| /// Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/writer/hlsl/generator_impl.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <iomanip> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/tint/ast/call_statement.h" |
| #include "src/tint/ast/fallthrough_statement.h" |
| #include "src/tint/ast/id_attribute.h" |
| #include "src/tint/ast/internal_attribute.h" |
| #include "src/tint/ast/interpolate_attribute.h" |
| #include "src/tint/ast/variable_decl_statement.h" |
| #include "src/tint/debug.h" |
| #include "src/tint/sem/array.h" |
| #include "src/tint/sem/atomic.h" |
| #include "src/tint/sem/block_statement.h" |
| #include "src/tint/sem/call.h" |
| #include "src/tint/sem/depth_multisampled_texture.h" |
| #include "src/tint/sem/depth_texture.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/materialize.h" |
| #include "src/tint/sem/member_accessor_expression.h" |
| #include "src/tint/sem/module.h" |
| #include "src/tint/sem/multisampled_texture.h" |
| #include "src/tint/sem/sampled_texture.h" |
| #include "src/tint/sem/statement.h" |
| #include "src/tint/sem/storage_texture.h" |
| #include "src/tint/sem/struct.h" |
| #include "src/tint/sem/type_constructor.h" |
| #include "src/tint/sem/type_conversion.h" |
| #include "src/tint/sem/variable.h" |
| #include "src/tint/transform/add_empty_entry_point.h" |
| #include "src/tint/transform/array_length_from_uniform.h" |
| #include "src/tint/transform/builtin_polyfill.h" |
| #include "src/tint/transform/calculate_array_length.h" |
| #include "src/tint/transform/canonicalize_entry_point_io.h" |
| #include "src/tint/transform/decompose_memory_access.h" |
| #include "src/tint/transform/disable_uniformity_analysis.h" |
| #include "src/tint/transform/expand_compound_assignment.h" |
| #include "src/tint/transform/fold_trivial_single_use_lets.h" |
| #include "src/tint/transform/localize_struct_array_assignment.h" |
| #include "src/tint/transform/loop_to_for_loop.h" |
| #include "src/tint/transform/manager.h" |
| #include "src/tint/transform/num_workgroups_from_uniform.h" |
| #include "src/tint/transform/promote_initializers_to_const_var.h" |
| #include "src/tint/transform/promote_side_effects_to_decl.h" |
| #include "src/tint/transform/remove_continue_in_switch.h" |
| #include "src/tint/transform/remove_phonies.h" |
| #include "src/tint/transform/simplify_pointers.h" |
| #include "src/tint/transform/unshadow.h" |
| #include "src/tint/transform/unwind_discard_functions.h" |
| #include "src/tint/transform/vectorize_scalar_matrix_constructors.h" |
| #include "src/tint/transform/zero_init_workgroup_memory.h" |
| #include "src/tint/utils/defer.h" |
| #include "src/tint/utils/map.h" |
| #include "src/tint/utils/scoped_assignment.h" |
| #include "src/tint/writer/append_vector.h" |
| #include "src/tint/writer/float_to_string.h" |
| #include "src/tint/writer/generate_external_texture_bindings.h" |
| |
| using namespace tint::number_suffixes; // NOLINT |
| |
| namespace tint::writer::hlsl { |
| namespace { |
| |
| const char kTempNamePrefix[] = "tint_tmp"; |
| const char kSpecConstantPrefix[] = "WGSL_SPEC_CONSTANT_"; |
| |
| const char* image_format_to_rwtexture_type(ast::TexelFormat image_format) { |
| switch (image_format) { |
| case ast::TexelFormat::kRgba8Unorm: |
| case ast::TexelFormat::kRgba8Snorm: |
| case ast::TexelFormat::kRgba16Float: |
| case ast::TexelFormat::kR32Float: |
| case ast::TexelFormat::kRg32Float: |
| case ast::TexelFormat::kRgba32Float: |
| return "float4"; |
| case ast::TexelFormat::kRgba8Uint: |
| case ast::TexelFormat::kRgba16Uint: |
| case ast::TexelFormat::kR32Uint: |
| case ast::TexelFormat::kRg32Uint: |
| case ast::TexelFormat::kRgba32Uint: |
| return "uint4"; |
| case ast::TexelFormat::kRgba8Sint: |
| case ast::TexelFormat::kRgba16Sint: |
| case ast::TexelFormat::kR32Sint: |
| case ast::TexelFormat::kRg32Sint: |
| case ast::TexelFormat::kRgba32Sint: |
| return "int4"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| // Helper for writing " : register(RX, spaceY)", where R is the register, X is |
| // the binding point binding value, and Y is the binding point group value. |
| struct RegisterAndSpace { |
| RegisterAndSpace(char r, ast::VariableBindingPoint bp) : reg(r), binding_point(bp) {} |
| |
| const char reg; |
| ast::VariableBindingPoint const binding_point; |
| }; |
| |
| std::ostream& operator<<(std::ostream& s, const RegisterAndSpace& rs) { |
| s << " : register(" << rs.reg << rs.binding_point.binding->value << ", space" |
| << rs.binding_point.group->value << ")"; |
| return s; |
| } |
| |
| const char* LoopAttribute() { |
| // Force loops not to be unrolled to work around FXC compilation issues when |
| // it attempts and fails to unroll loops when it contains gradient operations. |
| // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-while |
| return "[loop] "; |
| } |
| |
| } // namespace |
| |
| SanitizedResult::SanitizedResult() = default; |
| SanitizedResult::~SanitizedResult() = default; |
| SanitizedResult::SanitizedResult(SanitizedResult&&) = default; |
| |
| SanitizedResult Sanitize(const Program* in, const Options& options) { |
| transform::Manager manager; |
| transform::DataMap data; |
| |
| manager.Add<transform::DisableUniformityAnalysis>(); |
| |
| { // Builtin polyfills |
| transform::BuiltinPolyfill::Builtins polyfills; |
| // TODO(crbug.com/tint/1449): Some of these can map to HLSL's `firstbitlow` |
| // and `firstbithigh`. |
| polyfills.count_leading_zeros = true; |
| polyfills.count_trailing_zeros = true; |
| polyfills.extract_bits = transform::BuiltinPolyfill::Level::kFull; |
| polyfills.first_leading_bit = true; |
| polyfills.first_trailing_bit = true; |
| polyfills.insert_bits = transform::BuiltinPolyfill::Level::kFull; |
| data.Add<transform::BuiltinPolyfill::Config>(polyfills); |
| manager.Add<transform::BuiltinPolyfill>(); |
| } |
| |
| // Build the config for the internal ArrayLengthFromUniform transform. |
| auto& array_length_from_uniform = options.array_length_from_uniform; |
| transform::ArrayLengthFromUniform::Config array_length_from_uniform_cfg( |
| array_length_from_uniform.ubo_binding); |
| array_length_from_uniform_cfg.bindpoint_to_size_index = |
| array_length_from_uniform.bindpoint_to_size_index; |
| |
| if (options.generate_external_texture_bindings) { |
| auto new_bindings_map = GenerateExternalTextureBindings(in); |
| data.Add<transform::MultiplanarExternalTexture::NewBindingPoints>(new_bindings_map); |
| } |
| manager.Add<transform::MultiplanarExternalTexture>(); |
| |
| manager.Add<transform::Unshadow>(); |
| |
| // LocalizeStructArrayAssignment must come after: |
| // * SimplifyPointers, because it assumes assignment to arrays in structs are |
| // done directly, not indirectly. |
| // TODO(crbug.com/tint/1340): See if we can get rid of the duplicate |
| // SimplifyPointers transform. Can't do it right now because |
| // LocalizeStructArrayAssignment introduces pointers. |
| manager.Add<transform::SimplifyPointers>(); |
| manager.Add<transform::LocalizeStructArrayAssignment>(); |
| |
| // Attempt to convert `loop`s into for-loops. This is to try and massage the |
| // output into something that will not cause FXC to choke or misbehave. |
| manager.Add<transform::FoldTrivialSingleUseLets>(); |
| manager.Add<transform::LoopToForLoop>(); |
| |
| if (!options.disable_workgroup_init) { |
| // ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as |
| // ZeroInitWorkgroupMemory may inject new builtin parameters. |
| manager.Add<transform::ZeroInitWorkgroupMemory>(); |
| } |
| manager.Add<transform::CanonicalizeEntryPointIO>(); |
| // NumWorkgroupsFromUniform must come after CanonicalizeEntryPointIO, as it |
| // assumes that num_workgroups builtins only appear as struct members and are |
| // only accessed directly via member accessors. |
| manager.Add<transform::NumWorkgroupsFromUniform>(); |
| manager.Add<transform::ExpandCompoundAssignment>(); |
| manager.Add<transform::PromoteSideEffectsToDecl>(); |
| manager.Add<transform::UnwindDiscardFunctions>(); |
| manager.Add<transform::VectorizeScalarMatrixConstructors>(); |
| manager.Add<transform::SimplifyPointers>(); |
| manager.Add<transform::RemovePhonies>(); |
| // ArrayLengthFromUniform must come after InlinePointerLets and Simplify, as |
| // it assumes that the form of the array length argument is &var.array. |
| manager.Add<transform::ArrayLengthFromUniform>(); |
| data.Add<transform::ArrayLengthFromUniform::Config>(std::move(array_length_from_uniform_cfg)); |
| // DecomposeMemoryAccess must come after: |
| // * InlinePointerLets, as we cannot take the address of calls to |
| // DecomposeMemoryAccess::Intrinsic. |
| // * Simplify, as we need to fold away the address-of and dereferences of |
| // `*(&(intrinsic_load()))` expressions. |
| // * RemovePhonies, as phonies can be assigned a pointer to a |
| // non-constructible buffer, or dynamic array, which DMA cannot cope with. |
| manager.Add<transform::DecomposeMemoryAccess>(); |
| // CalculateArrayLength must come after DecomposeMemoryAccess, as |
| // DecomposeMemoryAccess special-cases the arrayLength() intrinsic, which |
| // will be transformed by CalculateArrayLength |
| manager.Add<transform::CalculateArrayLength>(); |
| manager.Add<transform::PromoteInitializersToConstVar>(); |
| |
| manager.Add<transform::RemoveContinueInSwitch>(); |
| |
| manager.Add<transform::AddEmptyEntryPoint>(); |
| |
| data.Add<transform::CanonicalizeEntryPointIO::Config>( |
| transform::CanonicalizeEntryPointIO::ShaderStyle::kHlsl); |
| data.Add<transform::NumWorkgroupsFromUniform::Config>(options.root_constant_binding_point); |
| |
| auto out = manager.Run(in, data); |
| |
| SanitizedResult result; |
| result.program = std::move(out.program); |
| if (auto* res = out.data.Get<transform::ArrayLengthFromUniform::Result>()) { |
| result.used_array_length_from_uniform_indices = std::move(res->used_size_indices); |
| } |
| return result; |
| } |
| |
| GeneratorImpl::GeneratorImpl(const Program* program) : TextGenerator(program) {} |
| |
| GeneratorImpl::~GeneratorImpl() = default; |
| |
| bool GeneratorImpl::Generate() { |
| const TypeInfo* last_kind = nullptr; |
| size_t last_padding_line = 0; |
| |
| auto* mod = builder_.Sem().Module(); |
| for (auto* decl : mod->DependencyOrderedDeclarations()) { |
| if (decl->Is<ast::Alias>()) { |
| continue; // Ignore aliases. |
| } |
| if (decl->Is<ast::Enable>()) { |
| // Currently we don't have to do anything for using a extension in HLSL. |
| continue; |
| } |
| |
| // Emit a new line between declarations if the type of declaration has |
| // changed, or we're about to emit a function |
| auto* kind = &decl->TypeInfo(); |
| if (current_buffer_->lines.size() != last_padding_line) { |
| if (last_kind && (last_kind != kind || decl->Is<ast::Function>())) { |
| line(); |
| last_padding_line = current_buffer_->lines.size(); |
| } |
| } |
| last_kind = kind; |
| |
| bool ok = Switch( |
| decl, |
| [&](const ast::Variable* global) { // |
| return EmitGlobalVariable(global); |
| }, |
| [&](const ast::Struct* str) { |
| auto* ty = builder_.Sem().Get(str); |
| auto storage_class_uses = ty->StorageClassUsage(); |
| if (storage_class_uses.size() != |
| (storage_class_uses.count(ast::StorageClass::kStorage) + |
| storage_class_uses.count(ast::StorageClass::kUniform))) { |
| // The structure is used as something other than a storage buffer or |
| // uniform buffer, so it needs to be emitted. |
| // Storage buffer are read and written to via a ByteAddressBuffer |
| // instead of true structure. |
| // Structures used as uniform buffer are read from an array of |
| // vectors instead of true structure. |
| return EmitStructType(current_buffer_, ty); |
| } |
| return true; |
| }, |
| [&](const ast::Function* func) { |
| if (func->IsEntryPoint()) { |
| return EmitEntryPointFunction(func); |
| } |
| return EmitFunction(func); |
| }, |
| [&](Default) { |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled module-scope declaration: " << decl->TypeInfo().name; |
| return false; |
| }); |
| |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| if (!helpers_.lines.empty()) { |
| current_buffer_->Insert(helpers_, 0, 0); |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDynamicVectorAssignment(const ast::AssignmentStatement* stmt, |
| const sem::Vector* vec) { |
| auto name = utils::GetOrCreate(dynamic_vector_write_, vec, [&]() -> std::string { |
| std::string fn; |
| { |
| std::ostringstream ss; |
| if (!EmitType(ss, vec, tint::ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_" + ss.str()); |
| } |
| { |
| auto out = line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, vec, ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "vec")) { |
