| // Copyright 2024 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/glsl/writer/raise/builtin_polyfill.h" |
| |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| #include "src/tint/lang/core/fluent_types.h" // IWYU pragma: export |
| #include "src/tint/lang/core/ir/builder.h" |
| #include "src/tint/lang/core/ir/module.h" |
| #include "src/tint/lang/core/ir/validator.h" |
| #include "src/tint/lang/core/type/depth_multisampled_texture.h" |
| #include "src/tint/lang/core/type/depth_texture.h" |
| #include "src/tint/lang/core/type/multisampled_texture.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/storage_texture.h" |
| #include "src/tint/lang/glsl/builtin_fn.h" |
| #include "src/tint/lang/glsl/ir/builtin_call.h" |
| #include "src/tint/lang/glsl/ir/member_builtin_call.h" |
| |
| namespace tint::glsl::writer::raise { |
| namespace { |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| using namespace tint::core::number_suffixes; // NOLINT |
| |
| /// PIMPL state for the transform. |
| struct State { |
| /// The IR module. |
| core::ir::Module& ir; |
| |
| /// The IR builder. |
| core::ir::Builder b{ir}; |
| |
| /// The type manager. |
| core::type::Manager& ty{ir.Types()}; |
| |
| /// Dot polyfills for non `f32`. |
| Hashmap<const core::type::Type*, core::ir::Function*, 4> dot_funcs_{}; |
| /// Quantize polyfills |
| Hashmap<const core::type::Type*, core::ir::Function*, 4> quantize_to_f16_funcs_{}; |
| |
| /// Process the module. |
| void Process() { |
| Vector<core::ir::CoreBuiltinCall*, 4> call_worklist; |
| for (auto* inst : ir.Instructions()) { |
| if (auto* call = inst->As<core::ir::CoreBuiltinCall>()) { |
| switch (call->Func()) { |
| case core::BuiltinFn::kAbs: |
| case core::BuiltinFn::kAll: |
| case core::BuiltinFn::kAny: |
| case core::BuiltinFn::kArrayLength: |
| case core::BuiltinFn::kAtomicCompareExchangeWeak: |
| case core::BuiltinFn::kAtomicSub: |
| case core::BuiltinFn::kAtomicLoad: |
| case core::BuiltinFn::kCountOneBits: |
| case core::BuiltinFn::kDot: |
| case core::BuiltinFn::kExtractBits: |
| case core::BuiltinFn::kFma: |
| case core::BuiltinFn::kFrexp: |
| case core::BuiltinFn::kInsertBits: |
| case core::BuiltinFn::kModf: |
| case core::BuiltinFn::kQuantizeToF16: |
| case core::BuiltinFn::kSelect: |
| case core::BuiltinFn::kStorageBarrier: |
| case core::BuiltinFn::kTextureBarrier: |
| case core::BuiltinFn::kWorkgroupBarrier: |
| call_worklist.Push(call); |
| break; |
| default: |
| break; |
| } |
| continue; |
| } |
| } |
| |
| // Replace the builtin calls that we found |
| for (auto* call : call_worklist) { |
| switch (call->Func()) { |
| case core::BuiltinFn::kAbs: |
| Abs(call); |
| break; |
| case core::BuiltinFn::kAll: |
| All(call); |
| break; |
| case core::BuiltinFn::kAny: |
| Any(call); |
| break; |
| case core::BuiltinFn::kArrayLength: |
| ArrayLength(call); |
| break; |
| case core::BuiltinFn::kAtomicCompareExchangeWeak: |
| AtomicCompareExchangeWeak(call); |
| break; |
| case core::BuiltinFn::kAtomicSub: |
| AtomicSub(call); |
| break; |
| case core::BuiltinFn::kAtomicLoad: |
| AtomicLoad(call); |
| break; |
| case core::BuiltinFn::kCountOneBits: |
| CountOneBits(call); |
| break; |
