blob: f65f71bd6837615ce8c1f3c979b4a056bfee7514 [file] [log] [blame] [edit]
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
namespace {
struct CreatePipelineAsyncTask {
wgpu::ComputePipeline computePipeline = nullptr;
wgpu::RenderPipeline renderPipeline = nullptr;
bool isCompleted = false;
std::string message;
};
} // anonymous namespace
class CreatePipelineAsyncTest : public DawnTest {
protected:
void ValidateCreateComputePipelineAsync(CreatePipelineAsyncTask* currentTask) {
wgpu::BufferDescriptor bufferDesc;
bufferDesc.size = sizeof(uint32_t);
bufferDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc;
wgpu::Buffer ssbo = device.CreateBuffer(&bufferDesc);
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
while (!currentTask->isCompleted) {
WaitABit();
}
ASSERT_TRUE(currentTask->message.empty());
ASSERT_NE(nullptr, currentTask->computePipeline.Get());
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, currentTask->computePipeline.GetBindGroupLayout(0),
{
{0, ssbo, 0, sizeof(uint32_t)},
});
pass.SetBindGroup(0, bindGroup);
pass.SetPipeline(currentTask->computePipeline);
pass.Dispatch(1);
pass.EndPass();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
constexpr uint32_t kExpected = 1u;
EXPECT_BUFFER_U32_EQ(kExpected, ssbo, 0);
}
void ValidateCreateComputePipelineAsync() {
ValidateCreateComputePipelineAsync(&task);
}
CreatePipelineAsyncTask task;
};
// Verify the basic use of CreateComputePipelineAsync works on all backends.
TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.computeStage.module = utils::CreateShaderModule(device, R"(
[[block]] struct SSBO {
value : u32;
};
[[group(0), binding(0)]] var<storage> ssbo : [[access(read_write)]] SSBO;
[[stage(compute)]] fn main() {
ssbo.value = 1u;
})");
csDesc.computeStage.entryPoint = "main";
device.CreateComputePipelineAsync(
&csDesc,
[](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
ValidateCreateComputePipelineAsync();
}
// Verify CreateComputePipelineAsync() works as expected when there is any error that happens during
// the creation of the compute pipeline. The SPEC requires that during the call of
// CreateComputePipelineAsync() any error won't be forwarded to the error scope / unhandled error
// callback.
TEST_P(CreatePipelineAsyncTest, CreateComputePipelineFailed) {
DAWN_SKIP_TEST_IF(HasToggleEnabled("skip_validation"));
wgpu::ComputePipelineDescriptor csDesc;
csDesc.computeStage.module = utils::CreateShaderModule(device, R"(
[[block]] struct SSBO {
value : u32;
};
[[group(0), binding(0)]] var<storage> ssbo : [[access(read_write)]] SSBO;
[[stage(compute)]] fn main() {
ssbo.value = 1u;
})");
csDesc.computeStage.entryPoint = "main0";
device.CreateComputePipelineAsync(
&csDesc,
[](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Error, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_FALSE(task.message.empty());
ASSERT_EQ(nullptr, task.computePipeline.Get());
}
// Verify the basic use of CreateRenderPipelineAsync() works on all backends.
TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateRenderPipelineAsync) {
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
utils::ComboRenderPipelineDescriptor2 renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor,
[](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = kRenderAttachmentFormat;
textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture outputTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cColorAttachments[0].clearColor = {1.f, 0.f, 0.f, 1.f};
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
renderPassEncoder.SetPipeline(task.renderPipeline);
renderPassEncoder.Draw(1);
renderPassEncoder.EndPass();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), outputTexture, 0, 0);
}
// Verify CreateRenderPipelineAsync() works as expected when there is any error that happens during
// the creation of the render pipeline. The SPEC requires that during the call of
// CreateRenderPipelineAsync() any error won't be forwarded to the error scope / unhandled error
// callback.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineFailed) {
DAWN_SKIP_TEST_IF(HasToggleEnabled("skip_validation"));
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::Depth32Float;
utils::ComboRenderPipelineDescriptor2 renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor,
[](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Error, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_FALSE(task.message.empty());
ASSERT_EQ(nullptr, task.computePipeline.Get());
}
// Verify there is no error when the device is released before the callback of
// CreateComputePipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.computeStage.module = utils::CreateShaderModule(device, R"(
[[stage(compute)]] fn main() {
})");
csDesc.computeStage.entryPoint = "main";
device.CreateComputePipelineAsync(
&csDesc,
[](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed,
status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
}
// Verify there is no error when the device is released before the callback of
// CreateRenderPipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateRenderPipelineAsync) {
utils::ComboRenderPipelineDescriptor2 renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor,
[](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed,
status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
},
&task);
}
// Verify the code path of CreateComputePipelineAsync() to directly return the compute pipeline
// object from cache works correctly.
TEST_P(CreatePipelineAsyncTest, CreateSameComputePipelineTwice) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.computeStage.module = utils::CreateShaderModule(device, R"(
[[block]] struct SSBO {
value : u32;
};
[[group(0), binding(0)]] var<storage> ssbo : [[access(read_write)]] SSBO;
[[stage(compute)]] fn main() {
ssbo.value = 1u;
})");
csDesc.computeStage.entryPoint = "main";
auto callback = [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
};
// Create a pipeline object and save it into anotherTask.computePipeline.
CreatePipelineAsyncTask anotherTask;
device.CreateComputePipelineAsync(&csDesc, callback, &anotherTask);
while (!anotherTask.isCompleted) {
WaitABit();
}
ASSERT_TRUE(anotherTask.message.empty());
ASSERT_NE(nullptr, anotherTask.computePipeline.Get());
// Create another pipeline object task.comnputepipeline with the same compute pipeline
// descriptor used in the creation of anotherTask.computePipeline. This time the pipeline
// object should be directly got from the pipeline object cache.
device.CreateComputePipelineAsync(&csDesc, callback, &task);
ValidateCreateComputePipelineAsync();
}
// Verify creating compute pipeline with same descriptor and CreateComputePipelineAsync() at the
// same time works correctly.
TEST_P(CreatePipelineAsyncTest, CreateSamePipelineTwiceAtSameTime) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.computeStage.module = utils::CreateShaderModule(device, R"(
[[block]] struct SSBO {
value : u32;
};
[[group(0), binding(0)]] var<storage> ssbo : [[access(read_write)]] SSBO;
[[stage(compute)]] fn main() {
ssbo.value = 1u;
})");
csDesc.computeStage.entryPoint = "main";
auto callback = [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline,
const char* message, void* userdata) {
EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status);
CreatePipelineAsyncTask* task = static_cast<CreatePipelineAsyncTask*>(userdata);
task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline);
task->isCompleted = true;
task->message = message;
};
// Create two pipeline objects with same descriptor.
CreatePipelineAsyncTask anotherTask;
device.CreateComputePipelineAsync(&csDesc, callback, &task);
device.CreateComputePipelineAsync(&csDesc, callback, &anotherTask);
// Verify both task.computePipeline and anotherTask.computePipeline are created correctly.
ValidateCreateComputePipelineAsync(&anotherTask);
ValidateCreateComputePipelineAsync(&task);
// Verify task.computePipeline and anotherTask.computePipeline are pointing to the same Dawn
// object.
if (!UsesWire()) {
EXPECT_EQ(task.computePipeline.Get(), anotherTask.computePipeline.Get());
}
}
DAWN_INSTANTIATE_TEST(CreatePipelineAsyncTest,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());