blob: 771956180f87969526a99d7c1f5d7e0e9521c8b4 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/unittests/validation/ValidationTest.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
class VertexStateTest : public ValidationTest {
protected:
void CreatePipeline(bool success,
const utils::ComboVertexStateDescriptor& state,
const char* vertexSource) {
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexSource);
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.vertex.bufferCount = state.vertexBufferCount;
descriptor.vertex.buffers = &state.cVertexBuffers[0];
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
if (!success) {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
} else {
device.CreateRenderPipeline(&descriptor);
}
}
const char* kDummyVertexShader = R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
)";
};
// Check an empty vertex input is valid
TEST_F(VertexStateTest, EmptyIsOk) {
utils::ComboVertexStateDescriptor state;
CreatePipeline(true, state, kDummyVertexShader);
}
// Check null buffer is valid
TEST_F(VertexStateTest, NullBufferIsOk) {
utils::ComboVertexStateDescriptor state;
// One null buffer (buffer[0]) is OK
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 0;
state.cVertexBuffers[0].attributeCount = 0;
state.cVertexBuffers[0].attributes = nullptr;
CreatePipeline(true, state, kDummyVertexShader);
// One null buffer (buffer[0]) followed by a buffer (buffer[1]) is OK
state.vertexBufferCount = 2;
state.cVertexBuffers[1].arrayStride = 0;
state.cVertexBuffers[1].attributeCount = 1;
state.cVertexBuffers[1].attributes = &state.cAttributes[0];
state.cAttributes[0].shaderLocation = 0;
CreatePipeline(true, state, kDummyVertexShader);
// Null buffer (buffer[2]) sitting between buffers (buffer[1] and buffer[3]) is OK
state.vertexBufferCount = 4;
state.cVertexBuffers[2].attributeCount = 0;
state.cVertexBuffers[2].attributes = nullptr;
state.cVertexBuffers[3].attributeCount = 1;
state.cVertexBuffers[3].attributes = &state.cAttributes[1];
state.cAttributes[1].shaderLocation = 1;
CreatePipeline(true, state, kDummyVertexShader);
}
// Check validation that pipeline vertex buffers are backed by attributes in the vertex input
// Check validation that pipeline vertex buffers are backed by attributes in the vertex input
TEST_F(VertexStateTest, PipelineCompatibility) {
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 2 * sizeof(float);
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].shaderLocation = 1;
state.cAttributes[1].offset = sizeof(float);
// Control case: pipeline with one input per attribute
CreatePipeline(true, state, R"(
[[stage(vertex)]] fn main(
[[location(0)]] a : vec4<f32>,
[[location(1)]] b : vec4<f32>
) -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
)");
// Check it is valid for the pipeline to use a subset of the VertexState
CreatePipeline(true, state, R"(
[[stage(vertex)]] fn main(
[[location(0)]] a : vec4<f32>
) -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
)");
// Check for an error when the pipeline uses an attribute not in the vertex input
CreatePipeline(false, state, R"(
[[stage(vertex)]] fn main(
[[location(2)]] a : vec4<f32>
) -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
)");
}
// Test that a arrayStride of 0 is valid
TEST_F(VertexStateTest, StrideZero) {
// Works ok without attributes
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 0;
state.cVertexBuffers[0].attributeCount = 1;
CreatePipeline(true, state, kDummyVertexShader);
// Works ok with attributes at a large-ish offset
state.cAttributes[0].offset = 128;
CreatePipeline(true, state, kDummyVertexShader);
}
// Check validation that vertex attribute offset should be within vertex buffer arrayStride,
// if vertex buffer arrayStride is not zero.
