| // Copyright 2017 The Dawn Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "dawn_native/vulkan/DeviceVk.h" |
| |
| #include "common/Platform.h" |
| #include "dawn_native/BackendConnection.h" |
| #include "dawn_native/Commands.h" |
| #include "dawn_native/DynamicUploader.h" |
| #include "dawn_native/Error.h" |
| #include "dawn_native/ErrorData.h" |
| #include "dawn_native/VulkanBackend.h" |
| #include "dawn_native/vulkan/AdapterVk.h" |
| #include "dawn_native/vulkan/BackendVk.h" |
| #include "dawn_native/vulkan/BindGroupLayoutVk.h" |
| #include "dawn_native/vulkan/BindGroupVk.h" |
| #include "dawn_native/vulkan/BufferVk.h" |
| #include "dawn_native/vulkan/CommandBufferVk.h" |
| #include "dawn_native/vulkan/ComputePipelineVk.h" |
| #include "dawn_native/vulkan/DescriptorSetService.h" |
| #include "dawn_native/vulkan/FencedDeleter.h" |
| #include "dawn_native/vulkan/PipelineLayoutVk.h" |
| #include "dawn_native/vulkan/QueueVk.h" |
| #include "dawn_native/vulkan/RenderPassCache.h" |
| #include "dawn_native/vulkan/RenderPipelineVk.h" |
| #include "dawn_native/vulkan/ResourceMemoryAllocatorVk.h" |
| #include "dawn_native/vulkan/SamplerVk.h" |
| #include "dawn_native/vulkan/ShaderModuleVk.h" |
| #include "dawn_native/vulkan/StagingBufferVk.h" |
| #include "dawn_native/vulkan/SwapChainVk.h" |
| #include "dawn_native/vulkan/TextureVk.h" |
| #include "dawn_native/vulkan/VulkanError.h" |
| |
| namespace dawn_native { namespace vulkan { |
| |
| Device::Device(Adapter* adapter, const DeviceDescriptor* descriptor) |
| : DeviceBase(adapter, descriptor) { |
| InitTogglesFromDriver(); |
| if (descriptor != nullptr) { |
| ApplyToggleOverrides(descriptor); |
| } |
| } |
| |
| MaybeError Device::Initialize() { |
| // Copy the adapter's device info to the device so that we can change the "knobs" |
| mDeviceInfo = ToBackend(GetAdapter())->GetDeviceInfo(); |
| |
| VulkanFunctions* functions = GetMutableFunctions(); |
| *functions = ToBackend(GetAdapter())->GetBackend()->GetFunctions(); |
| |
| VkPhysicalDevice physicalDevice = ToBackend(GetAdapter())->GetPhysicalDevice(); |
| |
| VulkanDeviceKnobs usedDeviceKnobs = {}; |
| DAWN_TRY_ASSIGN(usedDeviceKnobs, CreateDevice(physicalDevice)); |
| *static_cast<VulkanDeviceKnobs*>(&mDeviceInfo) = usedDeviceKnobs; |
| |
| DAWN_TRY(functions->LoadDeviceProcs(mVkDevice, mDeviceInfo)); |
| |
| GatherQueueFromDevice(); |
| mDescriptorSetService = std::make_unique<DescriptorSetService>(this); |
| mDeleter = std::make_unique<FencedDeleter>(this); |
| mMapRequestTracker = std::make_unique<MapRequestTracker>(this); |
| mRenderPassCache = std::make_unique<RenderPassCache>(this); |
| mResourceMemoryAllocator = std::make_unique<ResourceMemoryAllocator>(this); |
| |
| mExternalMemoryService = std::make_unique<external_memory::Service>(this); |
| mExternalSemaphoreService = std::make_unique<external_semaphore::Service>(this); |
| |
| DAWN_TRY(PrepareRecordingContext()); |
| |
| // The environment can request to use D32S8 or D24S8 when it's not available. Override |
| // the decision if it is not applicable. |
| ApplyDepth24PlusS8Toggle(); |
| |
| return {}; |
| } |
| |
| Device::~Device() { |
| BaseDestructor(); |
| } |
| |
| ResultOrError<BindGroupBase*> Device::CreateBindGroupImpl( |
| const BindGroupDescriptor* descriptor) { |
| return BindGroup::Create(this, descriptor); |
| } |
| ResultOrError<BindGroupLayoutBase*> Device::CreateBindGroupLayoutImpl( |
| const BindGroupLayoutDescriptor* descriptor) { |
| return BindGroupLayout::Create(this, descriptor); |
| } |
| ResultOrError<BufferBase*> Device::CreateBufferImpl(const BufferDescriptor* descriptor) { |
