (auto* d : var->decorations()) {
if (!d->Is<ast::ConstantIdDecoration>()) {
error_ = "Decorated const values not valid";
return false;
}
}
if (!var->is_const()) {
error_ = "Expected a const value";
return false;
}
out_ << "constant ";
if (!EmitType(var->type(), var->name())) {
return false;
}
if (!var->type()->Is<ast::type::Array>()) {
out_ << " " << var->name();
}
if (var->HasConstantIdDecoration()) {
out_ << " [[function_constant(" << var->constant_id() << ")]]";
} else if (var->constructor() != nullptr) {
out_ << " = ";
if (!EmitExpression(var->constructor())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
} // namespace msl
} // namespace writer
} // namespace tint