TEST_F(VertexStateTest, SetOffsetOutOfBounds) {
// Control case, setting correct arrayStride and offset
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 2 * sizeof(float);
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].shaderLocation = 1;
state.cAttributes[1].offset = sizeof(float);
CreatePipeline(true, state, kDummyVertexShader);
// Test vertex attribute offset exceed vertex buffer arrayStride range
state.cVertexBuffers[0].arrayStride = sizeof(float);
CreatePipeline(false, state, kDummyVertexShader);
// It's OK if arrayStride is zero
state.cVertexBuffers[0].arrayStride = 0;
CreatePipeline(true, state, kDummyVertexShader);
}
// Check out of bounds condition on total number of vertex buffers
TEST_F(VertexStateTest, SetVertexBuffersNumLimit) {
// Control case, setting max vertex buffer number
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = kMaxVertexBuffers;
for (uint32_t i = 0; i < kMaxVertexBuffers; ++i) {
state.cVertexBuffers[i].attributeCount = 1;
state.cVertexBuffers[i].attributes = &state.cAttributes[i];
state.cAttributes[i].shaderLocation = i;
}
CreatePipeline(true, state, kDummyVertexShader);
// Test vertex buffer number exceed the limit
state.vertexBufferCount = kMaxVertexBuffers + 1;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check out of bounds condition on total number of vertex attributes
TEST_F(VertexStateTest, SetVertexAttributesNumLimit) {
// Control case, setting max vertex attribute number
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 2;
state.cVertexBuffers[0].attributeCount = kMaxVertexAttributes;
for (uint32_t i = 0; i < kMaxVertexAttributes; ++i) {
state.cAttributes[i].shaderLocation = i;
}
CreatePipeline(true, state, kDummyVertexShader);
// Test vertex attribute number exceed the limit
state.cVertexBuffers[1].attributeCount = 1;
state.cVertexBuffers[1].attributes = &state.cAttributes[kMaxVertexAttributes - 1];
CreatePipeline(false, state, kDummyVertexShader);
}
// Check out of bounds condition on input arrayStride
TEST_F(VertexStateTest, SetInputStrideOutOfBounds) {
// Control case, setting max input arrayStride
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = kMaxVertexBufferArrayStride;
state.cVertexBuffers[0].attributeCount = 1;
CreatePipeline(true, state, kDummyVertexShader);
// Test input arrayStride OOB
state.cVertexBuffers[0].arrayStride = kMaxVertexBufferArrayStride + 1;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check multiple of 4 bytes constraint on input arrayStride
TEST_F(VertexStateTest, SetInputStrideNotAligned) {
// Control case, setting input arrayStride 4 bytes.
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 4;
state.cVertexBuffers[0].attributeCount = 1;
CreatePipeline(true, state, kDummyVertexShader);
// Test input arrayStride not multiple of 4 bytes
state.cVertexBuffers[0].arrayStride = 2;
CreatePipeline(false, state, kDummyVertexShader);
}
// Test that we cannot set an already set attribute
TEST_F(VertexStateTest, AlreadySetAttribute) {
// Control case, setting attribute 0
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].shaderLocation = 0;
CreatePipeline(true, state, kDummyVertexShader);
// Oh no, attribute 0 is set twice
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].shaderLocation = 0;
CreatePipeline(false, state, kDummyVertexShader);
}
// Test that a arrayStride of 0 is valid
TEST_F(VertexStateTest, SetSameShaderLocation) {
// Control case, setting different shader locations in two attributes
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 2;
state.cAttributes[0].shaderLocation = 0;
state.cAttributes[1].shaderLocation = 1;
state.cAttributes[1].offset = sizeof(float);
CreatePipeline(true, state, kDummyVertexShader);
// Test same shader location in two attributes in the same buffer
state.cAttributes[1].shaderLocation = 0;
CreatePipeline(false, state, kDummyVertexShader);
// Test same shader location in two attributes in different buffers
state.vertexBufferCount = 2;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].shaderLocation = 0;
state.cVertexBuffers[1].attributeCount = 1;
state.cVertexBuffers[1].attributes = &state.cAttributes[1];
state.cAttributes[1].shaderLocation = 0;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check out of bounds condition on attribute shader location
TEST_F(VertexStateTest, SetAttributeLocationOutOfBounds) {
// Control case, setting last attribute shader location
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].shaderLocation = kMaxVertexAttributes - 1;
CreatePipeline(true, state, kDummyVertexShader);
// Test attribute location OOB
state.cAttributes[0].shaderLocation = kMaxVertexAttributes;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check attribute offset out of bounds
TEST_F(VertexStateTest, SetAttributeOffsetOutOfBounds) {
// Control case, setting max attribute offset for FloatR32 vertex format
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = kMaxVertexBufferArrayStride - sizeof(wgpu::VertexFormat::Float32);
CreatePipeline(true, state, kDummyVertexShader);
// Test attribute offset out of bounds
state.cAttributes[0].offset = kMaxVertexBufferArrayStride - 1;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check the min(4, formatSize) alignment constraint for the offset.
TEST_F(VertexStateTest, SetOffsetNotAligned) {
// Control case, setting the offset at the correct alignments.