| return ""; |
| } |
| out << ", int idx, "; |
| if (!EmitTypeAndName(out, vec->type(), ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| auto out = line(&helpers_); |
| switch (vec->Width()) { |
| case 2: |
| out << "vec = (idx.xx == int2(0, 1)) ? val.xx : vec;"; |
| break; |
| case 3: |
| out << "vec = (idx.xxx == int3(0, 1, 2)) ? val.xxx : vec;"; |
| break; |
| case 4: |
| out << "vec = (idx.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : vec;"; |
| break; |
| default: |
| TINT_UNREACHABLE(Writer, builder_.Diagnostics()) |
| << "invalid vector size " << vec->Width(); |
| break; |
| } |
| } |
| line(&helpers_) << "}"; |
| line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| |
| auto out = line(); |
| out << name << "("; |
| if (!EmitExpression(out, ast_access_expr->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, ast_access_expr->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDynamicMatrixVectorAssignment(const ast::AssignmentStatement* stmt, |
| const sem::Matrix* mat) { |
| auto name = utils::GetOrCreate(dynamic_matrix_vector_write_, mat, [&]() -> std::string { |
| std::string fn; |
| { |
| std::ostringstream ss; |
| if (!EmitType(ss, mat, tint::ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_vector_" + ss.str()); |
| } |
| { |
| auto out = line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, mat, ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "mat")) { |
| return ""; |
| } |
| out << ", int col, "; |
| if (!EmitTypeAndName(out, mat->ColumnType(), ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| line(&helpers_) << "switch (col) {"; |
| { |
| ScopedIndent si2(&helpers_); |
| for (uint32_t i = 0; i < mat->columns(); ++i) { |
| line(&helpers_) << "case " << i << ": mat[" << i << "] = val; break;"; |
| } |
| } |
| line(&helpers_) << "}"; |
| } |
| line(&helpers_) << "}"; |
| line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| |
| auto out = line(); |
| out << name << "("; |
| if (!EmitExpression(out, ast_access_expr->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, ast_access_expr->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDynamicMatrixScalarAssignment(const ast::AssignmentStatement* stmt, |
| const sem::Matrix* mat) { |
| auto* lhs_col_access = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| auto* lhs_row_access = lhs_col_access->object->As<ast::IndexAccessorExpression>(); |
| |
| auto name = utils::GetOrCreate(dynamic_matrix_scalar_write_, mat, [&]() -> std::string { |
| std::string fn; |
| { |
| std::ostringstream ss; |
| if (!EmitType(ss, mat, tint::ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_scalar_" + ss.str()); |
| } |
| { |
| auto out = line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, mat, ast::StorageClass::kInvalid, ast::Access::kUndefined, |
| "mat")) { |
| return ""; |
| } |
| out << ", int col, int row, "; |
| if (!EmitTypeAndName(out, mat->type(), ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| line(&helpers_) << "switch (col) {"; |
| { |
| ScopedIndent si2(&helpers_); |
| auto* vec = TypeOf(lhs_row_access->object)->UnwrapRef()->As<sem::Vector>(); |
| for (uint32_t i = 0; i < mat->columns(); ++i) { |
| line(&helpers_) << "case " << i << ":"; |
| { |
| auto vec_name = "mat[" + std::to_string(i) + "]"; |
| ScopedIndent si3(&helpers_); |
| { |
| auto out = line(&helpers_); |
| switch (mat->rows()) { |
| case 2: |
| out << vec_name |
| << " = (row.xx == int2(0, 1)) ? val.xx : " << vec_name |
| << ";"; |
| break; |
| case 3: |
| out << vec_name |
| << " = (row.xxx == int3(0, 1, 2)) ? val.xxx : " << vec_name |
| << ";"; |
| break; |
| case 4: |
| out << vec_name |
| << " = (row.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : " |
| << vec_name << ";"; |
| break; |
| default: |
| TINT_UNREACHABLE(Writer, builder_.Diagnostics()) |
| << "invalid vector size " << vec->Width(); |
| break; |
| } |
| } |
| line(&helpers_) << "break;"; |
| } |
| } |
| } |
| line(&helpers_) << "}"; |
| } |
| line(&helpers_) << "}"; |
| line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto out = line(); |
| out << name << "("; |
| if (!EmitExpression(out, lhs_row_access->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, lhs_col_access->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, lhs_row_access->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIndexAccessor(std::ostream& out, const ast::IndexAccessorExpression* expr) { |
| if (!EmitExpression(out, expr->object)) { |
| return false; |
| } |
| out << "["; |
| |
| if (!EmitExpression(out, expr->index)) { |
| return false; |
| } |
| out << "]"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBitcast(std::ostream& out, const ast::BitcastExpression* expr) { |
| auto* type = TypeOf(expr); |
| if (auto* vec = type->UnwrapRef()->As<sem::Vector>()) { |
| type = vec->type(); |
| } |
| |
| if (!type->is_integer_scalar() && !type->is_float_scalar()) { |
| diagnostics_.add_error(diag::System::Writer, "Unable to do bitcast to type " + |
| type->FriendlyName(builder_.Symbols())); |
| return false; |
| } |
| |
| out << "as"; |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "("; |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) { |
| if (auto* lhs_access = stmt->lhs->As<ast::IndexAccessorExpression>()) { |
| // BUG(crbug.com/tint/1333): work around assignment of scalar to matrices |
| // with at least one dynamic index |
| if (auto* lhs_sub_access = lhs_access->object->As<ast::IndexAccessorExpression>()) { |
| if (auto* mat = TypeOf(lhs_sub_access->object)->UnwrapRef()->As<sem::Matrix>()) { |
| auto* rhs_col_idx_sem = builder_.Sem().Get(lhs_access->index); |
| auto* rhs_row_idx_sem = builder_.Sem().Get(lhs_sub_access->index); |
| if (!rhs_col_idx_sem->ConstantValue().IsValid() || |
| !rhs_row_idx_sem->ConstantValue().IsValid()) { |
| return EmitDynamicMatrixScalarAssignment(stmt, mat); |
| } |
| } |
| } |
| // BUG(crbug.com/tint/1333): work around assignment of vector to matrices |
| // with dynamic indices |
| const auto* lhs_access_type = TypeOf(lhs_access->object)->UnwrapRef(); |
| if (auto* mat = lhs_access_type->As<sem::Matrix>()) { |
| auto* lhs_index_sem = builder_.Sem().Get(lhs_access->index); |
| if (!lhs_index_sem->ConstantValue().IsValid()) { |
| return EmitDynamicMatrixVectorAssignment(stmt, mat); |
| } |
| } |
| // BUG(crbug.com/tint/534): work around assignment to vectors with dynamic |
| // indices |
| if (auto* vec = lhs_access_type->As<sem::Vector>()) { |
| auto* rhs_sem = builder_.Sem().Get(lhs_access->index); |
| if (!rhs_sem->ConstantValue().IsValid()) { |
| return EmitDynamicVectorAssignment(stmt, vec); |
| } |
| } |
| } |
| |
| auto out = line(); |
| if (!EmitExpression(out, stmt->lhs)) { |
| return false; |
| } |
| out << " = "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitExpressionOrOneIfZero(std::ostream& out, const ast::Expression* expr) { |
| // For constants, replace literal 0 with 1. |
| if (const auto& val = builder_.Sem().Get(expr)->ConstantValue()) { |
| if (!val.AnyZero()) { |
| return EmitExpression(out, expr); |
| } |
| |
| if (val.Type()->IsAnyOf<sem::I32, sem::U32>()) { |
| return EmitValue(out, val.Type(), 1); |
| } |
| |
| if (auto* vec = val.Type()->As<sem::Vector>()) { |
| auto* elem_ty = vec->type(); |
| |
| if (!EmitType(out, val.Type(), ast::StorageClass::kNone, ast::Access::kUndefined, "")) { |
| return false; |
| } |
| |
| out << "("; |
| for (size_t i = 0; i < val.ElementCount(); ++i) { |
| if (i != 0) { |
| out << ", "; |
| } |
| auto s = val.Element<AInt>(i).value; |
| if (!EmitValue(out, elem_ty, (s == 0) ? 1 : static_cast<int>(s))) { |
| return false; |
| } |
| } |
| out << ")"; |
| return true; |
| } |
| |
| TINT_ICE(Writer, diagnostics_) |
| << "EmitExpressionOrOneIfZero expects integer scalar or vector"; |
| return false; |
| } |
| |
| auto* ty = TypeOf(expr)->UnwrapRef(); |
| |
| // For non-constants, we need to emit runtime code to check if the value is 0, |
| // and return 1 in that case. |
| std::string zero; |
| { |
| std::ostringstream ss; |
| EmitValue(ss, ty, 0); |
| zero = ss.str(); |
| } |
| std::string one; |
| { |
| std::ostringstream ss; |
| EmitValue(ss, ty, 1); |
| one = ss.str(); |
| } |
| |
| // For identifiers, no need for a function call as it's fine to evaluate |
| // `expr` more than once. |
| if (expr->Is<ast::IdentifierExpression>()) { |
| out << "("; |
| if (!EmitExpression(out, expr)) { |
| return false; |
| } |
| out << " == " << zero << " ? " << one << " : "; |
| if (!EmitExpression(out, expr)) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| // For non-identifier expressions, call a function to make sure `expr` is only |
| // evaluated once. |
| auto name = utils::GetOrCreate(value_or_one_if_zero_, ty, [&]() -> std::string { |
| // Example: |
| // int4 tint_value_or_one_if_zero_int4(int4 value) { |
| // return value == 0 ? 0 : value; |
| // } |
| std::string ty_name; |
| { |
| std::ostringstream ss; |
| if (!EmitType(ss, ty, tint::ast::StorageClass::kInvalid, ast::Access::kUndefined, "")) { |
| return ""; |
| } |
| ty_name = ss.str(); |
| } |
| |
| std::string fn = UniqueIdentifier("value_or_one_if_zero_" + ty_name); |
| line(&helpers_) << ty_name << " " << fn << "(" << ty_name << " value) {"; |
| { |
| ScopedIndent si(&helpers_); |
| line(&helpers_) << "return value == " << zero << " ? " << one << " : value;"; |
| } |
| line(&helpers_) << "}"; |
| line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| out << name << "("; |
| if (!EmitExpression(out, expr)) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBinary(std::ostream& out, const ast::BinaryExpression* expr) { |
| if (expr->op == ast::BinaryOp::kLogicalAnd || expr->op == ast::BinaryOp::kLogicalOr) { |
| auto name = UniqueIdentifier(kTempNamePrefix); |
| |
| { |
| auto pre = line(); |
| pre << "bool " << name << " = "; |
| if (!EmitExpression(pre, expr->lhs)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| if (expr->op == ast::BinaryOp::kLogicalOr) { |
| line() << "if (!" << name << ") {"; |
| } else { |
| line() << "if (" << name << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| auto pre = line(); |
| pre << name << " = "; |
| if (!EmitExpression(pre, expr->rhs)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| line() << "}"; |
| |
| out << "(" << name << ")"; |
| return true; |
| } |
| |
| auto* lhs_type = TypeOf(expr->lhs)->UnwrapRef(); |
| auto* rhs_type = TypeOf(expr->rhs)->UnwrapRef(); |
| // Multiplying by a matrix requires the use of `mul` in order to get the |
| // type of multiply we desire. |
| if (expr->op == ast::BinaryOp::kMultiply && |
| ((lhs_type->Is<sem::Vector>() && rhs_type->Is<sem::Matrix>()) || |
| (lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Vector>()) || |
| (lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Matrix>()))) { |
| // Matrices are transposed, so swap LHS and RHS. |
| out << "mul("; |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| out << ")"; |
| |
| return true; |
| } |
| |
| out << "("; |
| TINT_DEFER(out << ")"); |
| |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| out << " "; |
| |
| switch (expr->op) { |
| case ast::BinaryOp::kAnd: |
| out << "&"; |
| break; |
| case ast::BinaryOp::kOr: |
| out << "|"; |
| break; |
| case ast::BinaryOp::kXor: |
| out << "^"; |
| break; |
| case ast::BinaryOp::kLogicalAnd: |
| case ast::BinaryOp::kLogicalOr: { |
| // These are both handled above. |
| TINT_UNREACHABLE(Writer, diagnostics_); |
| return false; |
| } |
| case ast::BinaryOp::kEqual: |
| out << "=="; |
| break; |
| case ast::BinaryOp::kNotEqual: |
| out << "!="; |
| break; |
| case ast::BinaryOp::kLessThan: |
| out << "<"; |
| break; |
| case ast::BinaryOp::kGreaterThan: |
| out << ">"; |
| break; |
| case ast::BinaryOp::kLessThanEqual: |
| out << "<="; |
| break; |
| case ast::BinaryOp::kGreaterThanEqual: |
| out << ">="; |
| break; |
| case ast::BinaryOp::kShiftLeft: |
| out << "<<"; |
| break; |
| case ast::BinaryOp::kShiftRight: |
| // TODO(dsinclair): MSL is based on C++14, and >> in C++14 has |
| // implementation-defined behaviour for negative LHS. We may have to |
| // generate extra code to implement WGSL-specified behaviour for negative |
| // LHS. |
| out << R"(>>)"; |
| break; |
| |
| case ast::BinaryOp::kAdd: |
| out << "+"; |
| break; |
| case ast::BinaryOp::kSubtract: |
| out << "-"; |
| break; |
| case ast::BinaryOp::kMultiply: |
| out << "*"; |
| break; |
| case ast::BinaryOp::kDivide: |
| out << "/"; |
| // BUG(crbug.com/tint/1083): Integer divide/modulo by zero is a FXC |
| // compile error, and undefined behavior in WGSL. |
| if (TypeOf(expr->rhs)->UnwrapRef()->is_integer_scalar_or_vector()) { |
| out << " "; |
| return EmitExpressionOrOneIfZero(out, expr->rhs); |
| } |
