blob: 3c85edf6825ff09b66a38db410949ea7c4b761ad [file] [log] [blame] [edit]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "utils/WGPUHelpers.h"
class ComputeStorageBufferBarrierTests : public DawnTest {
protected:
static constexpr uint32_t kNumValues = 100;
static constexpr uint32_t kIterations = 100;
};
// Test that multiple dispatches to increment values in a storage buffer are synchronized.
TEST_P(ComputeStorageBufferBarrierTests, AddIncrement) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expected(kNumValues, 0x1234 * kIterations);
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer buffer = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[block]] struct Buf {
data : array<u32, 100>;
};
[[group(0), binding(0)]] var<storage> buf : [[access(read_write)]] Buf;
[[stage(compute)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
buf.data[GlobalInvocationID.x] = buf.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer, 0, bufferSize}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
for (uint32_t i = 0; i < kIterations; ++i) {
pass.Dispatch(kNumValues);
}
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), buffer, 0, kNumValues);
}
// Test that multiple dispatches to increment values by ping-ponging between two storage buffers
// are synchronized.
TEST_P(ComputeStorageBufferBarrierTests, AddPingPong) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
// TODO(crbug.com/tint/386): Use the same struct.
[[block]] struct Src {
data : array<u32, 100>;
};
[[block]] struct Dst {
data : array<u32, 100>;
};
[[group(0), binding(0)]] var<storage> src : [[access(read_write)]] Src;
[[group(0), binding(1)]] var<storage> dst : [[access(read_write)]] Dst;
[[stage(compute)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
for (uint32_t i = 0; i < kIterations / 2; ++i) {
pass.SetBindGroup(0, bindGroups[0]);
pass.Dispatch(kNumValues);
pass.SetBindGroup(0, bindGroups[1]);
pass.Dispatch(kNumValues);
}
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that multiple dispatches to increment values by ping-ponging between storage buffers and
// read-only storage buffers are synchronized in one compute pass.
TEST_P(ComputeStorageBufferBarrierTests, StorageAndReadonlyStoragePingPongInOnePass) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
// TODO(crbug.com/tint/386): Use the same struct.
[[block]] struct Src {
data : array<u32, 100>;
};
[[block]] struct Dst {
data : array<u32, 100>;
};
[[group(0), binding(0)]] var<storage> src : [[access(read)]] Src;
[[group(0), binding(1)]] var<storage> dst : [[access(read_write)]] Dst;
[[stage(compute)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] + 0x1234u;
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
for (uint32_t i = 0; i < kIterations / 2; ++i) {
pass.SetBindGroup(0, bindGroups[0]);
pass.Dispatch(kNumValues);
pass.SetBindGroup(0, bindGroups[1]);
pass.Dispatch(kNumValues);
}
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that Storage to Uniform buffer transitions work and synchronize correctly
// by ping-ponging between Storage/Uniform usage in sequential compute passes.
TEST_P(ComputeStorageBufferBarrierTests, UniformToStorageAddPingPong) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[block]] struct Buf {
data : array<vec4<u32>, 25>;
};
[[group(0), binding(0)]] var<uniform> src : Buf;
[[group(0), binding(1)]] var<storage> dst : [[access(read_write)]] Buf;
[[stage(compute)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] +
vec4<u32>(0x1234u, 0x1234u, 0x1234u, 0x1234u);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
for (uint32_t i = 0, b = 0; i < kIterations; ++i, b = 1 - b) {
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroups[b]);
pass.Dispatch(kNumValues / 4);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
// Test that Storage to Uniform buffer transitions work and synchronize correctly
// by ping-ponging between Storage/Uniform usage in one compute pass.
TEST_P(ComputeStorageBufferBarrierTests, UniformToStorageAddPingPongInOnePass) {
std::vector<uint32_t> data(kNumValues, 0);
std::vector<uint32_t> expectedA(kNumValues, 0x1234 * kIterations);
std::vector<uint32_t> expectedB(kNumValues, 0x1234 * (kIterations - 1));
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
wgpu::Buffer bufferA = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::Buffer bufferB = utils::CreateBufferFromData(
device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopySrc);
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[block]] struct Buf {
data : array<vec4<u32>, 25>;
};
[[group(0), binding(0)]] var<uniform> src : Buf;
[[group(0), binding(1)]] var<storage> dst : [[access(read_write)]] Buf;
[[stage(compute)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
dst.data[GlobalInvocationID.x] = src.data[GlobalInvocationID.x] +
vec4<u32>(0x1234u, 0x1234u, 0x1234u, 0x1234u);
}
)");
wgpu::ComputePipelineDescriptor pipelineDesc = {};
pipelineDesc.computeStage.module = module;
pipelineDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&pipelineDesc);
wgpu::BindGroup bindGroupA = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferA, 0, bufferSize},
{1, bufferB, 0, bufferSize},
});
wgpu::BindGroup bindGroupB = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, bufferB, 0, bufferSize},
{1, bufferA, 0, bufferSize},
});
wgpu::BindGroup bindGroups[2] = {bindGroupA, bindGroupB};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
for (uint32_t i = 0, b = 0; i < kIterations; ++i, b = 1 - b) {
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroups[b]);
pass.Dispatch(kNumValues / 4);
}
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expectedA.data(), bufferA, 0, kNumValues);
EXPECT_BUFFER_U32_RANGE_EQ(expectedB.data(), bufferB, 0, kNumValues);
}
DAWN_INSTANTIATE_TEST(ComputeStorageBufferBarrierTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());