blob: fc2046bb772d63051a387f40f545e5b323146ec3 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/unittests/validation/ValidationTest.h"
#include "common/Constants.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
#include <cmath>
#include <sstream>
class RenderPipelineValidationTest : public ValidationTest {
protected:
void SetUp() override {
ValidationTest::SetUp();
vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})");
fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
fsModuleUint = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<u32> {
return vec4<u32>(0u, 255u, 0u, 255u);
})");
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
wgpu::ShaderModule fsModuleUint;
};
namespace {
bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) {
return blendFactor == wgpu::BlendFactor::SrcAlpha ||
blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha ||
blendFactor == wgpu::BlendFactor::SrcAlphaSaturated;
}
} // namespace
// Test cases where creation should succeed
TEST_F(RenderPipelineValidationTest, CreationSuccess) {
{
// New format
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests that depth bias parameters must not be NaN.
TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) {
// Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil();
device.CreateRenderPipeline(&descriptor);
}
// Infinite depth bias clamp is valid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias clamp is invalid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasClamp = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Infinite depth bias slope is valid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = INFINITY;
device.CreateRenderPipeline(&descriptor);
}
// NAN depth bias slope is invalid
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil();
depthStencil->depthBiasSlopeScale = NAN;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that at least one color target state is required.
TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) {
{
// This one succeeds because attachment 0 is the color attachment
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 1;
device.CreateRenderPipeline(&descriptor);
}
{ // Fail because lack of color target states (and depth/stencil state)
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cFragment.targetCount = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the color formats must be renderable.
TEST_F(RenderPipelineValidationTest, NonRenderableFormat) {
{
// Succeeds because RGBA8Unorm is renderable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RG11B10Ufloat is non-renderable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the color formats must be blendable when blending is enabled.
// Those are renderable color formats with "float" capabilities in
// https://gpuweb.github.io/gpuweb/#plain-color-formats
TEST_F(RenderPipelineValidationTest, NonBlendableFormat) {
{
// Succeeds because RGBA8Unorm is blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RGBA32Float is not blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Succeeds because RGBA32Float is not blendable but blending is disabled
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.cTargets[0].blend = nullptr;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
device.CreateRenderPipeline(&descriptor);
}
{
// Fails because RGBA8Uint is not blendable
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleUint;
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
// Succeeds because RGBA8Uint is not blendable but blending is disabled
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModuleUint;
descriptor.cTargets[0].blend = nullptr;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint;
device.CreateRenderPipeline(&descriptor);
}
}
// Tests that the format of the color state descriptor must match the output of the fragment shader.
TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) {
std::array<const char*, 3> kScalarTypes = {{"f32", "i32", "u32"}};
std::array<wgpu::TextureFormat, 3> kColorFormats = {{wgpu::TextureFormat::RGBA8Unorm,
wgpu::TextureFormat::RGBA8Sint,
wgpu::TextureFormat::RGBA8Uint}};
for (size_t i = 0; i < kScalarTypes.size(); ++i) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<)"
<< kScalarTypes[i] << R"(> {
var result : vec4<)"
<< kScalarTypes[i] << R"(>;
return result;
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
for (size_t j = 0; j < kColorFormats.size(); ++j) {
descriptor.cTargets[0].format = kColorFormats[j];
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Tests that the component count of the color state target format must be fewer than that of the
// fragment shader output.