| break; |
| case ast::BinaryOp::kModulo: |
| out << "%"; |
| // BUG(crbug.com/tint/1083): Integer divide/modulo by zero is a FXC |
| // compile error, and undefined behavior in WGSL. |
| if (TypeOf(expr->rhs)->UnwrapRef()->is_integer_scalar_or_vector()) { |
| out << " "; |
| return EmitExpressionOrOneIfZero(out, expr->rhs); |
| } |
| break; |
| case ast::BinaryOp::kNone: |
| diagnostics_.add_error(diag::System::Writer, "missing binary operation type"); |
| return false; |
| } |
| out << " "; |
| |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatements(const ast::StatementList& stmts) { |
| for (auto* s : stmts) { |
| if (!EmitStatement(s)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatementsWithIndent(const ast::StatementList& stmts) { |
| ScopedIndent si(this); |
| return EmitStatements(stmts); |
| } |
| |
| bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) { |
| line() << "{"; |
| if (!EmitStatementsWithIndent(stmt->statements)) { |
| return false; |
| } |
| line() << "}"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBreak(const ast::BreakStatement*) { |
| line() << "break;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitCall(std::ostream& out, const ast::CallExpression* expr) { |
| auto* sem = builder_.Sem().Get(expr); |
| if (auto* m = sem->As<sem::Materialize>()) { |
| // TODO(crbug.com/tint/1504): Just emit the constant value. |
| sem = m->Expr(); |
| } |
| auto* call = sem->As<sem::Call>(); |
| auto* target = call->Target(); |
| return Switch( |
| target, [&](const sem::Function* func) { return EmitFunctionCall(out, call, func); }, |
| [&](const sem::Builtin* builtin) { return EmitBuiltinCall(out, call, builtin); }, |
| [&](const sem::TypeConversion* conv) { return EmitTypeConversion(out, call, conv); }, |
| [&](const sem::TypeConstructor* ctor) { return EmitTypeConstructor(out, call, ctor); }, |
| [&](Default) { |
| TINT_ICE(Writer, diagnostics_) << "unhandled call target: " << target->TypeInfo().name; |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitFunctionCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Function* func) { |
| auto* expr = call->Declaration(); |
| |
| if (ast::HasAttribute<transform::CalculateArrayLength::BufferSizeIntrinsic>( |
| func->Declaration()->attributes)) { |
| // Special function generated by the CalculateArrayLength transform for |
| // calling X.GetDimensions(Y) |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| out << ".GetDimensions("; |
| if (!EmitExpression(out, call->Arguments()[1]->Declaration())) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| if (auto* intrinsic = ast::GetAttribute<transform::DecomposeMemoryAccess::Intrinsic>( |
| func->Declaration()->attributes)) { |
| switch (intrinsic->storage_class) { |
| case ast::StorageClass::kUniform: |
| return EmitUniformBufferAccess(out, expr, intrinsic); |
| case ast::StorageClass::kStorage: |
| return EmitStorageBufferAccess(out, expr, intrinsic); |
| default: |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic storage class:" |
| << intrinsic->storage_class; |
| return false; |
| } |
| } |
| |
| out << builder_.Symbols().NameFor(func->Declaration()->symbol) << "("; |
| |
| bool first = true; |
| for (auto* arg : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBuiltinCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| const auto type = builtin->Type(); |
| |
| auto* expr = call->Declaration(); |
| if (builtin->IsTexture()) { |
| return EmitTextureCall(out, call, builtin); |
| } |
| if (type == sem::BuiltinType::kSelect) { |
| return EmitSelectCall(out, expr); |
| } |
| if (type == sem::BuiltinType::kModf) { |
| return EmitModfCall(out, expr, builtin); |
| } |
| if (type == sem::BuiltinType::kFrexp) { |
| return EmitFrexpCall(out, expr, builtin); |
| } |
| if (type == sem::BuiltinType::kDegrees) { |
| return EmitDegreesCall(out, expr, builtin); |
| } |
| if (type == sem::BuiltinType::kRadians) { |
| return EmitRadiansCall(out, expr, builtin); |
| } |
| if (builtin->IsDataPacking()) { |
| return EmitDataPackingCall(out, expr, builtin); |
| } |
| if (builtin->IsDataUnpacking()) { |
| return EmitDataUnpackingCall(out, expr, builtin); |
| } |
| if (builtin->IsBarrier()) { |
| return EmitBarrierCall(out, builtin); |
| } |
| if (builtin->IsAtomic()) { |
| return EmitWorkgroupAtomicCall(out, expr, builtin); |
| } |
| if (builtin->IsDP4a()) { |
| return EmitDP4aCall(out, expr, builtin); |
| } |
| |
| auto name = generate_builtin_name(builtin); |
| if (name.empty()) { |
| return false; |
| } |
| |
| // Handle single argument builtins that only accept and return uint (not int overload). We need |
| // to explicitly cast the return value (we also cast the arg for good measure). See |
| // crbug.com/tint/1550 |
| if (type == sem::BuiltinType::kCountOneBits || type == sem::BuiltinType::kReverseBits) { |
| auto* arg = call->Arguments()[0]; |
| if (arg->Type()->UnwrapRef()->is_signed_scalar_or_vector()) { |
| out << "asint(" << name << "(asuint("; |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| out << ")))"; |
| return true; |
| } |
| } |
| |
| out << name << "("; |
| |
| bool first = true; |
| for (auto* arg : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTypeConversion(std::ostream& out, |
| const sem::Call* call, |
| const sem::TypeConversion* conv) { |
| if (!EmitType(out, conv->Target(), ast::StorageClass::kNone, ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTypeConstructor(std::ostream& out, |
| const sem::Call* call, |
| const sem::TypeConstructor* ctor) { |
| auto* type = call->Type(); |
| |
| // If the type constructor is empty then we need to construct with the zero |
| // value for all components. |
| if (call->Arguments().empty()) { |
| return EmitZeroValue(out, type); |
| } |
| |
| if (auto* mat = call->Type()->As<sem::Matrix>()) { |
| if (ctor->Parameters().size() == 1) { |
| // Matrix constructor with single scalar. |
| auto fn = utils::GetOrCreate(matrix_scalar_ctors_, mat, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto name = UniqueIdentifier("build_mat" + std::to_string(mat->columns()) + "x" + |
| std::to_string(mat->rows())); |
| { |
| auto l = line(&b); |
| if (!EmitType(l, mat, ast::StorageClass::kNone, ast::Access::kUndefined, "")) { |
| return ""; |
| } |
| l << " " << name << "("; |
| if (!EmitType(l, mat->type(), ast::StorageClass::kNone, ast::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| l << " value) {"; |
| } |
| { |
| ScopedIndent si(&b); |
| auto l = line(&b); |
| l << "return "; |
| if (!EmitType(l, mat, ast::StorageClass::kNone, ast::Access::kUndefined, "")) { |
| return ""; |
| } |
| l << "("; |
| for (uint32_t i = 0; i < mat->columns() * mat->rows(); i++) { |
| l << ((i > 0) ? ", value" : "value"); |
| } |
| l << ");"; |
| } |
| line(&b) << "}"; |
| return name; |
| }); |
| if (fn.empty()) { |
| return false; |
| } |
| out << fn << "("; |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| } |
| |
| bool brackets = type->IsAnyOf<sem::Array, sem::Struct>(); |
| |
| // For single-value vector initializers, swizzle the scalar to the right |
| // vector dimension using .x |
| const bool is_single_value_vector_init = type->is_scalar_vector() && |
| call->Arguments().size() == 1 && |
| ctor->Parameters()[0]->Type()->is_scalar(); |
| |
| auto it = structure_builders_.find(As<sem::Struct>(type)); |
| if (it != structure_builders_.end()) { |
| out << it->second << "("; |
| brackets = false; |
| } else if (brackets) { |
| out << "{"; |
| } else { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "("; |
| } |
| |
| if (is_single_value_vector_init) { |
| out << "("; |
| } |
| |
| bool first = true; |
| for (auto* e : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, e->Declaration())) { |
| return false; |
| } |
| } |
| |
| if (is_single_value_vector_init) { |
| out << ")." << std::string(type->As<sem::Vector>()->Width(), 'x'); |
| } |
| |
| out << (brackets ? "}" : ")"); |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitUniformBufferAccess( |
| std::ostream& out, |
| const ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| const auto& args = expr->args; |
| auto* offset_arg = builder_.Sem().Get(args[1]); |
| |
| uint32_t scalar_offset_value = 0; |
| std::string scalar_offset_expr; |
| |
| // If true, use scalar_offset_value, otherwise use scalar_offset_expr |
| bool scalar_offset_constant = false; |
| |
| if (auto val = offset_arg->ConstantValue()) { |
| TINT_ASSERT(Writer, val.Type()->Is<sem::U32>()); |
| scalar_offset_value = static_cast<uint32_t>(val.Element<AInt>(0).value); |
| scalar_offset_value /= 4; // bytes -> scalar index |
| scalar_offset_constant = true; |
| } |
| |
| if (!scalar_offset_constant) { |
| // UBO offset not compile-time known. |
| // Calculate the scalar offset into a temporary. |
| scalar_offset_expr = UniqueIdentifier("scalar_offset"); |
| auto pre = line(); |
| pre << "const uint " << scalar_offset_expr << " = ("; |
| if (!EmitExpression(pre, args[1])) { // offset |
| return false; |
| } |
| pre << ") / 4;"; |
| } |
| |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto cast = [&](const char* to, auto&& load) { |
| out << to << "("; |
| auto result = load(); |
| out << ")"; |
| return result; |
| }; |
| auto load_scalar = [&]() { |
| if (!EmitExpression(out, args[0])) { // buffer |
| return false; |
| } |
| if (scalar_offset_constant) { |
| char swizzle[] = {'x', 'y', 'z', 'w'}; |
| out << "[" << (scalar_offset_value / 4) << "]." |
| << swizzle[scalar_offset_value & 3]; |
| } else { |
| out << "[" << scalar_offset_expr << " / 4][" << scalar_offset_expr << " % 4]"; |
| } |
| return true; |
| }; |
| // Has a minimum alignment of 8 bytes, so is either .xy or .zw |
| auto load_vec2 = [&] { |
| if (scalar_offset_constant) { |
| if (!EmitExpression(out, args[0])) { // buffer |
| return false; |
| } |
| out << "[" << (scalar_offset_value / 4) << "]"; |
| out << ((scalar_offset_value & 2) == 0 ? ".xy" : ".zw"); |
| } else { |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| { |
| auto pre = line(); |
| pre << "uint4 " << ubo_load << " = "; |
| if (!EmitExpression(pre, args[0])) { // buffer |
| return false; |
| } |
| pre << "[" << scalar_offset_expr << " / 4];"; |
| } |
| out << "((" << scalar_offset_expr << " & 2) ? " << ubo_load |
| << ".zw : " << ubo_load << ".xy)"; |
| } |
| return true; |
| }; |
| // vec4 has a minimum alignment of 16 bytes, easiest case |
| auto load_vec4 = [&] { |
| if (!EmitExpression(out, args[0])) { // buffer |
| return false; |
| } |
| if (scalar_offset_constant) { |
| out << "[" << (scalar_offset_value / 4) << "]"; |
| } else { |
| out << "[" << scalar_offset_expr << " / 4]"; |
| } |
| return true; |
| }; |
| // vec3 has a minimum alignment of 16 bytes, so is just a .xyz swizzle |
| auto load_vec3 = [&] { |
| if (!load_vec4()) { |
| return false; |
| } |
| out << ".xyz"; |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load_scalar(); |
| case DataType::kF32: |
| return cast("asfloat", load_scalar); |
| case DataType::kI32: |
| return cast("asint", load_scalar); |
| case DataType::kVec2U32: |
| return load_vec2(); |
| case DataType::kVec2F32: |
| return cast("asfloat", load_vec2); |
| case DataType::kVec2I32: |
| return cast("asint", load_vec2); |
| case DataType::kVec3U32: |
| return load_vec3(); |
| case DataType::kVec3F32: |
| return cast("asfloat", load_vec3); |
| case DataType::kVec3I32: |
| return cast("asint", load_vec3); |
| case DataType::kVec4U32: |
| return load_vec4(); |
| case DataType::kVec4F32: |
| return cast("asfloat", load_vec4); |
| case DataType::kVec4I32: |
| return cast("asint", load_vec4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| default: |
| break; |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitStorageBufferAccess( |
| std::ostream& out, |
| const ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| const auto& args = expr->args; |
| |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto load = [&](const char* cast, int n) { |
| if (cast) { |
| out << cast << "("; |
| } |
| if (!EmitExpression(out, args[0])) { // buffer |
| return false; |
| } |
| out << ".Load"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp(out); |
| if (!EmitExpression(out, args[1])) { // offset |
| return false; |
| } |
| if (cast) { |
| out << ")"; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load(nullptr, 1); |
| case DataType::kF32: |
| return load("asfloat", 1); |
| case DataType::kI32: |
| return load("asint", 1); |
| case DataType::kVec2U32: |
| return load(nullptr, 2); |
| case DataType::kVec2F32: |
| return load("asfloat", 2); |
| case DataType::kVec2I32: |
| return load("asint", 2); |
| case DataType::kVec3U32: |
| return load(nullptr, 3); |
| case DataType::kVec3F32: |