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 1;
// Test that for small formats, the offset must be aligned to the format size.
state.cAttributes[0].format = wgpu::VertexFormat::Float32;
state.cAttributes[0].offset = 4;
CreatePipeline(true, state, kDummyVertexShader);
state.cAttributes[0].offset = 2;
CreatePipeline(false, state, kDummyVertexShader);
state.cAttributes[0].format = wgpu::VertexFormat::Snorm16x2;
state.cAttributes[0].offset = 4;
CreatePipeline(true, state, kDummyVertexShader);
state.cAttributes[0].offset = 2;
CreatePipeline(false, state, kDummyVertexShader);
state.cAttributes[0].format = wgpu::VertexFormat::Unorm8x2;
state.cAttributes[0].offset = 2;
CreatePipeline(true, state, kDummyVertexShader);
state.cAttributes[0].offset = 1;
CreatePipeline(false, state, kDummyVertexShader);
// Test that for large formts the offset only needs to be aligned to 4.
state.cAttributes[0].format = wgpu::VertexFormat::Snorm16x4;
state.cAttributes[0].offset = 4;
CreatePipeline(true, state, kDummyVertexShader);
state.cAttributes[0].format = wgpu::VertexFormat::Uint32x3;
state.cAttributes[0].offset = 4;
CreatePipeline(true, state, kDummyVertexShader);
state.cAttributes[0].format = wgpu::VertexFormat::Sint32x4;
state.cAttributes[0].offset = 4;
CreatePipeline(true, state, kDummyVertexShader);
}
// Check attribute offset overflow
TEST_F(VertexStateTest, SetAttributeOffsetOverflow) {
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].offset = std::numeric_limits<uint32_t>::max();
CreatePipeline(false, state, kDummyVertexShader);
}
// Check for some potential underflow in the vertex input validation
TEST_F(VertexStateTest, VertexFormatLargerThanNonZeroStride) {
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 4;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
CreatePipeline(false, state, kDummyVertexShader);
}
// Check that the vertex format base type must match the shader's variable base type.
TEST_F(VertexStateTest, BaseTypeMatching) {
auto DoTest = [&](wgpu::VertexFormat format, std::string shaderType, bool success) {
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 16;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].format = format;
std::string shader = "[[stage(vertex)]] fn main([[location(0)]] attrib : " + shaderType +
R"() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
})";
CreatePipeline(success, state, shader.c_str());
};
// Test that a float format is compatible only with f32 base type.
DoTest(wgpu::VertexFormat::Float32, "f32", true);
DoTest(wgpu::VertexFormat::Float32, "i32", false);
DoTest(wgpu::VertexFormat::Float32, "u32", false);
// Test that an unorm format is compatible only with f32.
DoTest(wgpu::VertexFormat::Unorm16x2, "f32", true);
DoTest(wgpu::VertexFormat::Unorm16x2, "i32", false);
DoTest(wgpu::VertexFormat::Unorm16x2, "u32", false);
// Test that an snorm format is compatible only with f32.
DoTest(wgpu::VertexFormat::Snorm16x4, "f32", true);
DoTest(wgpu::VertexFormat::Snorm16x4, "i32", false);
DoTest(wgpu::VertexFormat::Snorm16x4, "u32", false);
// Test that an uint format is compatible only with u32.
DoTest(wgpu::VertexFormat::Uint32x3, "f32", false);
DoTest(wgpu::VertexFormat::Uint32x3, "i32", false);
DoTest(wgpu::VertexFormat::Uint32x3, "u32", true);
// Test that an sint format is compatible only with u32.
DoTest(wgpu::VertexFormat::Sint8x4, "f32", false);
DoTest(wgpu::VertexFormat::Sint8x4, "i32", true);
DoTest(wgpu::VertexFormat::Sint8x4, "u32", false);
// Test that formats are compatible with any width of vectors.
DoTest(wgpu::VertexFormat::Float32, "f32", true);
DoTest(wgpu::VertexFormat::Float32, "vec2<f32>", true);
DoTest(wgpu::VertexFormat::Float32, "vec3<f32>", true);
DoTest(wgpu::VertexFormat::Float32, "vec4<f32>", true);
DoTest(wgpu::VertexFormat::Float32x4, "f32", true);
DoTest(wgpu::VertexFormat::Float32x4, "vec2<f32>", true);
DoTest(wgpu::VertexFormat::Float32x4, "vec3<f32>", true);
DoTest(wgpu::VertexFormat::Float32x4, "vec4<f32>", true);
}
// Check that we only check base type compatibility for vertex inputs the shader uses.
TEST_F(VertexStateTest, BaseTypeMatchingForInexistentInput) {
auto DoTest = [&](wgpu::VertexFormat format) {
utils::ComboVertexStateDescriptor state;
state.vertexBufferCount = 1;
state.cVertexBuffers[0].arrayStride = 16;
state.cVertexBuffers[0].attributeCount = 1;
state.cAttributes[0].format = format;
std::string shader = R"([[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
})";
CreatePipeline(true, state, shader.c_str());
};
DoTest(wgpu::VertexFormat::Float32);
DoTest(wgpu::VertexFormat::Unorm16x2);
DoTest(wgpu::VertexFormat::Snorm16x4);
DoTest(wgpu::VertexFormat::Uint8x4);
DoTest(wgpu::VertexFormat::Sint32x2);
}