| return Buffer::Create(this, descriptor); |
| } |
| CommandBufferBase* Device::CreateCommandBuffer(CommandEncoder* encoder, |
| const CommandBufferDescriptor* descriptor) { |
| return CommandBuffer::Create(encoder, descriptor); |
| } |
| ResultOrError<ComputePipelineBase*> Device::CreateComputePipelineImpl( |
| const ComputePipelineDescriptor* descriptor) { |
| return ComputePipeline::Create(this, descriptor); |
| } |
| ResultOrError<PipelineLayoutBase*> Device::CreatePipelineLayoutImpl( |
| const PipelineLayoutDescriptor* descriptor) { |
| return PipelineLayout::Create(this, descriptor); |
| } |
| ResultOrError<QueueBase*> Device::CreateQueueImpl() { |
| return Queue::Create(this); |
| } |
| ResultOrError<RenderPipelineBase*> Device::CreateRenderPipelineImpl( |
| const RenderPipelineDescriptor* descriptor) { |
| return RenderPipeline::Create(this, descriptor); |
| } |
| ResultOrError<SamplerBase*> Device::CreateSamplerImpl(const SamplerDescriptor* descriptor) { |
| return Sampler::Create(this, descriptor); |
| } |
| ResultOrError<ShaderModuleBase*> Device::CreateShaderModuleImpl( |
| const ShaderModuleDescriptor* descriptor) { |
| return ShaderModule::Create(this, descriptor); |
| } |
| ResultOrError<SwapChainBase*> Device::CreateSwapChainImpl( |
| const SwapChainDescriptor* descriptor) { |
| return SwapChain::Create(this, descriptor); |
| } |
| ResultOrError<TextureBase*> Device::CreateTextureImpl(const TextureDescriptor* descriptor) { |
| return Texture::Create(this, descriptor); |
| } |
| ResultOrError<TextureViewBase*> Device::CreateTextureViewImpl( |
| TextureBase* texture, |
| const TextureViewDescriptor* descriptor) { |
| return TextureView::Create(texture, descriptor); |
| } |
| |
| Serial Device::GetCompletedCommandSerial() const { |
| return mCompletedSerial; |
| } |
| |
| Serial Device::GetLastSubmittedCommandSerial() const { |
| return mLastSubmittedSerial; |
| } |
| |
| Serial Device::GetPendingCommandSerial() const { |
| return mLastSubmittedSerial + 1; |
| } |
| |
| MaybeError Device::TickImpl() { |
| CheckPassedFences(); |
| RecycleCompletedCommands(); |
| |
| mDescriptorSetService->Tick(mCompletedSerial); |
| mMapRequestTracker->Tick(mCompletedSerial); |
| |
| // Uploader should tick before the resource allocator |
| // as it enqueues resources to be released. |
| mDynamicUploader->Deallocate(mCompletedSerial); |
| |
| mResourceMemoryAllocator->Tick(mCompletedSerial); |
| |
| mDeleter->Tick(mCompletedSerial); |
| |
| if (mRecordingContext.used) { |
| DAWN_TRY(SubmitPendingCommands()); |
| } else if (mCompletedSerial == mLastSubmittedSerial) { |
| // If there's no GPU work in flight we still need to artificially increment the serial |
| // so that CPU operations waiting on GPU completion can know they don't have to wait. |
| mCompletedSerial++; |
| mLastSubmittedSerial++; |
| } |
| |
| return {}; |
| } |
| |
| VkInstance Device::GetVkInstance() const { |
| return ToBackend(GetAdapter())->GetBackend()->GetVkInstance(); |
| } |
| const VulkanDeviceInfo& Device::GetDeviceInfo() const { |
| return mDeviceInfo; |
| } |
| |
| VkDevice Device::GetVkDevice() const { |
| return mVkDevice; |
| } |
| |
| uint32_t Device::GetGraphicsQueueFamily() const { |
| return mQueueFamily; |
| } |
| |
| VkQueue Device::GetQueue() const { |
| return mQueue; |
| } |
| |
| MapRequestTracker* Device::GetMapRequestTracker() const { |
| return mMapRequestTracker.get(); |
| } |
| |
| DescriptorSetService* Device::GetDescriptorSetService() const { |
| return mDescriptorSetService.get(); |
| } |
| |
| FencedDeleter* Device::GetFencedDeleter() const { |