| return load("asfloat", 3); |
| case DataType::kVec3I32: |
| return load("asint", 3); |
| case DataType::kVec4U32: |
| return load(nullptr, 4); |
| case DataType::kVec4F32: |
| return load("asfloat", 4); |
| case DataType::kVec4I32: |
| return load("asint", 4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| |
| case Op::kStore: { |
| auto store = [&](int n) { |
| if (!EmitExpression(out, args[0])) { // buffer |
| return false; |
| } |
| out << ".Store"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp1(out); |
| if (!EmitExpression(out, args[1])) { // offset |
| return false; |
| } |
| out << ", asuint"; |
| ScopedParen sp2(out); |
| if (!EmitExpression(out, args[2])) { // value |
| return false; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return store(1); |
| case DataType::kF32: |
| return store(1); |
| case DataType::kI32: |
| return store(1); |
| case DataType::kVec2U32: |
| return store(2); |
| case DataType::kVec2F32: |
| return store(2); |
| case DataType::kVec2I32: |
| return store(2); |
| case DataType::kVec3U32: |
| return store(3); |
| case DataType::kVec3F32: |
| return store(3); |
| case DataType::kVec3I32: |
| return store(3); |
| case DataType::kVec4U32: |
| return store(4); |
| case DataType::kVec4F32: |
| return store(4); |
| case DataType::kVec4I32: |
| return store(4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| |
| case Op::kAtomicLoad: |
| case Op::kAtomicStore: |
| case Op::kAtomicAdd: |
| case Op::kAtomicSub: |
| case Op::kAtomicMax: |
| case Op::kAtomicMin: |
| case Op::kAtomicAnd: |
| case Op::kAtomicOr: |
| case Op::kAtomicXor: |
| case Op::kAtomicExchange: |
| case Op::kAtomicCompareExchangeWeak: |
| return EmitStorageAtomicCall(out, expr, intrinsic); |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitStorageAtomicCall( |
| std::ostream& out, |
| const ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| |
| auto* result_ty = TypeOf(expr); |
| |
| auto& buf = helpers_; |
| |
| // generate_helper() generates a helper function that translates the |
| // DecomposeMemoryAccess::Intrinsic call into the corresponding HLSL |
| // atomic intrinsic function. |
| auto generate_helper = [&]() -> std::string { |
| auto rmw = [&](const char* wgsl, const char* hlsl) -> std::string { |
| auto name = UniqueIdentifier(wgsl); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "original_value")) { |
| return ""; |
| } |
| l << " = 0;"; |
| } |
| { |
| auto l = line(&buf); |
| l << "buffer." << hlsl << "(offset, "; |
| if (intrinsic->op == Op::kAtomicSub) { |
| l << "-"; |
| } |
| l << "value, original_value);"; |
| } |
| line(&buf) << "return original_value;"; |
| return name; |
| }; |
| |
| switch (intrinsic->op) { |
| case Op::kAtomicAdd: |
| return rmw("atomicAdd", "InterlockedAdd"); |
| |
| case Op::kAtomicSub: |
| // Use add with the operand negated. |
| return rmw("atomicSub", "InterlockedAdd"); |
| |
| case Op::kAtomicMax: |
| return rmw("atomicMax", "InterlockedMax"); |
| |
| case Op::kAtomicMin: |
| return rmw("atomicMin", "InterlockedMin"); |
| |
| case Op::kAtomicAnd: |
| return rmw("atomicAnd", "InterlockedAnd"); |
| |
| case Op::kAtomicOr: |
| return rmw("atomicOr", "InterlockedOr"); |
| |
| case Op::kAtomicXor: |
| return rmw("atomicXor", "InterlockedXor"); |
| |
| case Op::kAtomicExchange: |
| return rmw("atomicExchange", "InterlockedExchange"); |
| |
| case Op::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| auto name = UniqueIdentifier("atomicLoad"); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset) {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| l << " = 0;"; |
| } |
| |
| line(&buf) << "buffer.InterlockedOr(offset, 0, value);"; |
| line(&buf) << "return value;"; |
| return name; |
| } |
| case Op::kAtomicStore: { |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| auto* value_ty = TypeOf(expr->args[2])->UnwrapRef(); |
| auto name = UniqueIdentifier("atomicStore"); |
| { |
| auto fn = line(&buf); |
| fn << "void " << name << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "ignored")) { |
| return ""; |
| } |
| l << ";"; |
| } |
| line(&buf) << "buffer.InterlockedExchange(offset, value, ignored);"; |
| return name; |
| } |
| case Op::kAtomicCompareExchangeWeak: { |
| auto* value_ty = TypeOf(expr->args[2])->UnwrapRef(); |
| |
| auto name = UniqueIdentifier("atomicCompareExchangeWeak"); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "compare")) { |
| return ""; |
| } |
| fn << ", "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { // T result = {0, 0}; |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "result")) { |
| return ""; |
| } |
| l << " = {0, 0};"; |
| } |
| line(&buf) << "buffer.InterlockedCompareExchange(offset, compare, " |
| "value, result.x);"; |
| line(&buf) << "result.y = result.x == compare;"; |
| line(&buf) << "return result;"; |
| return name; |
| } |
| default: |
| break; |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported atomic DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return ""; |
| }; |
| |
| auto func = utils::GetOrCreate(dma_intrinsics_, DMAIntrinsic{intrinsic->op, intrinsic->type}, |
| generate_helper); |
| if (func.empty()) { |
| return false; |
| } |
| |
| out << func; |
| { |
| ScopedParen sp(out); |
| bool first = true; |
| for (auto* arg : expr->args) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitWorkgroupAtomicCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| std::string result = UniqueIdentifier("atomic_result"); |
| |
| if (!builtin->ReturnType()->Is<sem::Void>()) { |
| auto pre = line(); |
| if (!EmitTypeAndName(pre, builtin->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, builtin->ReturnType())) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| auto call = [&](const char* name) { |
| auto pre = line(); |
| pre << name; |
| |
| { |
| ScopedParen sp(pre); |
| for (size_t i = 0; i < expr->args.size(); i++) { |
| auto* arg = expr->args[i]; |
| if (i > 0) { |
| pre << ", "; |
| } |
| if (i == 1 && builtin->Type() == sem::BuiltinType::kAtomicSub) { |
| // Sub uses InterlockedAdd with the operand negated. |
| pre << "-"; |
| } |
| if (!EmitExpression(pre, arg)) { |
| return false; |
| } |
| } |
| |
| pre << ", " << result; |
| } |
| |
| pre << ";"; |
| |
| out << result; |
| return true; |
| }; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| auto pre = line(); |
| pre << "InterlockedOr"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, expr->args[0])) { |
| return false; |
| } |
| pre << ", 0, " << result; |
| } |
| pre << ";"; |
| |
| out << result; |
| return true; |
| } |
| case sem::BuiltinType::kAtomicStore: { |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| { // T result = 0; |
| auto pre = line(); |
| auto* value_ty = builtin->Parameters()[1]->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(pre, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, value_ty)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| out << "InterlockedExchange"; |
| { |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->args[1])) { |
| return false; |
| } |
| out << ", " << result; |
| } |
| return true; |
| } |
| case sem::BuiltinType::kAtomicCompareExchangeWeak: { |
| auto* dest = expr->args[0]; |
| auto* compare_value = expr->args[1]; |
| auto* value = expr->args[2]; |
| |
| std::string compare = UniqueIdentifier("atomic_compare_value"); |
| |
| { // T compare_value = <compare_value>; |
| auto pre = line(); |
| if (!EmitTypeAndName(pre, TypeOf(compare_value), ast::StorageClass::kNone, |
| ast::Access::kUndefined, compare)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitExpression(pre, compare_value)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| { // InterlockedCompareExchange(dst, compare, value, result.x); |
| auto pre = line(); |
| pre << "InterlockedCompareExchange"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, dest)) { |
| return false; |
| } |
| pre << ", " << compare << ", "; |
| if (!EmitExpression(pre, value)) { |
| return false; |
| } |
| pre << ", " << result << ".x"; |
| } |
| pre << ";"; |
| } |
| |
| { // result.y = result.x == compare; |
| line() << result << ".y = " << result << ".x == " << compare << ";"; |
| } |
| |
| out << result; |
| return true; |
| } |
| |
| case sem::BuiltinType::kAtomicAdd: |
| case sem::BuiltinType::kAtomicSub: |
| return call("InterlockedAdd"); |
| |
| case sem::BuiltinType::kAtomicMax: |
| return call("InterlockedMax"); |
| |
| case sem::BuiltinType::kAtomicMin: |
| return call("InterlockedMin"); |
| |
| case sem::BuiltinType::kAtomicAnd: |
| return call("InterlockedAnd"); |
| |
| case sem::BuiltinType::kAtomicOr: |
| return call("InterlockedOr"); |
| |
| case sem::BuiltinType::kAtomicXor: |
| return call("InterlockedXor"); |
| |
| case sem::BuiltinType::kAtomicExchange: |
| return call("InterlockedExchange"); |
| |
| default: |
| break; |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) << "unsupported atomic builtin: " << builtin->Type(); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitSelectCall(std::ostream& out, const ast::CallExpression* expr) { |
| auto* expr_false = expr->args[0]; |
| auto* expr_true = expr->args[1]; |
| auto* expr_cond = expr->args[2]; |
| ScopedParen paren(out); |
| if (!EmitExpression(out, expr_cond)) { |
| return false; |
| } |
| |
| out << " ? "; |
| |
| if (!EmitExpression(out, expr_true)) { |
| return false; |
| } |
| |
| out << " : "; |
| |
| if (!EmitExpression(out, expr_false)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitModfCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << "float" << width << " whole;"; |
| line(b) << "float" << width << " fract = modf(" << in << ", whole);"; |
| { |
| auto l = line(b); |
| if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result = {fract, whole};"; |
| } |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitFrexpCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << "float" << width << " exp;"; |
| line(b) << "float" << width << " sig = frexp(" << in << ", exp);"; |
| { |
| auto l = line(b); |
| if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result = {sig, int" << width << "(exp)};"; |
| } |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDegreesCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kRadToDeg << ";"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitRadiansCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kDegToRad << ";"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDataPackingCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (builtin->Type() == sem::BuiltinType::kPack4x8snorm || |
| builtin->Type() == sem::BuiltinType::kPack4x8unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (builtin->Type() == sem::BuiltinType::kPack4x8snorm || |
| builtin->Type() == sem::BuiltinType::kPack2x16snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kPack4x8snorm: |
| case sem::BuiltinType::kPack4x8unorm: |
| case sem::BuiltinType::kPack2x16snorm: |
| case sem::BuiltinType::kPack2x16unorm: { |
| { |
| auto l = line(b); |
| l << (is_signed ? "" : "u") << "int" << dims |
| << " i = " << (is_signed ? "" : "u") << "int" << dims << "(round(clamp(" |
| << params[0] << ", " << (is_signed ? "-1.0" : "0.0") << ", 1.0) * " |
| << scale << ".0))"; |
| if (is_signed) { |
| l << " & " << (dims == 4 ? "0xff" : "0xffff"); |
| } |
| l << ";"; |
| } |
| { |
| auto l = line(b); |
| l << "return "; |
| if (is_signed) { |
| l << "asuint"; |
| } |
| l << "(i.x | i.y << " << (32 / dims); |
| if (dims == 4) { |
| l << " | i.z << 16 | i.w << 24"; |
| } |
| l << ");"; |
| } |
| break; |
| } |
| case sem::BuiltinType::kPack2x16float: { |
| line(b) << "uint2 i = f32tof16(" << params[0] << ");"; |
| line(b) << "return i.x | (i.y << 16);"; |
| break; |
| } |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled data packing builtin"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDataUnpackingCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (builtin->Type() == sem::BuiltinType::kUnpack4x8snorm || |
| builtin->Type() == sem::BuiltinType::kUnpack4x8unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (builtin->Type() == sem::BuiltinType::kUnpack4x8snorm || |
| builtin->Type() == sem::BuiltinType::kUnpack2x16snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kUnpack4x8snorm: |
| case sem::BuiltinType::kUnpack2x16snorm: { |
| line(b) << "int j = int(" << params[0] << ");"; |
| { // Perform sign extension on the converted values. |
| auto l = line(b); |
| l << "int" << dims << " i = int" << dims << "("; |
| if (dims == 2) { |
| l << "j << 16, j) >> 16"; |
| } else { |
| l << "j << 24, j << 16, j << 8, j) >> 24"; |
| } |
| l << ";"; |
| } |
| line(b) << "return clamp(float" << dims << "(i) / " << scale << ".0, " |