| case core::BuiltinFn::kDot: |
| Dot(call); |
| break; |
| case core::BuiltinFn::kExtractBits: |
| ExtractBits(call); |
| break; |
| case core::BuiltinFn::kFma: |
| FMA(call); |
| break; |
| case core::BuiltinFn::kFrexp: |
| Frexp(call); |
| break; |
| case core::BuiltinFn::kInsertBits: |
| InsertBits(call); |
| break; |
| case core::BuiltinFn::kModf: |
| Modf(call); |
| break; |
| case core::BuiltinFn::kQuantizeToF16: |
| QuantizeToF16(call); |
| break; |
| case core::BuiltinFn::kSelect: |
| Select(call); |
| break; |
| case core::BuiltinFn::kStorageBarrier: |
| case core::BuiltinFn::kTextureBarrier: |
| case core::BuiltinFn::kWorkgroupBarrier: |
| Barrier(call); |
| break; |
| default: |
| TINT_UNREACHABLE(); |
| } |
| } |
| } |
| |
| void Abs(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| if (args[0]->Type()->DeepestElement()->IsUnsignedIntegerScalarOrVector()) { |
| // GLSL does not support `abs` on unsigned arguments, replace it with the arg. |
| call->Result(0)->ReplaceAllUsesWith(args[0]); |
| } else { |
| b.InsertBefore(call, [&] { |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), glsl::BuiltinFn::kAbs, |
| args[0]); |
| }); |
| } |
| call->Destroy(); |
| } |
| |
| void Any(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| if (args[0]->Type()->Is<core::type::Scalar>()) { |
| // GLSL has no scalar `any`, replace it with the arg. |
| call->Result(0)->ReplaceAllUsesWith(args[0]); |
| } else { |
| b.InsertBefore(call, [&] { |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), glsl::BuiltinFn::kAny, |
| args[0]); |
| }); |
| } |
| call->Destroy(); |
| } |
| |
| void All(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| if (args[0]->Type()->Is<core::type::Scalar>()) { |
| // GLSL has no scalar `all`, replace it with the arg. |
| call->Result(0)->ReplaceAllUsesWith(args[0]); |
| } else { |
| b.InsertBefore(call, [&] { |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), glsl::BuiltinFn::kAll, |
| args[0]); |
| }); |
| } |
| call->Destroy(); |
| } |
| |
| void ArrayLength(core::ir::Call* call) { |
| b.InsertBefore(call, [&] { |
| auto* len = b.MemberCall<glsl::ir::MemberBuiltinCall>(ty.i32(), BuiltinFn::kLength, |
| call->Args()[0]); |
| b.ConvertWithResult(call->DetachResult(), len->Result(0)); |
| }); |
| call->Destroy(); |
| } |
| |
| core::ir::Function* CreateDotPolyfill(const core::type::Vector* type) { |
| auto* ret_ty = type->DeepestElement(); |
| |
| return dot_funcs_.GetOrAdd(type, [&]() -> core::ir::Function* { |
| auto* f = b.Function("tint_int_dot", ret_ty); |
| auto* x = b.FunctionParam("x", type); |
| auto* y = b.FunctionParam("y", type); |
| f->SetParams({x, y}); |
| |
| b.Append(f->Block(), [&] { |
| core::ir::Value* ret = nullptr; |
| |
| for (uint32_t i = 0; i < type->Width(); ++i) { |
| auto* lhs = b.Swizzle(ret_ty, x, {i}); |
| auto* rhs = b.Swizzle(ret_ty, y, {i}); |
| auto* v = b.Multiply(ret_ty, lhs, rhs); |
| |
| if (ret != nullptr) { |
| ret = b.Add(ret_ty, ret, v)->Result(0); |
| } else { |
| ret = v->Result(0); |
| } |
| } |
| |
| b.Return(f, ret); |
| }); |
| return f; |
| }); |
| } |
| |
| // GLSL does not have a builtin for `dot` with integer vector types. Generate the helper |