TEST_F(RenderPipelineValidationTest, FragmentOutputComponentCountCompatibility) {
std::array<wgpu::TextureFormat, 3> kColorFormats = {wgpu::TextureFormat::R8Unorm,
wgpu::TextureFormat::RG8Unorm,
wgpu::TextureFormat::RGBA8Unorm};
std::array<wgpu::BlendFactor, 8> kBlendFactors = {wgpu::BlendFactor::Zero,
wgpu::BlendFactor::One,
wgpu::BlendFactor::SrcAlpha,
wgpu::BlendFactor::OneMinusSrcAlpha,
wgpu::BlendFactor::Src,
wgpu::BlendFactor::DstAlpha,
wgpu::BlendFactor::OneMinusDstAlpha,
wgpu::BlendFactor::Dst};
for (size_t componentCount = 1; componentCount <= 4; ++componentCount) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[stage(fragment)]] fn main() -> [[location(0)]] )";
switch (componentCount) {
case 1:
stream << R"(f32 {
return 1.0;
})";
break;
case 2:
stream << R"(vec2<f32> {
return vec2<f32>(1.0, 1.0);
})";
break;
case 3:
stream << R"(vec3<f32> {
return vec3<f32>(1.0, 1.0, 1.0);
})";
break;
case 4:
stream << R"(vec4<f32> {
return vec4<f32>(1.0, 1.0, 1.0, 1.0);
})";
break;
default:
UNREACHABLE();
}
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
for (auto colorFormat : kColorFormats) {
descriptor.cTargets[0].format = colorFormat;
descriptor.cTargets[0].blend = nullptr;
if (componentCount >= utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
descriptor.cTargets[0].blend = &descriptor.cBlends[0];
for (auto colorSrcFactor : kBlendFactors) {
descriptor.cBlends[0].color.srcFactor = colorSrcFactor;
for (auto colorDstFactor : kBlendFactors) {
descriptor.cBlends[0].color.dstFactor = colorDstFactor;
for (auto alphaSrcFactor : kBlendFactors) {
descriptor.cBlends[0].alpha.srcFactor = alphaSrcFactor;
for (auto alphaDstFactor : kBlendFactors) {
descriptor.cBlends[0].alpha.dstFactor = alphaDstFactor;
bool valid = true;
if (componentCount >=
utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) {
if (BlendFactorContainsSrcAlpha(
descriptor.cTargets[0].blend->color.srcFactor) ||
BlendFactorContainsSrcAlpha(
descriptor.cTargets[0].blend->color.dstFactor)) {
valid = componentCount == 4;
}
} else {
valid = false;
}
if (valid) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
}
}
}
}
/// Tests that the sample count of the render pipeline must be valid.
TEST_F(RenderPipelineValidationTest, SampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 3;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the sample count of the render pipeline must be equal to the one of every attachments
// in the render pass.
TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
constexpr uint32_t kMultisampledCount = 4;
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size.width = 4;
baseTextureDescriptor.size.height = 4;
baseTextureDescriptor.size.depthOrArrayLayers = 1;
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor;
nonMultisampledPipelineDescriptor.multisample.count = 1;
nonMultisampledPipelineDescriptor.vertex.module = vsModule;
nonMultisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline nonMultisampledPipeline =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
nonMultisampledPipelineDescriptor.cFragment.targetCount = 0;
nonMultisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor);
utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor;
multisampledPipelineDescriptor.multisample.count = kMultisampledCount;
multisampledPipelineDescriptor.vertex.module = vsModule;
multisampledPipelineDescriptor.cFragment.module = fsModule;
wgpu::RenderPipeline multisampledPipeline =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
multisampledPipelineDescriptor.cFragment.targetCount = 0;
multisampledPipelineDescriptor.EnableDepthStencil();
wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly =
device.CreateRenderPipeline(&multisampledPipelineDescriptor);
// It is not allowed to use multisampled render pass and non-multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// It is allowed to use multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = kMultisampledCount;
wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{multisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
encoder.Finish();
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = kMultisampledCount;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, multisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
encoder.Finish();
}
// It is not allowed to use non-multisampled render pass and multisampled render pipeline.