| << (is_signed ? "-1.0" : "0.0") << ", 1.0);"; |
| break; |
| } |
| case sem::BuiltinType::kUnpack4x8unorm: |
| case sem::BuiltinType::kUnpack2x16unorm: { |
| line(b) << "uint j = " << params[0] << ";"; |
| { |
| auto l = line(b); |
| l << "uint" << dims << " i = uint" << dims << "("; |
| l << "j & " << (dims == 2 ? "0xffff" : "0xff") << ", "; |
| if (dims == 4) { |
| l << "(j >> " << (32 / dims) << ") & 0xff, (j >> 16) & 0xff, j >> 24"; |
| } else { |
| l << "j >> " << (32 / dims); |
| } |
| l << ");"; |
| } |
| line(b) << "return float" << dims << "(i) / " << scale << ".0;"; |
| break; |
| } |
| case sem::BuiltinType::kUnpack2x16float: |
| line(b) << "uint i = " << params[0] << ";"; |
| line(b) << "return f16tof32(uint2(i & 0xffff, i >> 16));"; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled data packing builtin"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDP4aCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| // TODO(crbug.com/tint/1497): support the polyfill version of DP4a functions. |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| std::string functionName; |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kDot4I8Packed: |
| line(b) << "int accumulator = 0;"; |
| functionName = "dot4add_i8packed"; |
| break; |
| case sem::BuiltinType::kDot4U8Packed: |
| line(b) << "uint accumulator = 0u;"; |
| functionName = "dot4add_u8packed"; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled DP4a builtin"); |
| return false; |
| } |
| line(b) << "return " << functionName << "(" << params[0] << ", " << params[1] |
| << ", accumulator);"; |
| |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitBarrierCall(std::ostream& out, const sem::Builtin* builtin) { |
| // TODO(crbug.com/tint/661): Combine sequential barriers to a single |
| // instruction. |
| if (builtin->Type() == sem::BuiltinType::kWorkgroupBarrier) { |
| out << "GroupMemoryBarrierWithGroupSync()"; |
| } else if (builtin->Type() == sem::BuiltinType::kStorageBarrier) { |
| out << "DeviceMemoryBarrierWithGroupSync()"; |
| } else { |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unexpected barrier builtin type " << sem::str(builtin->Type()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTextureCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| using Usage = sem::ParameterUsage; |
| |
| auto& signature = builtin->Signature(); |
| auto* expr = call->Declaration(); |
| auto arguments = expr->args; |
| |
| // Returns the argument with the given usage |
| auto arg = [&](Usage usage) { |
| int idx = signature.IndexOf(usage); |
| return (idx >= 0) ? arguments[idx] : nullptr; |
| }; |
| |
| auto* texture = arg(Usage::kTexture); |
| if (!texture) { |
| TINT_ICE(Writer, diagnostics_) << "missing texture argument"; |
| return false; |
| } |
| |
| auto* texture_type = TypeOf(texture)->UnwrapRef()->As<sem::Texture>(); |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kTextureDimensions: |
| case sem::BuiltinType::kTextureNumLayers: |
| case sem::BuiltinType::kTextureNumLevels: |
| case sem::BuiltinType::kTextureNumSamples: { |
| // All of these builtins use the GetDimensions() method on the texture |
| bool is_ms = |
| texture_type->IsAnyOf<sem::MultisampledTexture, sem::DepthMultisampledTexture>(); |
| int num_dimensions = 0; |
| std::string swizzle; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kTextureDimensions: |
| switch (texture_type->dim()) { |
| case ast::TextureDimension::kNone: |
| TINT_ICE(Writer, diagnostics_) << "texture dimension is kNone"; |
| return false; |
| case ast::TextureDimension::k1d: |
| num_dimensions = 1; |
| break; |
| case ast::TextureDimension::k2d: |
| num_dimensions = is_ms ? 3 : 2; |
| swizzle = is_ms ? ".xy" : ""; |
| break; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".xy"; |
| break; |
| case ast::TextureDimension::k3d: |
| num_dimensions = 3; |
| break; |
| case ast::TextureDimension::kCube: |
| num_dimensions = 2; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".xy"; |
| break; |
| } |
| break; |
| case sem::BuiltinType::kTextureNumLayers: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) << "texture dimension is not arrayed"; |
| return false; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| } |
| break; |
| case sem::BuiltinType::kTextureNumLevels: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) |
| << "texture dimension does not support mips"; |
| return false; |
| case ast::TextureDimension::k1d: |
| num_dimensions = 2; |
| swizzle = ".y"; |
| break; |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::kCube: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::k2dArray: |
| case ast::TextureDimension::k3d: |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| case sem::BuiltinType::kTextureNumSamples: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) |
| << "texture dimension does not support multisampling"; |
| return false; |
| case ast::TextureDimension::k2d: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "unexpected builtin"; |
| return false; |
| } |
| |
| auto* level_arg = arg(Usage::kLevel); |
| |
| if (level_arg) { |
| // `NumberOfLevels` is a non-optional argument if `MipLevel` was passed. |
| // Increment the number of dimensions for the temporary vector to |
| // accommodate this. |
| num_dimensions++; |
| |
| // If the swizzle was empty, the expression will evaluate to the whole |
| // vector. As we've grown the vector by one element, we now need to |
| // swizzle to keep the result expression equivalent. |
| if (swizzle.empty()) { |
| static constexpr const char* swizzles[] = {"", ".x", ".xy", ".xyz"}; |
| swizzle = swizzles[num_dimensions - 1]; |
| } |
| } |
| |
| if (num_dimensions > 4) { |
| TINT_ICE(Writer, diagnostics_) << "Texture query builtin temporary vector has " |
| << num_dimensions << " dimensions"; |
| return false; |
| } |
| |
| // Declare a variable to hold the queried texture info |
| auto dims = UniqueIdentifier(kTempNamePrefix); |
| if (num_dimensions == 1) { |
| line() << "int " << dims << ";"; |
| } else { |
| line() << "int" << num_dimensions << " " << dims << ";"; |
| } |
| |
| { // texture.GetDimensions(...) |
| auto pre = line(); |
| if (!EmitExpression(pre, texture)) { |
| return false; |
| } |
| pre << ".GetDimensions("; |
| |
| if (level_arg) { |
| if (!EmitExpression(pre, level_arg)) { |
| return false; |
| } |
| pre << ", "; |
| } else if (builtin->Type() == sem::BuiltinType::kTextureNumLevels) { |
| pre << "0, "; |
| } |
| |
| if (num_dimensions == 1) { |
| pre << dims; |
| } else { |
| static constexpr char xyzw[] = {'x', 'y', 'z', 'w'}; |
| if (num_dimensions < 0 || num_dimensions > 4) { |
| TINT_ICE(Writer, diagnostics_) |
| << "vector dimensions are " << num_dimensions; |
| return false; |
| } |
| for (int i = 0; i < num_dimensions; i++) { |
| if (i > 0) { |
| pre << ", "; |
| } |
| pre << dims << "." << xyzw[i]; |
| } |
| } |
| |
| pre << ");"; |
| } |
| |
| // The out parameters of the GetDimensions() call is now in temporary |
| // `dims` variable. This may be packed with other data, so the final |
| // expression may require a swizzle. |
| out << dims << swizzle; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| if (!EmitExpression(out, texture)) { |
| return false; |
| } |
| |
| // If pack_level_in_coords is true, then the mip level will be appended as the |
| // last value of the coordinates argument. If the WGSL builtin overload does |
| // not have a level parameter and pack_level_in_coords is true, then a zero |
| // mip level will be inserted. |
| bool pack_level_in_coords = false; |
| |
| uint32_t hlsl_ret_width = 4u; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kTextureSample: |
| out << ".Sample("; |
| break; |
| case sem::BuiltinType::kTextureSampleBias: |
| out << ".SampleBias("; |
| break; |
| case sem::BuiltinType::kTextureSampleLevel: |
| out << ".SampleLevel("; |
| break; |
| case sem::BuiltinType::kTextureSampleGrad: |
| out << ".SampleGrad("; |
| break; |
| case sem::BuiltinType::kTextureSampleCompare: |
| out << ".SampleCmp("; |
| hlsl_ret_width = 1; |
| break; |
| case sem::BuiltinType::kTextureSampleCompareLevel: |
| out << ".SampleCmpLevelZero("; |
| hlsl_ret_width = 1; |
| break; |
| case sem::BuiltinType::kTextureLoad: |
| out << ".Load("; |
| // Multisampled textures do not support mip-levels. |
| if (!texture_type->Is<sem::MultisampledTexture>()) { |
| pack_level_in_coords = true; |
| } |
| break; |
| case sem::BuiltinType::kTextureGather: |
| out << ".Gather"; |
| if (builtin->Parameters()[0]->Usage() == sem::ParameterUsage::kComponent) { |
| switch (call->Arguments()[0]->ConstantValue().Element<AInt>(0).value) { |
| case 0: |
| out << "Red"; |
| break; |
| case 1: |
| out << "Green"; |
| break; |
| case 2: |
| out << "Blue"; |
| break; |
| case 3: |
| out << "Alpha"; |
| break; |
| } |
| } |
| out << "("; |
| break; |
| case sem::BuiltinType::kTextureGatherCompare: |
| out << ".GatherCmp("; |
| break; |
| case sem::BuiltinType::kTextureStore: |
| out << "["; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal compiler error: Unhandled texture builtin '" + |
| std::string(builtin->str()) + "'"); |
| return false; |
| } |
| |
| if (auto* sampler = arg(Usage::kSampler)) { |
| if (!EmitExpression(out, sampler)) { |
| return false; |
| } |
| out << ", "; |
| } |
| |
| auto* param_coords = arg(Usage::kCoords); |
| if (!param_coords) { |
| TINT_ICE(Writer, diagnostics_) << "missing coords argument"; |
| return false; |
| } |
| |
| auto emit_vector_appended_with_i32_zero = [&](const ast::Expression* vector) { |
| auto* i32 = builder_.create<sem::I32>(); |
| auto* zero = builder_.Expr(0_i); |
| auto* stmt = builder_.Sem().Get(vector)->Stmt(); |
| builder_.Sem().Add(zero, builder_.create<sem::Expression>(zero, i32, stmt, sem::Constant{}, |
| /* has_side_effects */ false)); |
| auto* packed = AppendVector(&builder_, vector, zero); |
| return EmitExpression(out, packed->Declaration()); |
| }; |
| |
| auto emit_vector_appended_with_level = [&](const ast::Expression* vector) { |
| if (auto* level = arg(Usage::kLevel)) { |
| auto* packed = AppendVector(&builder_, vector, level); |
| return EmitExpression(out, packed->Declaration()); |
| } |
| return emit_vector_appended_with_i32_zero(vector); |
| }; |
| |
| if (auto* array_index = arg(Usage::kArrayIndex)) { |
| // Array index needs to be appended to the coordinates. |
| auto* packed = AppendVector(&builder_, param_coords, array_index); |
| if (pack_level_in_coords) { |
| // Then mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(packed->Declaration())) { |
| return false; |
| } |
| } else { |
| if (!EmitExpression(out, packed->Declaration())) { |
| return false; |
| } |
| } |
| } else if (pack_level_in_coords) { |
| // Mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(param_coords)) { |
| return false; |
| } |
| } else { |
| if (!EmitExpression(out, param_coords)) { |
| return false; |
| } |
| } |
| |
| for (auto usage : {Usage::kDepthRef, Usage::kBias, Usage::kLevel, Usage::kDdx, Usage::kDdy, |
| Usage::kSampleIndex, Usage::kOffset}) { |
| if (usage == Usage::kLevel && pack_level_in_coords) { |
| continue; // mip level already packed in coordinates. |
| } |
| if (auto* e = arg(usage)) { |
| out << ", "; |
| if (!EmitExpression(out, e)) { |
| return false; |
| } |
| } |
| } |
| |
| if (builtin->Type() == sem::BuiltinType::kTextureStore) { |
| out << "] = "; |
| if (!EmitExpression(out, arg(Usage::kValue))) { |
| return false; |
| } |
| } else { |
| out << ")"; |
| |
| // If the builtin return type does not match the number of elements of the |
| // HLSL builtin, we need to swizzle the expression to generate the correct |
| // number of components. |
| uint32_t wgsl_ret_width = 1; |
| if (auto* vec = builtin->ReturnType()->As<sem::Vector>()) { |
| wgsl_ret_width = vec->Width(); |
| } |
| if (wgsl_ret_width < hlsl_ret_width) { |
| out << "."; |
| for (uint32_t i = 0; i < wgsl_ret_width; i++) { |
| out << "xyz"[i]; |
| } |
| } |
| if (wgsl_ret_width > hlsl_ret_width) { |
| TINT_ICE(Writer, diagnostics_) |
| << "WGSL return width (" << wgsl_ret_width << ") is wider than HLSL return width (" |
| << hlsl_ret_width << ") for " << builtin->Type(); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string GeneratorImpl::generate_builtin_name(const sem::Builtin* builtin) { |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kAbs: |
| case sem::BuiltinType::kAcos: |
| case sem::BuiltinType::kAll: |
| case sem::BuiltinType::kAny: |
| case sem::BuiltinType::kAsin: |
| case sem::BuiltinType::kAtan: |
| case sem::BuiltinType::kAtan2: |
| case sem::BuiltinType::kCeil: |
| case sem::BuiltinType::kClamp: |
| case sem::BuiltinType::kCos: |
| case sem::BuiltinType::kCosh: |
| case sem::BuiltinType::kCross: |