| return mDeleter.get(); |
| } |
| |
| RenderPassCache* Device::GetRenderPassCache() const { |
| return mRenderPassCache.get(); |
| } |
| |
| CommandRecordingContext* Device::GetPendingRecordingContext() { |
| ASSERT(mRecordingContext.commandBuffer != VK_NULL_HANDLE); |
| mRecordingContext.used = true; |
| return &mRecordingContext; |
| } |
| |
| MaybeError Device::SubmitPendingCommands() { |
| if (!mRecordingContext.used) { |
| return {}; |
| } |
| |
| DAWN_TRY(CheckVkSuccess(fn.EndCommandBuffer(mRecordingContext.commandBuffer), |
| "vkEndCommandBuffer")); |
| |
| std::vector<VkPipelineStageFlags> dstStageMasks(mRecordingContext.waitSemaphores.size(), |
| VK_PIPELINE_STAGE_ALL_COMMANDS_BIT); |
| |
| VkSubmitInfo submitInfo; |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.pNext = nullptr; |
| submitInfo.waitSemaphoreCount = |
| static_cast<uint32_t>(mRecordingContext.waitSemaphores.size()); |
| submitInfo.pWaitSemaphores = mRecordingContext.waitSemaphores.data(); |
| submitInfo.pWaitDstStageMask = dstStageMasks.data(); |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &mRecordingContext.commandBuffer; |
| submitInfo.signalSemaphoreCount = |
| static_cast<uint32_t>(mRecordingContext.signalSemaphores.size()); |
| submitInfo.pSignalSemaphores = mRecordingContext.signalSemaphores.data(); |
| |
| VkFence fence = VK_NULL_HANDLE; |
| DAWN_TRY_ASSIGN(fence, GetUnusedFence()); |
| DAWN_TRY(CheckVkSuccess(fn.QueueSubmit(mQueue, 1, &submitInfo, fence), "vkQueueSubmit")); |
| |
| // Enqueue the semaphores before incrementing the serial, so that they can be deleted as |
| // soon as the current submission is finished. |
| for (VkSemaphore semaphore : mRecordingContext.waitSemaphores) { |
| mDeleter->DeleteWhenUnused(semaphore); |
| } |
| for (VkSemaphore semaphore : mRecordingContext.signalSemaphores) { |
| mDeleter->DeleteWhenUnused(semaphore); |
| } |
| |
| mLastSubmittedSerial++; |
| mFencesInFlight.emplace(fence, mLastSubmittedSerial); |
| |
| CommandPoolAndBuffer submittedCommands = {mRecordingContext.commandPool, |
| mRecordingContext.commandBuffer}; |
| mCommandsInFlight.Enqueue(submittedCommands, mLastSubmittedSerial); |
| mRecordingContext = CommandRecordingContext(); |
| DAWN_TRY(PrepareRecordingContext()); |
| |
| return {}; |
| } |
| |
| ResultOrError<VulkanDeviceKnobs> Device::CreateDevice(VkPhysicalDevice physicalDevice) { |
| VulkanDeviceKnobs usedKnobs = {}; |
| |
| float zero = 0.0f; |
| std::vector<const char*> layersToRequest; |
| std::vector<const char*> extensionsToRequest; |
| std::vector<VkDeviceQueueCreateInfo> queuesToRequest; |
| |
| if (mDeviceInfo.debugMarker) { |
| extensionsToRequest.push_back(kExtensionNameExtDebugMarker); |
| usedKnobs.debugMarker = true; |
| } |
| if (mDeviceInfo.externalMemory) { |
| extensionsToRequest.push_back(kExtensionNameKhrExternalMemory); |
| usedKnobs.externalMemory = true; |
| } |
| if (mDeviceInfo.externalMemoryFD) { |
| extensionsToRequest.push_back(kExtensionNameKhrExternalMemoryFD); |
| usedKnobs.externalMemoryFD = true; |
| } |
| if (mDeviceInfo.externalMemoryDmaBuf) { |
| extensionsToRequest.push_back(kExtensionNameExtExternalMemoryDmaBuf); |
| usedKnobs.externalMemoryDmaBuf = true; |
| } |
| if (mDeviceInfo.imageDrmFormatModifier) { |
| extensionsToRequest.push_back(kExtensionNameExtImageDrmFormatModifier); |
| usedKnobs.imageDrmFormatModifier = true; |
| } |
| if (mDeviceInfo.externalMemoryZirconHandle) { |
| extensionsToRequest.push_back(kExtensionNameFuchsiaExternalMemory); |
| usedKnobs.externalMemoryZirconHandle = true; |
| } |
| if (mDeviceInfo.externalSemaphore) { |