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.format = kColorFormat;
textureDescriptor.sampleCount = 1;
wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor(
{nonMultisampledColorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass =
encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor);
renderPass.SetPipeline(multisampledPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor;
textureDescriptor.sampleCount = 1;
textureDescriptor.format = kDepthStencilFormat;
wgpu::Texture nonMultisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor(
{}, nonMultisampledDepthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Tests that the vertex only pipeline must be used with a depth-stencil attachment only render pass
TEST_F(RenderPipelineValidationTest, VertexOnlyPipelineRequireDepthStencilAttachment) {
constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::TextureDescriptor baseTextureDescriptor;
baseTextureDescriptor.size = {4, 4};
baseTextureDescriptor.mipLevelCount = 1;
baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D;
baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment;
wgpu::TextureDescriptor colorTextureDescriptor = baseTextureDescriptor;
colorTextureDescriptor.format = kColorFormat;
colorTextureDescriptor.sampleCount = 1;
wgpu::Texture colorTexture = device.CreateTexture(&colorTextureDescriptor);
wgpu::TextureDescriptor depthStencilTextureDescriptor = baseTextureDescriptor;
depthStencilTextureDescriptor.sampleCount = 1;
depthStencilTextureDescriptor.format = kDepthStencilFormat;
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilTextureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.multisample.count = 1;
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.fragment = nullptr;
renderPipelineDescriptor.EnableDepthStencil(kDepthStencilFormat);
wgpu::RenderPipeline vertexOnlyPipeline =
device.CreateRenderPipeline(&renderPipelineDescriptor);
// Vertex-only render pipeline can work with depth stencil attachment and no color target
{
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.EndPass();
encoder.Finish();
}
// Vertex-only render pipeline must have a depth stencil attachment
{
utils::ComboRenderPassDescriptor renderPassDescriptor({});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Vertex-only render pipeline can not work with color target
{
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
depthStencilTexture.CreateView());
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Vertex-only render pipeline can not work with color target, and must have a depth stencil
// attachment
{
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor);
renderPass.SetPipeline(vertexOnlyPipeline);
renderPass.EndPass();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Tests that the sample count of the render pipeline must be valid
// when the alphaToCoverage mode is enabled.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 4;
descriptor.multisample.alphaToCoverageEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.multisample.count = 1;
descriptor.multisample.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the texture component type in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
constexpr uint32_t kNumTextureComponentType = 3u;
std::array<const char*, kNumTextureComponentType> kScalarTypes = {{"f32", "i32", "u32"}};
std::array<wgpu::TextureSampleType, kNumTextureComponentType> kTextureComponentTypes = {{
wgpu::TextureSampleType::Float,
wgpu::TextureSampleType::Sint,
wgpu::TextureSampleType::Uint,
}};
for (size_t i = 0; i < kNumTextureComponentType; ++i) {
for (size_t j = 0; j < kNumTextureComponentType; ++j) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[group(0), binding(0)]] var myTexture : texture_2d<)"
<< kScalarTypes[i] << R"(>;
[[stage(fragment)]] fn main() {
textureDimensions(myTexture);
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Tests that the texture view dimension in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) {
constexpr uint32_t kNumTextureViewDimensions = 6u;
std::array<const char*, kNumTextureViewDimensions> kTextureKeywords = {{
"texture_1d",
"texture_2d",
"texture_2d_array",
"texture_cube",
"texture_cube_array",
"texture_3d",
}};
std::array<wgpu::TextureViewDimension, kNumTextureViewDimensions> kTextureViewDimensions = {{
wgpu::TextureViewDimension::e1D,
wgpu::TextureViewDimension::e2D,
wgpu::TextureViewDimension::e2DArray,
wgpu::TextureViewDimension::Cube,
wgpu::TextureViewDimension::CubeArray,
wgpu::TextureViewDimension::e3D,
}};
for (size_t i = 0; i < kNumTextureViewDimensions; ++i) {
for (size_t j = 0; j < kNumTextureViewDimensions; ++j) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
std::ostringstream stream;
stream << R"(
[[group(0), binding(0)]] var myTexture : )"
<< kTextureKeywords[i] << R"(<f32>;
[[stage(fragment)]] fn main() {
textureDimensions(myTexture);
})";
descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str());
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float,
kTextureViewDimensions[j]}});
descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl);
if (i == j) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't
// cause crash.
TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) {
wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"(
[[block]] struct Dst {
data : array<u32, 100>;
};
[[group(0), binding(0)]] var<storage, read_write> dst : Dst;
[[stage(vertex)]] fn main([[builtin(vertex_index)]] VertexIndex : u32) -> [[builtin(position)]] vec4<f32> {
dst.data[VertexIndex] = 0x1234u;
return vec4<f32>();
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.layout = nullptr;
descriptor.vertex.module = vsModuleWithStorageBuffer;
descriptor.cFragment.module = fsModule;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Tests that strip primitive topologies require an index format
TEST_F(RenderPipelineValidationTest, StripIndexFormatRequired) {
constexpr uint32_t kNumStripType = 2u;
constexpr uint32_t kNumListType = 3u;
constexpr uint32_t kNumIndexFormat = 3u;
std::array<wgpu::PrimitiveTopology, kNumStripType> kStripTopologyTypes = {
{wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}};
std::array<wgpu::PrimitiveTopology, kNumListType> kListTopologyTypes = {
{wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList,
wgpu::PrimitiveTopology::TriangleList}};
std::array<wgpu::IndexFormat, kNumIndexFormat> kIndexFormatTypes = {
{wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}};
for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
if (indexFormat == wgpu::IndexFormat::Undefined) {
// Fail because the index format is undefined and the primitive
// topology is a strip type.
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
} else {
// Succeeds because the index format is given.
device.CreateRenderPipeline(&descriptor);
}
}
}
for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) {
for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = primitiveTopology;
descriptor.primitive.stripIndexFormat = indexFormat;
if (indexFormat == wgpu::IndexFormat::Undefined) {
// Succeeds even when the index format is undefined because the
// primitive topology isn't a strip type.
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
}
}
// Test that specifying a clampDepth value results in an error if the feature is not enabled.
TEST_F(RenderPipelineValidationTest, ClampDepthWithoutFeature) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = true;
descriptor.primitive.nextInChain = &clampingState;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = false;
descriptor.primitive.nextInChain = &clampingState;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Test that depthStencil.depthCompare must not be undefiend.
TEST_F(RenderPipelineValidationTest, DepthCompareUndefinedIsError) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float);
// Control case: Always is valid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always;
device.CreateRenderPipeline(&descriptor);
// Error case: Undefined is invalid.
descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that the entryPoint names must be present for the correct stage in the shader module.
TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn vertex_main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
}
[[stage(fragment)]] fn fragment_main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.vertex.entryPoint = "vertex_main";
descriptor.cFragment.module = module;
descriptor.cFragment.entryPoint = "fragment_main";
// Success case.
device.CreateRenderPipeline(&descriptor);
// Test for the vertex stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.vertex.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.vertex.entryPoint = "fragment_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
descriptor.vertex.entryPoint = "vertex_main";
// Test for the fragment stage entryPoint name.
{
// The entryPoint name doesn't exist in the module.
descriptor.cFragment.entryPoint = "main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
// The entryPoint name exists, but not for the correct stage.
descriptor.cFragment.entryPoint = "vertex_main";
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Test that vertex attrib validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn vertex0([[location(0)]] attrib0 : vec4<f32>)
-> [[builtin(position)]] vec4<f32> {
return attrib0;
}
[[stage(vertex)]] fn vertex1([[location(1)]] attrib1 : vec4<f32>)
-> [[builtin(position)]] vec4<f32> {
return attrib1;
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
descriptor.vertex.bufferCount = 1;
descriptor.cBuffers[0].attributeCount = 1;
descriptor.cBuffers[0].arrayStride = 16;
descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
descriptor.cAttributes[0].offset = 0;
// Success cases, the attribute used by the entryPoint is declared in the pipeline.