| case sem::BuiltinType::kDeterminant: |
| case sem::BuiltinType::kDistance: |
| case sem::BuiltinType::kDot: |
| case sem::BuiltinType::kExp: |
| case sem::BuiltinType::kExp2: |
| case sem::BuiltinType::kFloor: |
| case sem::BuiltinType::kFrexp: |
| case sem::BuiltinType::kLdexp: |
| case sem::BuiltinType::kLength: |
| case sem::BuiltinType::kLog: |
| case sem::BuiltinType::kLog2: |
| case sem::BuiltinType::kMax: |
| case sem::BuiltinType::kMin: |
| case sem::BuiltinType::kModf: |
| case sem::BuiltinType::kNormalize: |
| case sem::BuiltinType::kPow: |
| case sem::BuiltinType::kReflect: |
| case sem::BuiltinType::kRefract: |
| case sem::BuiltinType::kRound: |
| case sem::BuiltinType::kSign: |
| case sem::BuiltinType::kSin: |
| case sem::BuiltinType::kSinh: |
| case sem::BuiltinType::kSqrt: |
| case sem::BuiltinType::kStep: |
| case sem::BuiltinType::kTan: |
| case sem::BuiltinType::kTanh: |
| case sem::BuiltinType::kTranspose: |
| case sem::BuiltinType::kTrunc: |
| return builtin->str(); |
| case sem::BuiltinType::kCountOneBits: // uint |
| return "countbits"; |
| case sem::BuiltinType::kDpdx: |
| return "ddx"; |
| case sem::BuiltinType::kDpdxCoarse: |
| return "ddx_coarse"; |
| case sem::BuiltinType::kDpdxFine: |
| return "ddx_fine"; |
| case sem::BuiltinType::kDpdy: |
| return "ddy"; |
| case sem::BuiltinType::kDpdyCoarse: |
| return "ddy_coarse"; |
| case sem::BuiltinType::kDpdyFine: |
| return "ddy_fine"; |
| case sem::BuiltinType::kFaceForward: |
| return "faceforward"; |
| case sem::BuiltinType::kFract: |
| return "frac"; |
| case sem::BuiltinType::kFma: |
| return "mad"; |
| case sem::BuiltinType::kFwidth: |
| case sem::BuiltinType::kFwidthCoarse: |
| case sem::BuiltinType::kFwidthFine: |
| return "fwidth"; |
| case sem::BuiltinType::kInverseSqrt: |
| return "rsqrt"; |
| case sem::BuiltinType::kMix: |
| return "lerp"; |
| case sem::BuiltinType::kReverseBits: // uint |
| return "reversebits"; |
| case sem::BuiltinType::kSmoothstep: |
| case sem::BuiltinType::kSmoothStep: |
| return "smoothstep"; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Unknown builtin method: " + std::string(builtin->str())); |
| } |
| |
| return ""; |
| } |
| |
| bool GeneratorImpl::EmitCase(const ast::SwitchStatement* s, size_t case_idx) { |
| auto* stmt = s->body[case_idx]; |
| if (stmt->IsDefault()) { |
| line() << "default: {"; |
| } else { |
| for (auto* selector : stmt->selectors) { |
| auto out = line(); |
| out << "case "; |
| if (!EmitLiteral(out, selector)) { |
| return false; |
| } |
| out << ":"; |
| if (selector == stmt->selectors.back()) { |
| out << " {"; |
| } |
| } |
| } |
| |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| // Emit the case statement |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| |
| // Inline all fallthrough case statements. FXC cannot handle fallthroughs. |
| while (tint::Is<ast::FallthroughStatement>(stmt->body->Last())) { |
| case_idx++; |
| stmt = s->body[case_idx]; |
| // Generate each fallthrough case statement in a new block. This is done to |
| // prevent symbol collision of variables declared in these cases statements. |
| if (!EmitBlock(stmt->body)) { |
| return false; |
| } |
| } |
| |
| if (!tint::IsAnyOf<ast::BreakStatement, ast::FallthroughStatement>(stmt->body->Last())) { |
| line() << "break;"; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitContinue(const ast::ContinueStatement*) { |
| if (!emit_continuing_()) { |
| return false; |
| } |
| line() << "continue;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDiscard(const ast::DiscardStatement*) { |
| // TODO(dsinclair): Verify this is correct when the discard semantics are |
| // defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361) |
| line() << "discard;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitExpression(std::ostream& out, const ast::Expression* expr) { |
| return Switch( |
| expr, |
| [&](const ast::IndexAccessorExpression* a) { // |
| return EmitIndexAccessor(out, a); |
| }, |
| [&](const ast::BinaryExpression* b) { // |
| return EmitBinary(out, b); |
| }, |
| [&](const ast::BitcastExpression* b) { // |
| return EmitBitcast(out, b); |
| }, |
| [&](const ast::CallExpression* c) { // |
| return EmitCall(out, c); |
| }, |
| [&](const ast::IdentifierExpression* i) { // |
| return EmitIdentifier(out, i); |
| }, |
| [&](const ast::LiteralExpression* l) { // |
| return EmitLiteral(out, l); |
| }, |
| [&](const ast::MemberAccessorExpression* m) { // |
| return EmitMemberAccessor(out, m); |
| }, |
| [&](const ast::UnaryOpExpression* u) { // |
| return EmitUnaryOp(out, u); |
| }, |
| [&](Default) { // |
| diagnostics_.add_error(diag::System::Writer, "unknown expression type: " + |
| std::string(expr->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitIdentifier(std::ostream& out, const ast::IdentifierExpression* expr) { |
| out << builder_.Symbols().NameFor(expr->symbol); |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIf(const ast::IfStatement* stmt) { |
| { |
| auto out = line(); |
| out << "if ("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (stmt->else_statement) { |
| line() << "} else {"; |
| if (auto* block = stmt->else_statement->As<ast::BlockStatement>()) { |
| if (!EmitStatementsWithIndent(block->statements)) { |
| return false; |
| } |
| } else { |
| if (!EmitStatementsWithIndent({stmt->else_statement})) { |
| return false; |
| } |
| } |
| } |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitFunction(const ast::Function* func) { |
| auto* sem = builder_.Sem().Get(func); |
| |
| if (ast::HasAttribute<ast::InternalAttribute>(func->attributes)) { |
| // An internal function. Do not emit. |
| return true; |
| } |
| |
| { |
| auto out = line(); |
| auto name = builder_.Symbols().NameFor(func->symbol); |
| // If the function returns an array, then we need to declare a typedef for |
| // this. |
| if (sem->ReturnType()->Is<sem::Array>()) { |
| auto typedef_name = UniqueIdentifier(name + "_ret"); |
| auto pre = line(); |
| pre << "typedef "; |
| if (!EmitTypeAndName(pre, sem->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kReadWrite, typedef_name)) { |
| return false; |
| } |
| pre << ";"; |
| out << typedef_name; |
| } else { |
| if (!EmitType(out, sem->ReturnType(), ast::StorageClass::kNone, ast::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| } |
| |
| out << " " << name << "("; |
| |
| bool first = true; |
| |
| for (auto* v : sem->Parameters()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| auto const* type = v->Type(); |
| |
| if (auto* ptr = type->As<sem::Pointer>()) { |
| // Transform pointer parameters in to `inout` parameters. |
| // The WGSL spec is highly restrictive in what can be passed in pointer |
| // parameters, which allows for this transformation. See: |
| // https://gpuweb.github.io/gpuweb/wgsl/#function-restriction |
| out << "inout "; |
| type = ptr->StoreType(); |
| } |
| |
| // Note: WGSL only allows for StorageClass::kNone on parameters, however |
| // the sanitizer transforms generates load / store functions for storage |
| // or uniform buffers. These functions have a buffer parameter with |
| // StorageClass::kStorage or StorageClass::kUniform. This is required to |
| // correctly translate the parameter to a [RW]ByteAddressBuffer for |
| // storage buffers and a uint4[N] for uniform buffers. |
| if (!EmitTypeAndName(out, type, v->StorageClass(), v->Access(), |
| builder_.Symbols().NameFor(v->Declaration()->symbol))) { |
| return false; |
| } |
| } |
| out << ") {"; |
| } |
| |
| if (sem->HasDiscard() && !sem->ReturnType()->Is<sem::Void>()) { |
| // BUG(crbug.com/tint/1081): work around non-void functions with discard |
| // failing compilation sometimes |
| if (!EmitFunctionBodyWithDiscard(func)) { |
| return false; |
| } |
| } else { |
| if (!EmitStatementsWithIndent(func->body->statements)) { |
| return false; |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitFunctionBodyWithDiscard(const ast::Function* func) { |
| // FXC sometimes fails to compile functions that discard with 'Not all control |
| // paths return a value'. We work around this by wrapping the function body |
| // within an "if (true) { <body> } return <default return type obj>;" so that |
| // there is always an (unused) return statement. |
| |
| auto* sem = builder_.Sem().Get(func); |
| TINT_ASSERT(Writer, sem->HasDiscard() && !sem->ReturnType()->Is<sem::Void>()); |
| |
| ScopedIndent si(this); |
| line() << "if (true) {"; |
| |
| if (!EmitStatementsWithIndent(func->body->statements)) { |
| return false; |
| } |
| |
| line() << "}"; |
| |
| // Return an unused result that matches the type of the return value |
| auto name = builder_.Symbols().NameFor(builder_.Symbols().New("unused")); |
| { |
| auto out = line(); |
| if (!EmitTypeAndName(out, sem->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kReadWrite, name)) { |
| return false; |
| } |
| out << ";"; |
| } |
| line() << "return " << name << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitGlobalVariable(const ast::Variable* global) { |
| if (global->is_const) { |
| return EmitProgramConstVariable(global); |
| } |
| |
| auto* sem = builder_.Sem().Get(global); |
| switch (sem->StorageClass()) { |
| case ast::StorageClass::kUniform: |
| return EmitUniformVariable(sem); |
| case ast::StorageClass::kStorage: |
| return EmitStorageVariable(sem); |
| case ast::StorageClass::kHandle: |
| return EmitHandleVariable(sem); |
| case ast::StorageClass::kPrivate: |
| return EmitPrivateVariable(sem); |
| case ast::StorageClass::kWorkgroup: |
| return EmitWorkgroupVariable(sem); |
| default: |
| break; |
| } |
| |
| TINT_ICE(Writer, diagnostics_) << "unhandled storage class " << sem->StorageClass(); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitUniformVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto binding_point = decl->BindingPoint(); |
| auto* type = var->Type()->UnwrapRef(); |
| auto name = builder_.Symbols().NameFor(decl->symbol); |
| line() << "cbuffer cbuffer_" << name << RegisterAndSpace('b', binding_point) << " {"; |
| |
| { |
| ScopedIndent si(this); |
| auto out = line(); |
| if (!EmitTypeAndName(out, type, ast::StorageClass::kUniform, var->Access(), name)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| line() << "};"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStorageVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto* type = var->Type()->UnwrapRef(); |
| auto out = line(); |
| if (!EmitTypeAndName(out, type, ast::StorageClass::kStorage, var->Access(), |
| builder_.Symbols().NameFor(decl->symbol))) { |
| return false; |
| } |
| |
| out << RegisterAndSpace(var->Access() == ast::Access::kRead ? 't' : 'u', decl->BindingPoint()) |
| << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitHandleVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto* unwrapped_type = var->Type()->UnwrapRef(); |
| auto out = line(); |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| const char* register_space = nullptr; |
| |
| if (unwrapped_type->Is<sem::Texture>()) { |
| register_space = "t"; |
| if (unwrapped_type->Is<sem::StorageTexture>()) { |
| register_space = "u"; |
| } |
| } else if (unwrapped_type->Is<sem::Sampler>()) { |
| register_space = "s"; |
| } |
| |
| if (register_space) { |
| auto bp = decl->BindingPoint(); |
| out << " : register(" << register_space << bp.binding->value << ", space" << bp.group->value |
| << ")"; |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitPrivateVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = line(); |
| |
| out << "static "; |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| out << " = "; |
| if (auto* constructor = decl->constructor) { |
| if (!EmitExpression(out, constructor)) { |
| return false; |
| } |
| } else { |
| if (!EmitZeroValue(out, var->Type()->UnwrapRef())) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitWorkgroupVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = line(); |
| |
| out << "groupshared "; |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| if (auto* constructor = decl->constructor) { |
| out << " = "; |
| if (!EmitExpression(out, constructor)) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const { |
| switch (builtin) { |
| case ast::Builtin::kPosition: |
| return "SV_Position"; |
| case ast::Builtin::kVertexIndex: |
| return "SV_VertexID"; |
| case ast::Builtin::kInstanceIndex: |
| return "SV_InstanceID"; |
| case ast::Builtin::kFrontFacing: |
| return "SV_IsFrontFace"; |
| case ast::Builtin::kFragDepth: |
| return "SV_Depth"; |
| case ast::Builtin::kLocalInvocationId: |
| return "SV_GroupThreadID"; |
| case ast::Builtin::kLocalInvocationIndex: |
| return "SV_GroupIndex"; |
| case ast::Builtin::kGlobalInvocationId: |