| extensionsToRequest.push_back(kExtensionNameKhrExternalSemaphore); |
| usedKnobs.externalSemaphore = true; |
| } |
| if (mDeviceInfo.externalSemaphoreFD) { |
| extensionsToRequest.push_back(kExtensionNameKhrExternalSemaphoreFD); |
| usedKnobs.externalSemaphoreFD = true; |
| } |
| if (mDeviceInfo.externalSemaphoreZirconHandle) { |
| extensionsToRequest.push_back(kExtensionNameFuchsiaExternalSemaphore); |
| usedKnobs.externalSemaphoreZirconHandle = true; |
| } |
| if (mDeviceInfo.swapchain) { |
| extensionsToRequest.push_back(kExtensionNameKhrSwapchain); |
| usedKnobs.swapchain = true; |
| } |
| if (mDeviceInfo.maintenance1) { |
| extensionsToRequest.push_back(kExtensionNameKhrMaintenance1); |
| usedKnobs.maintenance1 = true; |
| } |
| |
| // Always require independentBlend because it is a core Dawn feature |
| usedKnobs.features.independentBlend = VK_TRUE; |
| // Always require imageCubeArray because it is a core Dawn feature |
| usedKnobs.features.imageCubeArray = VK_TRUE; |
| // Always require fragmentStoresAndAtomics because it is required by end2end tests. |
| usedKnobs.features.fragmentStoresAndAtomics = VK_TRUE; |
| |
| if (IsExtensionEnabled(Extension::TextureCompressionBC)) { |
| ASSERT(ToBackend(GetAdapter())->GetDeviceInfo().features.textureCompressionBC == |
| VK_TRUE); |
| usedKnobs.features.textureCompressionBC = VK_TRUE; |
| } |
| |
| // Find a universal queue family |
| { |
| // Note that GRAPHICS and COMPUTE imply TRANSFER so we don't need to check for it. |
| constexpr uint32_t kUniversalFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT; |
| int universalQueueFamily = -1; |
| for (unsigned int i = 0; i < mDeviceInfo.queueFamilies.size(); ++i) { |
| if ((mDeviceInfo.queueFamilies[i].queueFlags & kUniversalFlags) == |
| kUniversalFlags) { |
| universalQueueFamily = i; |
| break; |
| } |
| } |
| |
| if (universalQueueFamily == -1) { |
| return DAWN_DEVICE_LOST_ERROR("No universal queue family"); |
| } |
| mQueueFamily = static_cast<uint32_t>(universalQueueFamily); |
| } |
| |
| // Choose to create a single universal queue |
| { |
| VkDeviceQueueCreateInfo queueCreateInfo; |
| queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; |
| queueCreateInfo.pNext = nullptr; |
| queueCreateInfo.flags = 0; |
| queueCreateInfo.queueFamilyIndex = static_cast<uint32_t>(mQueueFamily); |
| queueCreateInfo.queueCount = 1; |
| queueCreateInfo.pQueuePriorities = &zero; |
| |
| queuesToRequest.push_back(queueCreateInfo); |
| } |
| |
| VkDeviceCreateInfo createInfo; |
| createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = 0; |
| createInfo.queueCreateInfoCount = static_cast<uint32_t>(queuesToRequest.size()); |
| createInfo.pQueueCreateInfos = queuesToRequest.data(); |
| createInfo.enabledLayerCount = static_cast<uint32_t>(layersToRequest.size()); |
| createInfo.ppEnabledLayerNames = layersToRequest.data(); |
| createInfo.enabledExtensionCount = static_cast<uint32_t>(extensionsToRequest.size()); |
| createInfo.ppEnabledExtensionNames = extensionsToRequest.data(); |
| createInfo.pEnabledFeatures = &usedKnobs.features; |
| |
| DAWN_TRY(CheckVkSuccess(fn.CreateDevice(physicalDevice, &createInfo, nullptr, &mVkDevice), |
| "vkCreateDevice")); |
| |
| return usedKnobs; |
| } |
| |
| void Device::GatherQueueFromDevice() { |
| fn.GetDeviceQueue(mVkDevice, mQueueFamily, 0, &mQueue); |
| } |
| |
| void Device::InitTogglesFromDriver() { |
| // TODO(jiawei.shao@intel.com): tighten this workaround when this issue is fixed in both |
| // Vulkan SPEC and drivers. |
| SetToggle(Toggle::UseTemporaryBufferInCompressedTextureToTextureCopy, true); |
| |
| // By default try to use D32S8 for Depth24PlusStencil8 |