| // function if it hasn't been created already |
| void Dot(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| auto* vec_ty = call->Args()[0]->Type()->As<core::type::Vector>(); |
| TINT_ASSERT(vec_ty); |
| |
| b.InsertBefore(call, [&] { |
| if (!vec_ty->DeepestElement()->IsIntegerScalar()) { |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), glsl::BuiltinFn::kDot, |
| args[0], args[1]); |
| } else { |
| auto* func = CreateDotPolyfill(vec_ty); |
| b.CallWithResult(call->DetachResult(), func, args[0], args[1]); |
| } |
| }); |
| |
| call->Destroy(); |
| } |
| |
| void Frexp(core::ir::BuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| // GLSL's frexp returns `fract` and outputs `whole` as an output parameter. |
| // Polyfill it by declaring the result struct and then setting the values: |
| // __frexp_result result = {}; |
| // result.fract = frexp(arg, result.exp); |
| auto* result_type = call->Result(0)->Type(); |
| auto* float_type = result_type->Element(0); |
| auto* i32_type = result_type->Element(1); |
| auto* result = b.Var(ty.ptr(function, result_type)); |
| auto* exp = b.Access(ty.ptr(function, i32_type), result, u32(1)); |
| auto args = Vector<core::ir::Value*, 2>{call->Args()[0], exp->Result(0)}; |
| auto* res = |
| b.Call<glsl::ir::BuiltinCall>(float_type, glsl::BuiltinFn::kFrexp, std::move(args)); |
| b.Store(b.Access(ty.ptr(function, float_type), result, u32(0)), res); |
| b.LoadWithResult(call->DetachResult(), result); |
| }); |
| call->Destroy(); |
| } |
| |
| void Modf(core::ir::BuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| // GLSL's modf returns `fract` and outputs `whole` as an output parameter. |
| // Polyfill it by declaring the result struct and then setting the values: |
| // __modf_result result = {}; |
| // result.fract = modf(arg, result.whole); |
| auto* result_type = call->Result(0)->Type(); |
| auto* element_type = result_type->Element(0); |
| auto* result = b.Var(ty.ptr(function, result_type)); |
| auto* whole = b.Access(ty.ptr(function, element_type), result, u32(1)); |
| auto args = Vector<core::ir::Value*, 2>{call->Args()[0], whole->Result(0)}; |
| auto* res = b.Call<glsl::ir::BuiltinCall>(element_type, glsl::BuiltinFn::kModf, |
| std::move(args)); |
| b.Store(b.Access(ty.ptr(function, element_type), result, u32(0)), res); |
| b.LoadWithResult(call->DetachResult(), result); |
| }); |
| call->Destroy(); |
| } |
| |
| void ExtractBits(core::ir::Call* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| auto* offset = b.Convert(ty.i32(), args[1]); |
| auto* bits = b.Convert(ty.i32(), args[2]); |
| |
| b.CallWithResult<glsl::ir::BuiltinCall>( |
| call->DetachResult(), glsl::BuiltinFn::kBitfieldExtract, args[0], offset, bits); |
| }); |
| call->Destroy(); |
| } |
| |
| void InsertBits(core::ir::Call* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| auto* offset = b.Convert(ty.i32(), args[2]); |
| auto* bits = b.Convert(ty.i32(), args[3]); |
| |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), |
| glsl::BuiltinFn::kBitfieldInsert, args[0], |
| args[1], offset, bits); |
| }); |
| call->Destroy(); |
| } |
| |
| // There is no `fma` method in GLSL ES 3.10 so we emulate it. `fma` does exist in desktop after |