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 0;
device.CreateRenderPipeline(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 1;
device.CreateRenderPipeline(&descriptor);
// Error cases, the attribute used by the entryPoint isn't declared in the pipeline.
descriptor.vertex.entryPoint = "vertex1";
descriptor.cAttributes[0].shaderLocation = 0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.cAttributes[0].shaderLocation = 1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that fragment output validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn fragmentFloat() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 0.0);
}
[[stage(fragment)]] fn fragmentUint() -> [[location(0)]] vec4<u32> {
return vec4<u32>(0u, 0u, 0u, 0u);
}
)");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = module;
// Success case, the component type matches between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
device.CreateRenderPipeline(&descriptor);
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
device.CreateRenderPipeline(&descriptor);
// Error case, the component type doesn't match between the pipeline and the entryPoint
descriptor.cFragment.entryPoint = "fragmentUint";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.cFragment.entryPoint = "fragmentFloat";
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Test that unwritten fragment outputs must have a write mask of 0.
TEST_F(RenderPipelineValidationTest, UnwrittenFragmentOutputsMask0) {
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]] fn main() -> [[builtin(position)]] vec4<f32> {
return vec4<f32>();
}
)");
wgpu::ShaderModule fsModuleWriteNone = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() {}
)");
wgpu::ShaderModule fsModuleWrite0 = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>();
}
)");
wgpu::ShaderModule fsModuleWrite1 = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(1)]] vec4<f32> {
return vec4<f32>();
}
)");
wgpu::ShaderModule fsModuleWriteBoth = utils::CreateShaderModule(device, R"(
struct FragmentOut {
[[location(0)]] target0 : vec4<f32>;
[[location(1)]] target1 : vec4<f32>;
};
[[stage(fragment)]] fn main() -> FragmentOut {
var out : FragmentOut;
return out;
}
)");
// Control case: write to target 0
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cFragment.module = fsModuleWrite0;
device.CreateRenderPipeline(&descriptor);
}
// Control case: write to target 0 and target 1
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cFragment.module = fsModuleWriteBoth;
device.CreateRenderPipeline(&descriptor);
}
// Write only target 1 (not in pipeline fragment state).
// Errors because target 0 does not have a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
descriptor.cFragment.module = fsModuleWrite1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write only target 1 (not in pipeline fragment state).
// OK because target 0 has a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 1;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWrite1;
device.CreateRenderPipeline(&descriptor);
}
// Write only target 0 with two color targets.
// Errors because target 1 does not have a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Alpha;
descriptor.cFragment.module = fsModuleWrite0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write only target 0 with two color targets.
// OK because target 1 has a write mask of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWrite0;
device.CreateRenderPipeline(&descriptor);
}
// Write nothing with two color targets.
// Errors because both target 0 and 1 have nonzero write masks.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Green;
descriptor.cFragment.module = fsModuleWriteNone;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
// Write nothing with two color targets.
// OK because target 0 and 1 have write masks of 0.
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.targetCount = 2;
descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None;
descriptor.cFragment.module = fsModuleWriteNone;
device.CreateRenderPipeline(&descriptor);
}
}
// Test that fragment output validation is for the correct entryPoint
TEST_F(RenderPipelineValidationTest, BindingsFromCorrectEntryPoint) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
[[block]] struct Uniforms {
data : vec4<f32>;
};
[[group(0), binding(0)]] var<uniform> var0 : Uniforms;
[[group(0), binding(1)]] var<uniform> var1 : Uniforms;
[[stage(vertex)]] fn vertex0() -> [[builtin(position)]] vec4<f32> {
return var0.data;
}
[[stage(vertex)]] fn vertex1() -> [[builtin(position)]] vec4<f32> {
return var1.data;
}
)");
wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0);
wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout(
device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}});
wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1);
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = module;
descriptor.cFragment.module = fsModule;
// Success case, the BGL matches the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout0;
device.CreateRenderPipeline(&descriptor);
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout1;
device.CreateRenderPipeline(&descriptor);
// Error case, the BGL doesn't match the bindings used by the entryPoint
descriptor.vertex.entryPoint = "vertex1";
descriptor.layout = layout0;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
descriptor.vertex.entryPoint = "vertex0";
descriptor.layout = layout1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
class DepthClampingValidationTest : public RenderPipelineValidationTest {
protected:
WGPUDevice CreateTestDevice() override {
dawn_native::DeviceDescriptor descriptor;
descriptor.requiredFeatures = {"depth-clamping"};
return adapter.CreateDevice(&descriptor);
}
};
// Tests that specifying a clampDepth value succeeds if the feature is enabled.