| SetToggle(Toggle::VulkanUseD32S8, true); |
| } |
| |
| void Device::ApplyDepth24PlusS8Toggle() { |
| VkPhysicalDevice physicalDevice = ToBackend(GetAdapter())->GetPhysicalDevice(); |
| |
| bool supportsD32s8 = false; |
| { |
| VkFormatProperties properties; |
| fn.GetPhysicalDeviceFormatProperties(physicalDevice, VK_FORMAT_D32_SFLOAT_S8_UINT, |
| &properties); |
| supportsD32s8 = |
| properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT; |
| } |
| |
| bool supportsD24s8 = false; |
| { |
| VkFormatProperties properties; |
| fn.GetPhysicalDeviceFormatProperties(physicalDevice, VK_FORMAT_D24_UNORM_S8_UINT, |
| &properties); |
| supportsD24s8 = |
| properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT; |
| } |
| |
| ASSERT(supportsD32s8 || supportsD24s8); |
| |
| if (!supportsD24s8) { |
| SetToggle(Toggle::VulkanUseD32S8, true); |
| } |
| if (!supportsD32s8) { |
| SetToggle(Toggle::VulkanUseD32S8, false); |
| } |
| } |
| |
| VulkanFunctions* Device::GetMutableFunctions() { |
| return const_cast<VulkanFunctions*>(&fn); |
| } |
| |
| ResultOrError<VkFence> Device::GetUnusedFence() { |
| if (!mUnusedFences.empty()) { |
| VkFence fence = mUnusedFences.back(); |
| DAWN_TRY(CheckVkSuccess(fn.ResetFences(mVkDevice, 1, &fence), "vkResetFences")); |
| |
| mUnusedFences.pop_back(); |
| return fence; |
| } |
| |
| VkFenceCreateInfo createInfo; |
| createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = 0; |
| |
| VkFence fence = VK_NULL_HANDLE; |
| DAWN_TRY(CheckVkSuccess(fn.CreateFence(mVkDevice, &createInfo, nullptr, &fence), |
| "vkCreateFence")); |
| |
| return fence; |
| } |
| |
| void Device::CheckPassedFences() { |
| while (!mFencesInFlight.empty()) { |
| VkFence fence = mFencesInFlight.front().first; |
| Serial fenceSerial = mFencesInFlight.front().second; |
| |
| VkResult result = VkResult::WrapUnsafe( |
| INJECT_ERROR_OR_RUN(fn.GetFenceStatus(mVkDevice, fence), VK_ERROR_DEVICE_LOST)); |
| // TODO: Handle DeviceLost error. |
| ASSERT(result == VK_SUCCESS || result == VK_NOT_READY); |
| |
| // Fence are added in order, so we can stop searching as soon |
| // as we see one that's not ready. |
| if (result == VK_NOT_READY) { |
| return; |
| } |
| |
| mUnusedFences.push_back(fence); |
| mFencesInFlight.pop(); |
| |
| ASSERT(fenceSerial > mCompletedSerial); |
| mCompletedSerial = fenceSerial; |
| } |
| } |
| |
| MaybeError Device::PrepareRecordingContext() { |
| ASSERT(!mRecordingContext.used); |
| ASSERT(mRecordingContext.commandBuffer == VK_NULL_HANDLE); |
| ASSERT(mRecordingContext.commandPool == VK_NULL_HANDLE); |
| |
| // First try to recycle unused command pools. |
| if (!mUnusedCommands.empty()) { |
| CommandPoolAndBuffer commands = mUnusedCommands.back(); |
| mUnusedCommands.pop_back(); |
| DAWN_TRY(CheckVkSuccess(fn.ResetCommandPool(mVkDevice, commands.pool, 0), |
| "vkResetCommandPool")); |
| |
| mRecordingContext.commandBuffer = commands.commandBuffer; |
| mRecordingContext.commandPool = commands.pool; |
| } else { |
| // Create a new command pool for our commands and allocate the command buffer. |
| VkCommandPoolCreateInfo createInfo; |
| createInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT; |
| createInfo.queueFamilyIndex = mQueueFamily; |
| |
| DAWN_TRY(CheckVkSuccess(fn.CreateCommandPool(mVkDevice, &createInfo, nullptr, |
| &mRecordingContext.commandPool), |
| "vkCreateCommandPool")); |
| |
| VkCommandBufferAllocateInfo allocateInfo; |
| allocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| allocateInfo.pNext = nullptr; |
| allocateInfo.commandPool = mRecordingContext.commandPool; |
| allocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| allocateInfo.commandBufferCount = 1; |
| |
| DAWN_TRY(CheckVkSuccess(fn.AllocateCommandBuffers(mVkDevice, &allocateInfo, |
| &mRecordingContext.commandBuffer), |
| "vkAllocateCommandBuffers")); |
| } |
| |
| // Start the recording of commands in the command buffer. |
| VkCommandBufferBeginInfo beginInfo; |
| beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| beginInfo.pNext = nullptr; |
| beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| beginInfo.pInheritanceInfo = nullptr; |
| |
| return CheckVkSuccess(fn.BeginCommandBuffer(mRecordingContext.commandBuffer, &beginInfo), |
| "vkBeginCommandBuffer"); |
| } |
| |
| void Device::RecycleCompletedCommands() { |
| for (auto& commands : mCommandsInFlight.IterateUpTo(mCompletedSerial)) { |
| mUnusedCommands.push_back(commands); |
| } |
| mCommandsInFlight.ClearUpTo(mCompletedSerial); |
| } |
| |
| ResultOrError<std::unique_ptr<StagingBufferBase>> Device::CreateStagingBuffer(size_t size) { |
| std::unique_ptr<StagingBufferBase> stagingBuffer = |
| std::make_unique<StagingBuffer>(size, this); |
| DAWN_TRY(stagingBuffer->Initialize()); |
| return std::move(stagingBuffer); |
| } |
| |
| MaybeError Device::CopyFromStagingToBuffer(StagingBufferBase* source, |
| uint64_t sourceOffset, |
| BufferBase* destination, |
| uint64_t destinationOffset, |
| uint64_t size) { |
| CommandRecordingContext* recordingContext = GetPendingRecordingContext(); |
| |
| // Insert memory barrier to ensure host write operations are made visible before |
| // copying from the staging buffer. However, this barrier can be removed (see note below). |
| // |
| // Note: Depending on the spec understanding, an explicit barrier may not be required when |
| // used with HOST_COHERENT as vkQueueSubmit does an implicit barrier between host and |
| // device. See "Availability, Visibility, and Domain Operations" in Vulkan spec for details. |
| |
| // Insert pipeline barrier to ensure correct ordering with previous memory operations on the |
| // buffer. |
| ToBackend(destination)->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopyDst); |
| |
| VkBufferCopy copy; |
| copy.srcOffset = sourceOffset; |
| copy.dstOffset = destinationOffset; |
| copy.size = size; |
| |
| this->fn.CmdCopyBuffer(recordingContext->commandBuffer, |
| ToBackend(source)->GetBufferHandle(), |
| ToBackend(destination)->GetHandle(), 1, ©); |
| |
| return {}; |
| } |
| |
| MaybeError Device::ImportExternalImage(const ExternalImageDescriptor* descriptor, |
| ExternalMemoryHandle memoryHandle, |
| VkImage image, |
| const std::vector<ExternalSemaphoreHandle>& waitHandles, |
| VkSemaphore* outSignalSemaphore, |
| VkDeviceMemory* outAllocation, |
| std::vector<VkSemaphore>* outWaitSemaphores) { |
| const TextureDescriptor* textureDescriptor = |
| reinterpret_cast<const TextureDescriptor*>(descriptor->cTextureDescriptor); |
| |
| // Check services support this combination of handle type / image info |
| if (!mExternalSemaphoreService->Supported()) { |
| return DAWN_VALIDATION_ERROR("External semaphore usage not supported"); |
| } |
| if (!mExternalMemoryService->SupportsImportMemory( |
| VulkanImageFormat(this, textureDescriptor->format), VK_IMAGE_TYPE_2D, |
| VK_IMAGE_TILING_OPTIMAL, |
| VulkanImageUsage(textureDescriptor->usage, |
| GetValidInternalFormat(textureDescriptor->format)), |
| VK_IMAGE_CREATE_ALIAS_BIT_KHR)) { |
| return DAWN_VALIDATION_ERROR("External memory usage not supported"); |
| } |
| |
| // Create an external semaphore to signal when the texture is done being used |
| DAWN_TRY_ASSIGN(*outSignalSemaphore, |