| return "SV_DispatchThreadID"; |
| case ast::Builtin::kWorkgroupId: |
| return "SV_GroupID"; |
| case ast::Builtin::kSampleIndex: |
| return "SV_SampleIndex"; |
| case ast::Builtin::kSampleMask: |
| return "SV_Coverage"; |
| default: |
| break; |
| } |
| return ""; |
| } |
| |
| std::string GeneratorImpl::interpolation_to_modifiers(ast::InterpolationType type, |
| ast::InterpolationSampling sampling) const { |
| std::string modifiers; |
| switch (type) { |
| case ast::InterpolationType::kPerspective: |
| modifiers += "linear "; |
| break; |
| case ast::InterpolationType::kLinear: |
| modifiers += "noperspective "; |
| break; |
| case ast::InterpolationType::kFlat: |
| modifiers += "nointerpolation "; |
| break; |
| } |
| switch (sampling) { |
| case ast::InterpolationSampling::kCentroid: |
| modifiers += "centroid "; |
| break; |
| case ast::InterpolationSampling::kSample: |
| modifiers += "sample "; |
| break; |
| case ast::InterpolationSampling::kCenter: |
| case ast::InterpolationSampling::kNone: |
| break; |
| } |
| return modifiers; |
| } |
| |
| bool GeneratorImpl::EmitEntryPointFunction(const ast::Function* func) { |
| auto* func_sem = builder_.Sem().Get(func); |
| |
| { |
| auto out = line(); |
| if (func->PipelineStage() == ast::PipelineStage::kCompute) { |
| // Emit the workgroup_size attribute. |
| auto wgsize = func_sem->WorkgroupSize(); |
| out << "[numthreads("; |
| for (int i = 0; i < 3; i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| |
| if (wgsize[i].overridable_const) { |
| auto* global = |
| builder_.Sem().Get<sem::GlobalVariable>(wgsize[i].overridable_const); |
| if (!global->IsOverridable()) { |
| TINT_ICE(Writer, builder_.Diagnostics()) |
| << "expected a pipeline-overridable constant"; |
| } |
| out << kSpecConstantPrefix << global->ConstantId(); |
| } else { |
| out << std::to_string(wgsize[i].value); |
| } |
| } |
| out << ")]" << std::endl; |
| } |
| |
| out << func->return_type->FriendlyName(builder_.Symbols()); |
| |
| out << " " << builder_.Symbols().NameFor(func->symbol) << "("; |
| |
| bool first = true; |
| |
| // Emit entry point parameters. |
| for (auto* var : func->params) { |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type(); |
| if (!type->Is<sem::Struct>()) { |
| // ICE likely indicates that the CanonicalizeEntryPointIO transform was |
| // not run, or a builtin parameter was added after it was run. |
| TINT_ICE(Writer, diagnostics_) << "Unsupported non-struct entry point parameter"; |
| } |
| |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), |
| builder_.Symbols().NameFor(var->symbol))) { |
| return false; |
| } |
| } |
| |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| |
| if (!EmitStatements(func->body->statements)) { |
| return false; |
| } |
| |
| if (!Is<ast::ReturnStatement>(func->body->Last())) { |
| ast::ReturnStatement ret(ProgramID(), Source{}); |
| if (!EmitStatement(&ret)) { |
| return false; |
| } |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitLiteral(std::ostream& out, const ast::LiteralExpression* lit) { |
| return Switch( |
| lit, |
| [&](const ast::BoolLiteralExpression* l) { |
| out << (l->value ? "true" : "false"); |
| return true; |
| }, |
| [&](const ast::FloatLiteralExpression* l) { |
| auto f32 = static_cast<float>(l->value); |
| if (std::isinf(f32)) { |
| out << (f32 >= 0 ? "asfloat(0x7f800000u)" : "asfloat(0xff800000u)"); |
| } else if (std::isnan(f32)) { |
| out << "asfloat(0x7fc00000u)"; |
| } else { |
| out << FloatToString(f32) << "f"; |
| } |
| return true; |
| }, |
| [&](const ast::IntLiteralExpression* i) { |
| out << i->value; |
| switch (i->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| case ast::IntLiteralExpression::Suffix::kI: |
| return true; |
| case ast::IntLiteralExpression::Suffix::kU: |
| out << "u"; |
| return true; |
| } |
| diagnostics_.add_error(diag::System::Writer, "unknown integer literal suffix type"); |
| return false; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown literal type"); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitValue(std::ostream& out, const sem::Type* type, int value) { |
| return Switch( |
| type, |
| [&](const sem::Bool*) { |
| out << (value == 0 ? "false" : "true"); |
| return true; |
| }, |
| [&](const sem::F32*) { |
| out << value << ".0f"; |
| return true; |
| }, |
| [&](const sem::I32*) { |
| out << value; |
| return true; |
| }, |
| [&](const sem::U32*) { |
| out << value << "u"; |
| return true; |
| }, |
| [&](const sem::Vector* vec) { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < vec->Width(); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitValue(out, vec->type(), value)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const sem::Matrix* mat) { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitValue(out, mat->type(), value)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const sem::Struct*) { |
| out << "("; |
| TINT_DEFER(out << ")" << value); |
| return EmitType(out, type, ast::StorageClass::kNone, ast::Access::kUndefined, ""); |
| }, |
| [&](const sem::Array*) { |
| out << "("; |
| TINT_DEFER(out << ")" << value); |
| return EmitType(out, type, ast::StorageClass::kNone, ast::Access::kUndefined, ""); |
| }, |
| [&](Default) { |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Invalid type for value emission: " + type->FriendlyName(builder_.Symbols())); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) { |
| return EmitValue(out, type, 0); |
| } |
| |
| bool GeneratorImpl::EmitLoop(const ast::LoopStatement* stmt) { |
| auto emit_continuing = [this, stmt]() { |
| if (stmt->continuing && !stmt->continuing->Empty()) { |
| if (!EmitBlock(stmt->continuing)) { |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| line() << LoopAttribute() << "while (true) {"; |
| { |
| ScopedIndent si(this); |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitForLoop(const ast::ForLoopStatement* stmt) { |
| // Nest a for loop with a new block. In HLSL the initializer scope is not |
| // nested by the for-loop, so we may get variable redefinitions. |
| line() << "{"; |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| TextBuffer init_buf; |
| if (auto* init = stmt->initializer) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf); |
| if (!EmitStatement(init)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cond_pre; |
| std::stringstream cond_buf; |
| if (auto* cond = stmt->condition) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); |
| if (!EmitExpression(cond_buf, cond)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cont_buf; |
| if (auto* cont = stmt->continuing) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf); |
| if (!EmitStatement(cont)) { |
| return false; |
| } |
| } |
| |
| // If the for-loop has a multi-statement conditional and / or continuing, then |
| // we cannot emit this as a regular for-loop in HLSL. Instead we need to |
| // generate a `while(true)` loop. |
| bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1; |
| |
| // If the for-loop has multi-statement initializer, or is going to be emitted |
| // as a `while(true)` loop, then declare the initializer statement(s) before |
| // the loop. |
| if (init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop)) { |
| current_buffer_->Append(init_buf); |
| init_buf.lines.clear(); // Don't emit the initializer again in the 'for' |
| } |
| |
| if (emit_as_loop) { |
| auto emit_continuing = [&]() { |
| current_buffer_->Append(cont_buf); |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| line() << LoopAttribute() << "while (true) {"; |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| if (stmt->condition) { |
| current_buffer_->Append(cond_pre); |
| line() << "if (!(" << cond_buf.str() << ")) { break; }"; |
| } |
| |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } else { |
| // For-loop can be generated. |
| { |
| auto out = line(); |
| out << LoopAttribute() << "for"; |
| { |
| ScopedParen sp(out); |
| |
| if (!init_buf.lines.empty()) { |
| out << init_buf.lines[0].content << " "; |
| } else { |
| out << "; "; |
| } |
| |
| out << cond_buf.str() << "; "; |
| |
| if (!cont_buf.lines.empty()) { |
| out << TrimSuffix(cont_buf.lines[0].content, ";"); |
| } |
| } |
| out << " {"; |
| } |
| { |
| auto emit_continuing = [] { return true; }; |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| } |
| line() << "}"; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitMemberAccessor(std::ostream& out, |
| const ast::MemberAccessorExpression* expr) { |
| if (!EmitExpression(out, expr->structure)) { |
| return false; |
| } |
| out << "."; |
| |
| // Swizzles output the name directly |
| if (builder_.Sem().Get(expr)->Is<sem::Swizzle>()) { |
| out << builder_.Symbols().NameFor(expr->member->symbol); |
| } else if (!EmitExpression(out, expr->member)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitReturn(const ast::ReturnStatement* stmt) { |
| if (stmt->value) { |
| auto out = line(); |
| out << "return "; |
| if (!EmitExpression(out, stmt->value)) { |
| return false; |
| } |
| out << ";"; |
| } else { |
| line() << "return;"; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| [&](const ast::AssignmentStatement* a) { // |
| return EmitAssign(a); |
| }, |
| [&](const ast::BlockStatement* b) { // |
| return EmitBlock(b); |
| }, |
| [&](const ast::BreakStatement* b) { // |
| return EmitBreak(b); |
| }, |
| [&](const ast::CallStatement* c) { // |
| auto out = line(); |
| if (!EmitCall(out, c->expr)) { |
| return false; |
| } |
| out << ";"; |
| return true; |
| }, |
| [&](const ast::ContinueStatement* c) { // |
| return EmitContinue(c); |
| }, |
| [&](const ast::DiscardStatement* d) { // |
| return EmitDiscard(d); |
| }, |
| [&](const ast::FallthroughStatement*) { // |
| line() << "/* fallthrough */"; |
| return true; |
| }, |
| [&](const ast::IfStatement* i) { // |
| return EmitIf(i); |
| }, |
| [&](const ast::LoopStatement* l) { // |
| return EmitLoop(l); |
| }, |
| [&](const ast::ForLoopStatement* l) { // |
| return EmitForLoop(l); |
| }, |
| [&](const ast::ReturnStatement* r) { // |
| return EmitReturn(r); |
| }, |
| [&](const ast::SwitchStatement* s) { // |
| return EmitSwitch(s); |
| }, |
| [&](const ast::VariableDeclStatement* v) { // |
| return EmitVariable(v->variable); |
| }, |
| [&](Default) { // |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown statement type: " + std::string(stmt->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDefaultOnlySwitch(const ast::SwitchStatement* stmt) { |
| TINT_ASSERT(Writer, stmt->body.size() == 1 && stmt->body[0]->IsDefault()); |
| |
| // FXC fails to compile a switch with just a default case, ignoring the |
| // default case body. We work around this here by emitting the default case |
| // without the switch. |
| |
| // Emit the switch condition as-is in case it has side-effects (e.g. |
| // function call). Note that's it's fine not to assign the result of the |
| // expression. |
| { |
| auto out = line(); |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| // Emit "do { <default case body> } while(false);". We use a 'do' loop so |
| // that break statements work as expected, and make it 'while (false)' in |
| // case there isn't a break statement. |
| line() << "do {"; |
| { |
| ScopedIndent si(this); |
| if (!EmitStatements(stmt->body[0]->body->statements)) { |
| return false; |
| } |
| } |
| line() << "} while (false);"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitSwitch(const ast::SwitchStatement* stmt) { |
| // BUG(crbug.com/tint/1188): work around default-only switches |
| if (stmt->body.size() == 1 && stmt->body[0]->IsDefault()) { |
| return EmitDefaultOnlySwitch(stmt); |
| } |
| |
| { // switch(expr) { |
| auto out = line(); |
| out << "switch("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| for (size_t i = 0; i < stmt->body.size(); i++) { |
| if (!EmitCase(stmt, i)) { |
| return false; |
| } |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitType(std::ostream& out, |
| const sem::Type* type, |
| ast::StorageClass storage_class, |
| ast::Access access, |
| const std::string& name, |
| bool* name_printed /* = nullptr */) { |
| if (name_printed) { |
| *name_printed = false; |
| } |
| switch (storage_class) { |
| case ast::StorageClass::kStorage: |
| if (access != ast::Access::kRead) { |
| out << "RW"; |
| } |
| out << "ByteAddressBuffer"; |
| return true; |
| case ast::StorageClass::kUniform: { |
| auto array_length = (type->Size() + 15) / 16; |
| out << "uint4 " << name << "[" << array_length << "]"; |
| if (name_printed) { |
| *name_printed = true; |
| } |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| return Switch( |
| type, |
| [&](const sem::Array* ary) { |
| const sem::Type* base_type = ary; |