TEST_F(DepthClampingValidationTest, Success) {
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = true;
descriptor.primitive.nextInChain = &clampingState;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
wgpu::PrimitiveDepthClampingState clampingState;
clampingState.clampDepth = false;
descriptor.primitive.nextInChain = &clampingState;
device.CreateRenderPipeline(&descriptor);
}
}
class InterStageVariableMatchingValidationTest : public RenderPipelineValidationTest {
protected:
void CheckCreatingRenderPipeline(wgpu::ShaderModule vertexModule,
wgpu::ShaderModule fragmentModule,
bool shouldSucceed) {
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vertexModule;
descriptor.cFragment.module = fragmentModule;
if (shouldSucceed) {
device.CreateRenderPipeline(&descriptor);
} else {
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
};
// Tests that creating render pipeline should fail when there is a vertex output that doesn't have
// its corresponding fragment input at the same location, and there is a fragment input that
// doesn't have its corresponding vertex output at the same location.
TEST_F(InterStageVariableMatchingValidationTest, MissingDeclarationAtSameLocation) {
wgpu::ShaderModule vertexModuleOutputAtLocation0 = utils::CreateShaderModule(device, R"(
struct A {
[[location(0)]] vout: f32;
[[builtin(position)]] pos: vec4<f32>;
};
[[stage(vertex)]] fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})");
wgpu::ShaderModule fragmentModuleAtLocation0 = utils::CreateShaderModule(device, R"(
struct B {
[[location(0)]] fin: f32;
};
[[stage(fragment)]] fn main(fragmentIn: B) -> [[location(0)]] vec4<f32> {
return vec4<f32>(fragmentIn.fin, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fragmentModuleInputAtLocation1 = utils::CreateShaderModule(device, R"(
struct A {
[[location(1)]] vout: f32;
};
[[stage(fragment)]] fn main(vertexOut: A) -> [[location(0)]] vec4<f32> {
return vec4<f32>(vertexOut.vout, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule vertexModuleOutputAtLocation1 = utils::CreateShaderModule(device, R"(
struct B {
[[location(1)]] fin: f32;
[[builtin(position)]] pos: vec4<f32>;
};
[[stage(vertex)]] fn main() -> B {
var fragmentIn: B;
fragmentIn.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
return fragmentIn;
})");
{
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fsModule, false);
CheckCreatingRenderPipeline(vsModule, fragmentModuleAtLocation0, false);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleInputAtLocation1,
false);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleAtLocation0,
false);
}
{
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleAtLocation0, true);
CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleInputAtLocation1,
true);
}
}
// Tests that creating render pipeline should fail when the type of a vertex stage output variable
// doesn't match the type of the fragment stage input variable at the same location.