| mExternalSemaphoreService->CreateExportableSemaphore()); |
| |
| // Import the external image's memory |
| external_memory::MemoryImportParams importParams; |
| DAWN_TRY_ASSIGN(importParams, |
| mExternalMemoryService->GetMemoryImportParams(descriptor, image)); |
| DAWN_TRY_ASSIGN(*outAllocation, |
| mExternalMemoryService->ImportMemory(memoryHandle, importParams, image)); |
| |
| // Import semaphores we have to wait on before using the texture |
| for (const ExternalSemaphoreHandle& handle : waitHandles) { |
| VkSemaphore semaphore = VK_NULL_HANDLE; |
| DAWN_TRY_ASSIGN(semaphore, mExternalSemaphoreService->ImportSemaphore(handle)); |
| outWaitSemaphores->push_back(semaphore); |
| } |
| |
| return {}; |
| } |
| |
| MaybeError Device::SignalAndExportExternalTexture(Texture* texture, |
| ExternalSemaphoreHandle* outHandle) { |
| DAWN_TRY(ValidateObject(texture)); |
| |
| VkSemaphore outSignalSemaphore; |
| DAWN_TRY(texture->SignalAndDestroy(&outSignalSemaphore)); |
| |
| // This has to happen right after SignalAndDestroy, since the semaphore will be |
| // deleted when the fenced deleter runs after the queue submission |
| DAWN_TRY_ASSIGN(*outHandle, mExternalSemaphoreService->ExportSemaphore(outSignalSemaphore)); |
| |
| return {}; |
| } |
| |
| TextureBase* Device::CreateTextureWrappingVulkanImage( |
| const ExternalImageDescriptor* descriptor, |
| ExternalMemoryHandle memoryHandle, |
| const std::vector<ExternalSemaphoreHandle>& waitHandles) { |
| const TextureDescriptor* textureDescriptor = |
| reinterpret_cast<const TextureDescriptor*>(descriptor->cTextureDescriptor); |
| |
| // Initial validation |
| if (ConsumedError(ValidateTextureDescriptor(this, textureDescriptor))) { |
| return nullptr; |
| } |
| if (ConsumedError(ValidateVulkanImageCanBeWrapped(this, textureDescriptor))) { |
| return nullptr; |
| } |
| |
| VkSemaphore signalSemaphore = VK_NULL_HANDLE; |
| VkDeviceMemory allocation = VK_NULL_HANDLE; |
| std::vector<VkSemaphore> waitSemaphores; |
| waitSemaphores.reserve(waitHandles.size()); |
| |
| // Cleanup in case of a failure, the image creation doesn't acquire the external objects |
| // if a failure happems. |
| Texture* result = nullptr; |
| // TODO(crbug.com/1026480): Consolidate this into a single CreateFromExternal call. |
| if (ConsumedError(Texture::CreateFromExternal(this, descriptor, textureDescriptor, |
| mExternalMemoryService.get()), |
| &result) || |
| ConsumedError(ImportExternalImage(descriptor, memoryHandle, result->GetHandle(), |
| waitHandles, &signalSemaphore, &allocation, |
| &waitSemaphores)) || |
| ConsumedError(result->BindExternalMemory(descriptor, signalSemaphore, allocation, |
| waitSemaphores))) { |
| // Delete the Texture if it was created |
| if (result != nullptr) { |
| delete result; |
| } |
| |
| // Clear the signal semaphore |
| fn.DestroySemaphore(GetVkDevice(), signalSemaphore, nullptr); |
| |
| // Clear image memory |
| fn.FreeMemory(GetVkDevice(), allocation, nullptr); |
| |
| // Clear any wait semaphores we were able to import |
| for (VkSemaphore semaphore : waitSemaphores) { |
| fn.DestroySemaphore(GetVkDevice(), semaphore, nullptr); |
| } |
| return nullptr; |
| } |
| |
| return result; |
| } |
| |
| ResultOrError<ResourceMemoryAllocation> Device::AllocateMemory( |
| VkMemoryRequirements requirements, |
| bool mappable) { |
| return mResourceMemoryAllocator->Allocate(requirements, mappable); |
| } |
| |
| void Device::DeallocateMemory(ResourceMemoryAllocation* allocation) { |
| mResourceMemoryAllocator->Deallocate(allocation); |
| } |
| |
| int Device::FindBestMemoryTypeIndex(VkMemoryRequirements requirements, bool mappable) { |