| // 4.00 but we use the emulated version to be consistent. We could use the real one on desktop |
| // if we decide too in the future. |
| void FMA(core::ir::Call* call) { |
| auto args = call->Args(); |
| |
| b.InsertBefore(call, [&] { |
| auto* res_ty = call->Result(0)->Type(); |
| auto* mul = b.Multiply(res_ty, args[0], args[1]); |
| b.AddWithResult(call->DetachResult(), mul, args[2]); |
| }); |
| call->Destroy(); |
| } |
| |
| // GLSL `bitCount` always returns an `i32` so we need to convert it. Convert to a `bitCount` |
| // call to make it clear this isn't `countOneBits`. |
| void CountOneBits(core::ir::Call* call) { |
| auto* result_ty = call->Result(0)->Type(); |
| |
| b.InsertBefore(call, [&] { |
| auto* c = b.Call<glsl::ir::BuiltinCall>(ty.MatchWidth(ty.i32(), result_ty), |
| glsl::BuiltinFn::kBitCount, call->Args()[0]); |
| b.ConvertWithResult(call->DetachResult(), c); |
| }); |
| call->Destroy(); |
| } |
| |
| void AtomicCompareExchangeWeak(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| auto* type = args[1]->Type(); |
| |
| auto* dest = args[0]; |
| auto* compare_value = args[1]; |
| auto* value = args[2]; |
| |
| auto* result_type = call->Result(0)->Type(); |
| |
| b.InsertBefore(call, [&] { |
| auto* bitcast_cmp_value = b.Bitcast(type, compare_value); |
| auto* bitcast_value = b.Bitcast(type, value); |
| |
| auto* swap = b.Call<glsl::ir::BuiltinCall>( |
| type, glsl::BuiltinFn::kAtomicCompSwap, |
| Vector<core::ir::Value*, 3>{dest, bitcast_cmp_value->Result(0), |
| bitcast_value->Result(0)}); |
| |
| auto* exchanged = b.Equal(ty.bool_(), swap, compare_value); |
| |
| auto* result = b.Construct(result_type, swap, exchanged)->Result(0); |
| call->Result(0)->ReplaceAllUsesWith(result); |
| }); |
| call->Destroy(); |
| } |
| |
| void AtomicSub(core::ir::BuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| |
| if (args[1]->Type()->Is<core::type::I32>()) { |
| b.CallWithResult(call->DetachResult(), core::BuiltinFn::kAtomicAdd, args[0], |
| b.Negation(args[1]->Type(), args[1])); |
| } else { |
| // Negating a u32 isn't possible in the IR, so pass a fake GLSL function and |
| // handle in the printer. |
| b.CallWithResult<glsl::ir::BuiltinCall>( |
| call->DetachResult(), glsl::BuiltinFn::kAtomicSub, |
| Vector<core::ir::Value*, 2>{args[0], args[1]}); |
| } |
| }); |
| call->Destroy(); |
| } |
| |
| void AtomicLoad(core::ir::CoreBuiltinCall* call) { |
| // GLSL does not have an atomicLoad, so we emulate it with atomicOr using 0 as the OR |
| // value |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| b.CallWithResult( |
| call->DetachResult(), core::BuiltinFn::kAtomicOr, args[0], |
| b.Zero(args[0]->Type()->UnwrapPtr()->As<core::type::Atomic>()->Type())); |
| }); |
| call->Destroy(); |
| } |
| |
| void Barrier(core::ir::CoreBuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| switch (call->Func()) { |
| case core::BuiltinFn::kStorageBarrier: |
| b.Call<glsl::ir::BuiltinCall>(ty.void_(), |
| glsl::BuiltinFn::kMemoryBarrierBuffer); |
| break; |
| case core::BuiltinFn::kTextureBarrier: |
| b.Call<glsl::ir::BuiltinCall>(ty.void_(), glsl::BuiltinFn::kMemoryBarrierImage); |