| std::vector<uint32_t> sizes; |
| while (auto* arr = base_type->As<sem::Array>()) { |
| if (arr->IsRuntimeSized()) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Runtime arrays may only exist in storage buffers, which " |
| "should " |
| "have been transformed into a ByteAddressBuffer"; |
| return false; |
| } |
| sizes.push_back(arr->Count()); |
| base_type = arr->ElemType(); |
| } |
| if (!EmitType(out, base_type, storage_class, access, "")) { |
| return false; |
| } |
| if (!name.empty()) { |
| out << " " << name; |
| if (name_printed) { |
| *name_printed = true; |
| } |
| } |
| for (uint32_t size : sizes) { |
| out << "[" << size << "]"; |
| } |
| return true; |
| }, |
| [&](const sem::Bool*) { |
| out << "bool"; |
| return true; |
| }, |
| [&](const sem::F32*) { |
| out << "float"; |
| return true; |
| }, |
| [&](const sem::F16*) { |
| diagnostics_.add_error(diag::System::Writer, |
| "Type f16 is not completely implemented yet."); |
| return false; |
| }, |
| [&](const sem::I32*) { |
| out << "int"; |
| return true; |
| }, |
| [&](const sem::Matrix* mat) { |
| if (!EmitType(out, mat->type(), storage_class, access, "")) { |
| return false; |
| } |
| // Note: HLSL's matrices are declared as <type>NxM, where N is the |
| // number of rows and M is the number of columns. Despite HLSL's |
| // matrices being column-major by default, the index operator and |
| // constructors actually operate on row-vectors, where as WGSL operates |
| // on column vectors. To simplify everything we use the transpose of the |
| // matrices. See: |
| // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-per-component-math#matrix-ordering |
| out << mat->columns() << "x" << mat->rows(); |
| return true; |
| }, |
| [&](const sem::Pointer*) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Attempting to emit pointer type. These should have been " |
| "removed with the InlinePointerLets transform"; |
| return false; |
| }, |
| [&](const sem::Sampler* sampler) { |
| out << "Sampler"; |
| if (sampler->IsComparison()) { |
| out << "Comparison"; |
| } |
| out << "State"; |
| return true; |
| }, |
| [&](const sem::Struct* str) { |
| out << StructName(str); |
| return true; |
| }, |
| [&](const sem::Texture* tex) { |
| if (tex->Is<sem::ExternalTexture>()) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Multiplanar external texture transform was not run."; |
| return false; |
| } |
| |
| auto* storage = tex->As<sem::StorageTexture>(); |
| auto* ms = tex->As<sem::MultisampledTexture>(); |
| auto* depth_ms = tex->As<sem::DepthMultisampledTexture>(); |
| auto* sampled = tex->As<sem::SampledTexture>(); |
| |
| if (storage && storage->access() != ast::Access::kRead) { |
| out << "RW"; |
| } |
| out << "Texture"; |
| |
| switch (tex->dim()) { |
| case ast::TextureDimension::k1d: |
| out << "1D"; |
| break; |
| case ast::TextureDimension::k2d: |
| out << ((ms || depth_ms) ? "2DMS" : "2D"); |
| break; |
| case ast::TextureDimension::k2dArray: |
| out << ((ms || depth_ms) ? "2DMSArray" : "2DArray"); |
| break; |
| case ast::TextureDimension::k3d: |
| out << "3D"; |
| break; |
| case ast::TextureDimension::kCube: |
| out << "Cube"; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| out << "CubeArray"; |
| break; |
| default: |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unexpected TextureDimension " << tex->dim(); |
| return false; |
| } |
| |
| if (storage) { |
| auto* component = image_format_to_rwtexture_type(storage->texel_format()); |
| if (component == nullptr) { |
| TINT_ICE(Writer, diagnostics_) << "Unsupported StorageTexture TexelFormat: " |
| << static_cast<int>(storage->texel_format()); |
| return false; |
| } |
| out << "<" << component << ">"; |
| } else if (depth_ms) { |
| out << "<float4>"; |
| } else if (sampled || ms) { |
| auto* subtype = sampled ? sampled->type() : ms->type(); |
| out << "<"; |
| if (subtype->Is<sem::F32>()) { |
| out << "float4"; |
| } else if (subtype->Is<sem::I32>()) { |
| out << "int4"; |
| } else if (subtype->Is<sem::U32>()) { |
| out << "uint4"; |
| } else { |
| TINT_ICE(Writer, diagnostics_) << "Unsupported multisampled texture type"; |
| return false; |
| } |
| out << ">"; |
| } |
| return true; |
| }, |
| [&](const sem::U32*) { |
| out << "uint"; |
| return true; |
| }, |
| [&](const sem::Vector* vec) { |
| auto width = vec->Width(); |
| if (vec->type()->Is<sem::F32>() && width >= 1 && width <= 4) { |
| out << "float" << width; |
| } else if (vec->type()->Is<sem::I32>() && width >= 1 && width <= 4) { |
| out << "int" << width; |
| } else if (vec->type()->Is<sem::U32>() && width >= 1 && width <= 4) { |
| out << "uint" << width; |
| } else if (vec->type()->Is<sem::Bool>() && width >= 1 && width <= 4) { |
| out << "bool" << width; |
| } else { |
| out << "vector<"; |
| if (!EmitType(out, vec->type(), storage_class, access, "")) { |
| return false; |
| } |
| out << ", " << width << ">"; |
| } |
| return true; |
| }, |
| [&](const sem::Atomic* atomic) { |
| return EmitType(out, atomic->Type(), storage_class, access, name); |
| }, |
| [&](const sem::Void*) { |
| out << "void"; |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown type in EmitType"); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitTypeAndName(std::ostream& out, |
| const sem::Type* type, |
| ast::StorageClass storage_class, |
| ast::Access access, |
| const std::string& name) { |
| bool name_printed = false; |
| if (!EmitType(out, type, storage_class, access, name, &name_printed)) { |
| return false; |
| } |
| if (!name.empty() && !name_printed) { |
| out << " " << name; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStructType(TextBuffer* b, const sem::Struct* str) { |
| line(b) << "struct " << StructName(str) << " {"; |
| { |
| ScopedIndent si(b); |
| for (auto* mem : str->Members()) { |
| auto mem_name = builder_.Symbols().NameFor(mem->Name()); |
| |
| auto* ty = mem->Type(); |
| |
| auto out = line(b); |
| |
| std::string pre, post; |
| |
| if (auto* decl = mem->Declaration()) { |
| for (auto* attr : decl->attributes) { |
| if (auto* location = attr->As<ast::LocationAttribute>()) { |
| auto& pipeline_stage_uses = str->PipelineStageUses(); |
| if (pipeline_stage_uses.size() != 1) { |
| TINT_ICE(Writer, diagnostics_) << "invalid entry point IO struct uses"; |
| } |
| |
| if (pipeline_stage_uses.count(sem::PipelineStageUsage::kVertexInput)) { |
| post += " : TEXCOORD" + std::to_string(location->value); |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kVertexOutput)) { |
| post += " : TEXCOORD" + std::to_string(location->value); |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kFragmentInput)) { |
| post += " : TEXCOORD" + std::to_string(location->value); |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kFragmentOutput)) { |
| post += " : SV_Target" + std::to_string(location->value); |
| } else { |
| TINT_ICE(Writer, diagnostics_) << "invalid use of location attribute"; |
| } |
| } else if (auto* builtin = attr->As<ast::BuiltinAttribute>()) { |
| auto name = builtin_to_attribute(builtin->builtin); |
| if (name.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "unsupported builtin"); |
| return false; |
| } |
| post += " : " + name; |
| } else if (auto* interpolate = attr->As<ast::InterpolateAttribute>()) { |
| auto mod = |
| interpolation_to_modifiers(interpolate->type, interpolate->sampling); |
| if (mod.empty()) { |
| diagnostics_.add_error(diag::System::Writer, |
| "unsupported interpolation"); |
| return false; |
| } |
| pre += mod; |
| |
| } else if (attr->Is<ast::InvariantAttribute>()) { |
| // Note: `precise` is not exactly the same as `invariant`, but is |
| // stricter and therefore provides the necessary guarantees. |
| // See discussion here: https://github.com/gpuweb/gpuweb/issues/893 |
| pre += "precise "; |
| } else if (!attr->IsAnyOf<ast::StructMemberAlignAttribute, |
| ast::StructMemberOffsetAttribute, |
| ast::StructMemberSizeAttribute>()) { |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled struct member attribute: " << attr->Name(); |
| return false; |
| } |
| } |
| } |
| |
| out << pre; |
| if (!EmitTypeAndName(out, ty, ast::StorageClass::kNone, ast::Access::kReadWrite, |
| mem_name)) { |
| return false; |
| } |
| out << post << ";"; |
| } |
| } |
| |
| line(b) << "};"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitUnaryOp(std::ostream& out, const ast::UnaryOpExpression* expr) { |
| switch (expr->op) { |
| case ast::UnaryOp::kIndirection: |
| case ast::UnaryOp::kAddressOf: |
| return EmitExpression(out, expr->expr); |
| case ast::UnaryOp::kComplement: |
| out << "~"; |
| break; |
| case ast::UnaryOp::kNot: |
| out << "!"; |
| break; |
| case ast::UnaryOp::kNegation: |
| out << "-"; |
| break; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitVariable(const ast::Variable* var) { |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type()->UnwrapRef(); |
| |
| // TODO(dsinclair): Handle variable attributes |
| if (!var->attributes.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "Variable attributes are not handled yet"); |
| return false; |
| } |
| |
| auto out = line(); |
| if (var->is_const) { |
| out << "const "; |
| } |
| if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), |
| builder_.Symbols().NameFor(var->symbol))) { |
| return false; |
| } |
| |
| out << " = "; |
| |
| if (var->constructor) { |
| if (!EmitExpression(out, var->constructor)) { |
| return false; |
| } |
| } else { |
| if (!EmitZeroValue(out, type)) { |
| return false; |
| } |
| } |
| out << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitProgramConstVariable(const ast::Variable* var) { |
| for (auto* d : var->attributes) { |
| if (!d->Is<ast::IdAttribute>()) { |
| diagnostics_.add_error(diag::System::Writer, "Decorated const values not valid"); |
| return false; |
| } |
| } |
| if (!var->is_const) { |
| diagnostics_.add_error(diag::System::Writer, "Expected a const value"); |
| return false; |
| } |
| |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type(); |
| |
| auto* global = sem->As<sem::GlobalVariable>(); |
| if (global && global->IsOverridable()) { |
| auto const_id = global->ConstantId(); |
| |
| line() << "#ifndef " << kSpecConstantPrefix << const_id; |
| |
| if (var->constructor != nullptr) { |
| auto out = line(); |
| out << "#define " << kSpecConstantPrefix << const_id << " "; |
| if (!EmitExpression(out, var->constructor)) { |
| return false; |
| } |
| } else { |
| line() << "#error spec constant required for constant id " << const_id; |
| } |
| line() << "#endif"; |
| { |
| auto out = line(); |
| out << "static const "; |
| if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), |
| builder_.Symbols().NameFor(var->symbol))) { |
| return false; |
| } |
| out << " = " << kSpecConstantPrefix << const_id << ";"; |
| } |
| } else { |
| auto out = line(); |
| out << "static const "; |
| if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), |
| builder_.Symbols().NameFor(var->symbol))) { |
| return false; |
| } |
| out << " = "; |
| if (!EmitExpression(out, var->constructor)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| return true; |
| } |
| |
| template <typename F> |
| bool GeneratorImpl::CallBuiltinHelper(std::ostream& out, |
| const ast::CallExpression* call, |
| const sem::Builtin* builtin, |
| F&& build) { |
| // Generate the helper function if it hasn't been created already |
| auto fn = utils::GetOrCreate(builtins_, builtin, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier(std::string("tint_") + sem::str(builtin->Type())); |
| std::vector<std::string> parameter_names; |
| { |
| auto decl = line(&b); |
| if (!EmitTypeAndName(decl, builtin->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, fn_name)) { |
| return ""; |
| } |
| { |
| ScopedParen sp(decl); |
| for (auto* param : builtin->Parameters()) { |
| if (!parameter_names.empty()) { |
| decl << ", "; |
| } |
| auto param_name = "param_" + std::to_string(parameter_names.size()); |
| const auto* ty = param->Type(); |
| if (auto* ptr = ty->As<sem::Pointer>()) { |
| decl << "inout "; |
| ty = ptr->StoreType(); |
| } |
| if (!EmitTypeAndName(decl, ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, param_name)) { |
| return ""; |
| } |
| parameter_names.emplace_back(std::move(param_name)); |
| } |
| } |
| decl << " {"; |
| } |
| { |
| ScopedIndent si(&b); |
| if (!build(&b, parameter_names)) { |
| return ""; |
| } |
| } |
| line(&b) << "}"; |
| line(&b); |
| return fn_name; |
| }); |
| |
| if (fn.empty()) { |
| return false; |
| } |
| |
| // Call the helper |
| out << fn; |
| { |
| ScopedParen sp(out); |
| bool first = true; |
| for (auto* arg : call->args) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| } // namespace tint::writer::hlsl |