blob: 3114d20caebe21be6f3a33daad3901e8d332c772 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/unittests/validation/ValidationTest.h"
#include "common/Constants.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
#include <cmath>
#include <sstream>
class RenderPipelineValidationTest : public ValidationTest {
protected:
void SetUp() override {
ValidationTest::SetUp();
vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})");
fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
};
// Test cases where creation should succeed
TEST_F(RenderPipelineValidationTest, CreationSuccess) {
{
// New format
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
device.CreateRenderPipeline2(&descriptor);
}
{
// Deprecated format
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
EXPECT_DEPRECATION_WARNING(device.CreateRenderPipeline(&descriptor));
}
{
// Vertex input should be optional
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.vertexState = nullptr;
EXPECT_DEPRECATION_WARNING(device.CreateRenderPipeline(&descriptor));
}
{
// Rasterization state should be optional
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.rasterizationState = nullptr;
EXPECT_DEPRECATION_WARNING(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that depth bias parameters must not be NaN.
TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) {
// Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil();
device.CreateRenderPipeline2(&descriptor);
}
// Infinite depth bias clamp is valid
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = INFINITY;
device.CreateRenderPipeline2(&descriptor);
}
// NAN depth bias clamp is invalid
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
// Infinite depth bias slope is valid
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = INFINITY;
device.CreateRenderPipeline2(&descriptor);
}
// NAN depth bias slope is invalid
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Tests that at least one color target state is required.
TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) {
{
// This one succeeds because attachment 0 is the color attachment
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 1;
device.CreateRenderPipeline2(&descriptor);
}
{ // Fail because lack of color target states (and depth/stencil state)
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Tests that the color formats must be renderable.
TEST_F(RenderPipelineValidationTest, NonRenderableFormat) {
{
// Succeeds because RGBA8Unorm is renderable
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline2(&descriptor);
}
{
// Fails because RG11B10Ufloat is non-renderable
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Tests that the format of the color state descriptor must match the output of the fragment shader.
TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) {
constexpr uint32_t kNumTextureFormatBaseType = 3u;
std::array<const char*, kNumTextureFormatBaseType> kScalarTypes = {{"f32", "i32", "u32"}};
std::array<wgpu::TextureFormat, kNumTextureFormatBaseType> kColorFormats = {
{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Sint,
wgpu::TextureFormat::RGBA8Uint}};
for (size_t i = 0; i < kNumTextureFormatBaseType; ++i) {
for (size_t j = 0; j < kNumTextureFormatBaseType; ++j) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cTargets[0].format = kColorFormats[j];
std::ostringstream stream;
stream << R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<)"
<< kScalarTypes[i] << R"(> {
var result : vec4<)"
<< kScalarTypes[i] << R"(>;
return result;
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
if (i == j) {
device.CreateRenderPipeline2(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
}
}
/// Tests that the sample count of the render pipeline must be valid.
TEST_F(RenderPipelineValidationTest, SampleCount) {
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
device.CreateRenderPipeline2(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 3;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Tests that the sample count of the render pipeline must be equal to the one of every attachments
// in the render pass.
TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
constexpr uint32_t kMultisampledCount = 4;
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size.width = 4;
baseTextureDescriptor.size.height = 4;
baseTextureDescriptor.size.depthOrArrayLayers = 1;
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
utils::ComboRenderPipelineDescriptor2 nonMultisampledPipelineDescriptor;
nonMultisampledPipelineDescriptor.multisample.count = 1;
nonMultisampledPipelineDescriptor.vertex.module = vsModule;
nonMultisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline nonMultisampledPipeline =
device.CreateRenderPipeline2(&nonMultisampledPipelineDescriptor);
nonMultisampledPipelineDescriptor.cFragment.targetCount = 0;
nonMultisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline2(&nonMultisampledPipelineDescriptor);
utils::ComboRenderPipelineDescriptor2 multisampledPipelineDescriptor;
multisampledPipelineDescriptor.multisample.count = kMultisampledCount;
multisampledPipelineDescriptor.vertex.module = vsModule;
multisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline multisampledPipeline =
device.CreateRenderPipeline2(&multisampledPipelineDescriptor);
multisampledPipelineDescriptor.cFragment.targetCount = 0;
multisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline2(&multisampledPipelineDescriptor);
// It is not allowed to use multisampled render pass and non-multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// It is allowed to use multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
encoder.Finish();
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
encoder.Finish();
}
// It is not allowed to use non-multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = 1;
wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor(
{nonMultisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass =
encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = 1;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Tests that the sample count of the render pipeline must be valid
// when the alphaToCoverage mode is enabled.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) {
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
device.CreateRenderPipeline2(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 1;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Tests that the texture component type in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
DAWN_SKIP_TEST_IF(HasToggleEnabled("use_tint_generator"));
constexpr uint32_t kNumTextureComponentType = 3u;
std::array<const char*, kNumTextureComponentType> kScalarTypes = {{"f32", "i32", "u32"}};
std::array<wgpu::TextureSampleType, kNumTextureComponentType> kTextureComponentTypes = {{
wgpu::TextureSampleType::Float,
wgpu::TextureSampleType::Sint,
wgpu::TextureSampleType::Uint,
}};
for (size_t i = 0; i < kNumTextureComponentType; ++i) {
for (size_t j = 0; j < kNumTextureComponentType; ++j) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[group(0), binding(0)]] var myTexture : texture_2d<)"
<< kScalarTypes[i] << R"(>;
[[stage(fragment)]] fn main() {
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline2(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
}
}
// Tests that the texture view dimension in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) {
DAWN_SKIP_TEST_IF(HasToggleEnabled("use_tint_generator"));
constexpr uint32_t kNumTextureViewDimensions = 6u;
std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{
"texture_1d",
"texture_2d",
"texture_2d_array",
"texture_cube",
"texture_cube_array",
"texture_3d",
}};
std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{
wgpu::TextureViewDimension::e1D,
wgpu::TextureViewDimension::e2D,
wgpu::TextureViewDimension::e2DArray,
wgpu::TextureViewDimension::Cube,
wgpu::TextureViewDimension::CubeArray,
wgpu::TextureViewDimension::e3D,
}};
for (size_t i = 0; i < kNumTextureViewDimensions; ++i) {
for (size_t j = 0; j < kNumTextureViewDimensions; ++j) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[group(0), binding(0)]] var myTexture : )"
<< kTextureKeywords[i] << R"(<f32>;
[[stage(fragment)]] fn main() {
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float,
kTextureViewDimensions[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline2(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
}
}
// Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't
// cause crash.
TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) {
wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"(
[[block]] struct Dst {
data : array<u32, 100>;
};
[[group(0), binding(0)]] var<storage> dst : [[access(read_write)]] Dst;
[[stage(vertex)]] fn main([[builtin(vertex_index)]] VertexIndex : u32) {
dst.data[VertexIndex] = 0x1234u;
})");
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.layout = nullptr;
descriptor.vertex.module = vsModuleWithStorageBuffer;
descriptor.cFragment.module = fsModule;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
// Tests that strip primitive topologies require an index format
TEST_F(RenderPipelineValidationTest, StripIndexFormatRequired) {
constexpr uint32_t kNumStripType = 2u;
constexpr uint32_t kNumListType = 3u;
constexpr uint32_t kNumIndexFormat = 3u;
std::array<wgpu::PrimitiveTopology, kNumStripType> kStripTopologyTypes = {
{wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}};
std::array<wgpu::PrimitiveTopology, kNumListType> kListTopologyTypes = {
{wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList,
wgpu::PrimitiveTopology::TriangleList}};
std::array<wgpu::IndexFormat, kNumIndexFormat> kIndexFormatTypes = {
{wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}};
for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
if (indexFormat == wgpu::IndexFormat::Undefined) {
// Fail because the index format is undefined and the primitive
// topology is a strip type.
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
} else {
// Succeeds because the index format is given.
device.CreateRenderPipeline2(&descriptor);
}
}
}
for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
if (indexFormat == wgpu::IndexFormat::Undefined) {
// Succeeds even when the index format is undefined because the
// primitive topology isn't a strip type.
device.CreateRenderPipeline2(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
}
}
// Test that specifying a clampDepth value results in an error if the feature is not enabled.