| return mResourceMemoryAllocator->FindBestTypeIndex(requirements, mappable); |
| } |
| |
| ResourceMemoryAllocator* Device::GetResourceMemoryAllocatorForTesting() const { |
| return mResourceMemoryAllocator.get(); |
| } |
| |
| MaybeError Device::WaitForIdleForDestruction() { |
| VkResult waitIdleResult = VkResult::WrapUnsafe(fn.QueueWaitIdle(mQueue)); |
| // Ignore the result of QueueWaitIdle: it can return OOM which we can't really do anything |
| // about, Device lost, which means workloads running on the GPU are no longer accessible |
| // (so they are as good as waited on) or success. |
| DAWN_UNUSED(waitIdleResult); |
| |
| CheckPassedFences(); |
| |
| // Make sure all fences are complete by explicitly waiting on them all |
| while (!mFencesInFlight.empty()) { |
| VkFence fence = mFencesInFlight.front().first; |
| Serial fenceSerial = mFencesInFlight.front().second; |
| ASSERT(fenceSerial > mCompletedSerial); |
| |
| VkResult result = VkResult::WrapUnsafe(VK_TIMEOUT); |
| do { |
| result = VkResult::WrapUnsafe( |
| INJECT_ERROR_OR_RUN(fn.WaitForFences(mVkDevice, 1, &fence, true, UINT64_MAX), |
| VK_ERROR_DEVICE_LOST)); |
| } while (result == VK_TIMEOUT); |
| |
| // TODO: Handle errors |
| ASSERT(result == VK_SUCCESS); |
| fn.DestroyFence(mVkDevice, fence, nullptr); |
| |
| mFencesInFlight.pop(); |
| mCompletedSerial = fenceSerial; |
| } |
| return {}; |
| } |
| |
| void Device::Destroy() { |
| ASSERT(mLossStatus != LossStatus::AlreadyLost); |
| |
| // Immediately tag the recording context as unused so we don't try to submit it in Tick. |
| mRecordingContext.used = false; |
| fn.DestroyCommandPool(mVkDevice, mRecordingContext.commandPool, nullptr); |
| |
| // Some operations might have been started since the last submit and waiting |
| // on a serial that doesn't have a corresponding fence enqueued. Force all |
| // operations to look as if they were completed (because they were). |
| mCompletedSerial = mLastSubmittedSerial + 1; |
| |
| // Assert that errors are device loss so that we can continue with destruction |
| AssertAndIgnoreDeviceLossError(TickImpl()); |
| |
| ASSERT(mCommandsInFlight.Empty()); |
| for (const CommandPoolAndBuffer& commands : mUnusedCommands) { |
| fn.DestroyCommandPool(mVkDevice, commands.pool, nullptr); |
| } |
| mUnusedCommands.clear(); |
| |
| // TODO(jiajie.hu@intel.com): In rare cases, a DAWN_TRY() failure may leave semaphores |
| // untagged for deletion. But for most of the time when everything goes well, these |
| // assertions can be helpful in catching bugs. |
| ASSERT(mRecordingContext.waitSemaphores.empty()); |
| ASSERT(mRecordingContext.signalSemaphores.empty()); |
| |
| for (VkFence fence : mUnusedFences) { |
| fn.DestroyFence(mVkDevice, fence, nullptr); |
| } |
| mUnusedFences.clear(); |
| |
| // Free services explicitly so that they can free Vulkan objects before vkDestroyDevice |
| mDynamicUploader = nullptr; |
| mDescriptorSetService = nullptr; |
| |
| // Releasing the uploader enqueues buffers to be released. |
| // Call Tick() again to clear them before releasing the deleter. |
| mDeleter->Tick(mCompletedSerial); |
| |
| mDeleter = nullptr; |
| mMapRequestTracker = nullptr; |
| |
| // The VkRenderPasses in the cache can be destroyed immediately since all commands referring |
| // to them are guaranteed to be finished executing. |
| mRenderPassCache = nullptr; |
| |
| // VkQueues are destroyed when the VkDevice is destroyed |
| if (mVkDevice != VK_NULL_HANDLE) { |
| fn.DestroyDevice(mVkDevice, nullptr); |
| mVkDevice = VK_NULL_HANDLE; |
| } |
| } |
| |
| }} // namespace dawn_native::vulkan |