| break; |
| default: |
| break; |
| } |
| b.Call<glsl::ir::BuiltinCall>(ty.void_(), glsl::BuiltinFn::kBarrier); |
| }); |
| |
| call->Destroy(); |
| } |
| |
| void Select(core::ir::CoreBuiltinCall* call) { |
| auto args = call->Args(); |
| |
| // Implement as `mix` in GLSL. The one caveat is that `mix` requires the number of |
| // parameters to match, so if we have a `vec2` for the results and a single `bool` value, |
| // we need to splat the `bool`. |
| auto bool_ty = args[2]->Type(); |
| auto val_ty = args[0]->Type(); |
| |
| b.InsertBefore(call, [&] { |
| core::ir::Value* cond = args[2]; |
| if (val_ty->Is<core::type::Vector>() && !bool_ty->Is<core::type::Vector>()) { |
| cond = b.Construct(ty.MatchWidth(ty.bool_(), val_ty), cond)->Result(0); |
| } |
| |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), glsl::BuiltinFn::kMix, |
| args[0], args[1], cond); |
| }); |
| call->Destroy(); |
| } |
| |
| core::ir::Function* CreateQuantizeToF16Polyfill(const core::type::Type* type) { |
| return quantize_to_f16_funcs_.GetOrAdd(type, [&]() -> core::ir::Function* { |
| auto* f = b.Function("tint_quantize_to_f16", type); |
| auto* val = b.FunctionParam("val", type); |
| f->SetParams({val}); |
| |
| b.Append(f->Block(), [&] { |
| core::ir::Value* ret = nullptr; |
| |
| auto* inner_ty = type->DeepestElement(); |
| auto* v2 = ty.vec2(inner_ty); |
| |
| auto pack_unpack = [&](core::ir::Value* item) { |
| auto* r = b.Call(ty.u32(), core::BuiltinFn::kPack2X16Float, item)->Result(0); |
| return b.Call(v2, core::BuiltinFn::kUnpack2X16Float, r)->Result(0); |
| }; |
| |
| if (auto* vec = type->As<core::type::Vector>()) { |
| switch (vec->Width()) { |
| case 2: { |
| ret = pack_unpack(val); |
| break; |
| } |
| case 3: { |
| core::ir::Value* lhs = b.Swizzle(v2, val, {0, 1})->Result(0); |
| lhs = pack_unpack(lhs); |
| |
| core::ir::Value* rhs = b.Swizzle(v2, val, {2, 2})->Result(0); |
| rhs = pack_unpack(rhs); |
| rhs = b.Swizzle(inner_ty, rhs, {0})->Result(0); |
| |
| ret = b.Construct(type, lhs, rhs)->Result(0); |
| break; |
| } |
| default: { |
| core::ir::Value* lhs = b.Swizzle(v2, val, {0, 1})->Result(0); |
| lhs = pack_unpack(lhs); |
| |
| core::ir::Value* rhs = b.Swizzle(v2, val, {2, 3})->Result(0); |
| rhs = pack_unpack(rhs); |
| |
| ret = b.Construct(type, lhs, rhs)->Result(0); |
| break; |
| } |
| } |
| } else { |
| ret = b.Construct(v2, val)->Result(0); |
| ret = pack_unpack(ret); |
| ret = b.Swizzle(type, ret, {0})->Result(0); |
| } |
| b.Return(f, ret); |
| }); |
| return f; |
| }); |
| } |
| |
| // Emulate by casting to f16 and back again. |
| void QuantizeToF16(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| b.InsertBefore(call, [&] { |
| auto* func = CreateQuantizeToF16Polyfill(args[0]->Type()); |
| b.CallWithResult(call->DetachResult(), func, args[0]); |
| }); |
| call->Destroy(); |
| } |
| }; |
| |
| } // namespace |
| |
| Result<SuccessType> BuiltinPolyfill(core::ir::Module& ir) { |
| auto result = ValidateAndDumpIfNeeded(ir, "glsl.BuiltinPolyfill"); |
| if (result != Success) { |
| return result.Failure(); |
| } |
| |
| State{ir}.Process(); |
| |
| return Success; |
| } |
| |
| } // namespace tint::glsl::writer::raise |