TEST_F(RenderPipelineValidationTest, ClampDepthWithoutExtension) {
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = true;
descriptor.primitive.nextInChain = &clampingState;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = false;
descriptor.primitive.nextInChain = &clampingState;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Test that depthStencil.depthCompare must not be undefiend.
TEST_F(RenderPipelineValidationTest, DepthCompareUndefinedIsError) {
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float);
// Control case: Always is valid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always;
device.CreateRenderPipeline2(&descriptor);
// Error case: Undefined is invalid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
// Test that the entryPoint names must be present for the correct stage in the shader module.
TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn vertex_main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
}
[[stage(fragment)]] fn fragment_main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
)");
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = module;
descriptor.vertex.entryPoint = "vertex_main";
descriptor.cFragment.module = module;
descriptor.cFragment.entryPoint = "fragment_main";
// Success case.
device.CreateRenderPipeline2(&descriptor);
// Test for the vertex stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.vertex.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.vertex.entryPoint = "fragment_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
descriptor.vertex.entryPoint = "vertex_main";
// Test for the fragment stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.cFragment.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.cFragment.entryPoint = "vertex_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
}
// Test that vertex attrib validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn vertex0([[location(0)]] attrib0 : vec4<f32>)
-> [[builtin(position)]] vec4<f32> {
return attrib0;
}
[[stage(vertex)]] fn vertex1([[location(1)]] attrib1 : vec4<f32>)
-> [[builtin(position)]] vec4<f32> {
return attrib1;
}
)");
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
descriptor.vertex.bufferCount = 1;
descriptor.cBuffers[0].attributeCount = 1;
descriptor.cBuffers[0].arrayStride = 16;
descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
descriptor.cAttributes[0].offset = 0;
// Success cases, the attribute used by the entryPoint is declared in the pipeline.
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 0;
device.CreateRenderPipeline2(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 1;
device.CreateRenderPipeline2(&descriptor);
// Error cases, the attribute used by the entryPoint isn't declared in the pipeline.
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
// Test that fragment output validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn fragmentFloat() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
[[stage(fragment)]] fn fragmentUint() -> [[location(0)]] vec4<u32> {
return vec4<u32>(0u, 0u, 0u, 0u);
}
)");
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = module;
// Success case, the component type matches between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
device.CreateRenderPipeline2(&descriptor);
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
device.CreateRenderPipeline2(&descriptor);
// Error case, the component type doesn't match between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
// Test that fragment output validation is for the correct entryPoint
// TODO(dawn:216): Re-enable when we correctly reflect which bindings are used for an entryPoint.
TEST_F(RenderPipelineValidationTest, DISABLED_BindingsFromCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[block]] struct Uniforms {
data : vec4<f32>;
};
[[group(0), binding(0)]] var<uniform> var0 : Uniforms;
[[group(0), binding(1)]] var<uniform> var1 : Uniforms;
[[stage(vertex)]] fn vertex0() -> [[builtin(position)]] vec4<f32> {
return var0.data;
}
[[stage(vertex)]] fn vertex1() -> [[builtin(position)]] vec4<f32> {
return var1.data;
}
)");
wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0);
wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout(
device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1);
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
// Success case, the BGL matches the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout0;
device.CreateRenderPipeline2(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout1;
device.CreateRenderPipeline2(&descriptor);
// Error case, the BGL doesn't match the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor));
}
class DepthClampingValidationTest : public RenderPipelineValidationTest {
protected:
WGPUDevice CreateTestDevice() override {
dawn_native::DeviceDescriptor descriptor;
descriptor.requiredExtensions = {"depth_clamping"};
return adapter.CreateDevice(&descriptor);
}
};
// Tests that specifying a clampDepth value succeeds if the extension is enabled.
TEST_F(DepthClampingValidationTest, Success) {
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = true;
descriptor.primitive.nextInChain = &clampingState;
device.CreateRenderPipeline2(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor2 descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = false;
descriptor.primitive.nextInChain = &clampingState;
device.CreateRenderPipeline2(&descriptor);
}
}