TEST_F(InterStageVariableMatchingValidationTest, DifferentTypeAtSameLocation) {
constexpr std::array<const char*, 12> kTypes = {{"f32", "vec2<f32>", "vec3<f32>", "vec4<f32>",
"i32", "vec2<i32>", "vec3<i32>", "vec4<i32>",
"u32", "vec2<u32>", "vec3<u32>", "vec4<u32>"}};
std::array<wgpu::ShaderModule, 12> vertexModules;
std::array<wgpu::ShaderModule, 12> fragmentModules;
for (uint32_t i = 0; i < kTypes.size(); ++i) {
std::string interfaceDeclaration;
{
std::ostringstream sstream;
sstream << "struct A { [[location(0)]] a: " << kTypes[i] << ";" << std::endl;
interfaceDeclaration = sstream.str();
}
{
std::ostringstream vertexStream;
vertexStream << interfaceDeclaration << R"(
[[builtin(position)]] pos: vec4<f32>;
};
[[stage(vertex)]] fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})";
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
}
{
std::ostringstream fragmentStream;
fragmentStream << interfaceDeclaration << R"(
};
[[stage(fragment)]] fn main(fragmentIn: A) -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 0.0, 0.0, 1.0);
})";
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
}
}
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < kTypes.size(); ++vertexModuleIndex) {
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < kTypes.size();
++fragmentModuleIndex) {
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
bool shouldSuccess = vertexModuleIndex == fragmentModuleIndex;
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
}
}
}
// Tests that creating render pipeline should fail when the interpolation attribute of a vertex
// stage output variable doesn't match the type of the fragment stage input variable at the same
// location.
TEST_F(InterStageVariableMatchingValidationTest, DifferentInterpolationAttributeAtSameLocation) {
enum class InterpolationType : uint8_t {
None = 0,
Perspective,
Linear,
Flat,
Count,
};
enum class InterpolationSampling : uint8_t {
None = 0,
Center,
Centroid,
Sample,
Count,
};
constexpr std::array<const char*, static_cast<size_t>(InterpolationType::Count)>
kInterpolationTypeString = {{"", "perspective", "linear", "flat"}};
constexpr std::array<const char*, static_cast<size_t>(InterpolationSampling::Count)>
kInterpolationSamplingString = {{"", "center", "centroid", "sample"}};
struct InterpolationAttribute {
InterpolationType interpolationType;
InterpolationSampling interpolationSampling;
};
// Interpolation sampling is not used with flat interpolation.
constexpr std::array<InterpolationAttribute, 10> validInterpolationAttributes = {{
{InterpolationType::None, InterpolationSampling::None},
{InterpolationType::Flat, InterpolationSampling::None},
{InterpolationType::Linear, InterpolationSampling::None},
{InterpolationType::Linear, InterpolationSampling::Center},
{InterpolationType::Linear, InterpolationSampling::Centroid},
{InterpolationType::Linear, InterpolationSampling::Sample},
{InterpolationType::Perspective, InterpolationSampling::None},
{InterpolationType::Perspective, InterpolationSampling::Center},
{InterpolationType::Perspective, InterpolationSampling::Centroid},
{InterpolationType::Perspective, InterpolationSampling::Sample},
}};
std::vector<wgpu::ShaderModule> vertexModules(validInterpolationAttributes.size());
std::vector<wgpu::ShaderModule> fragmentModules(validInterpolationAttributes.size());
for (uint32_t i = 0; i < validInterpolationAttributes.size(); ++i) {
std::string interfaceDeclaration;
{
const auto& interpolationAttribute = validInterpolationAttributes[i];
std::ostringstream sstream;
sstream << "struct A { [[location(0)";
if (interpolationAttribute.interpolationType != InterpolationType::None) {
sstream << ", interpolate("
<< kInterpolationTypeString[static_cast<uint8_t>(
interpolationAttribute.interpolationType)];
if (interpolationAttribute.interpolationSampling != InterpolationSampling::None) {
sstream << ", "
<< kInterpolationSamplingString[static_cast<uint8_t>(
interpolationAttribute.interpolationSampling)];
}
sstream << ")";
}
sstream << " ]] a : vec4<f32>;" << std::endl;
interfaceDeclaration = sstream.str();
}
{
std::ostringstream vertexStream;
vertexStream << interfaceDeclaration << R"(
[[builtin(position)]] pos: vec4<f32>;
};
[[stage(vertex)]] fn main() -> A {
var vertexOut: A;
vertexOut.pos = vec4<f32>(0.0, 0.0, 0.0, 1.0);
return vertexOut;
})";
vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str());
}
{
std::ostringstream fragmentStream;
fragmentStream << interfaceDeclaration << R"(
};
[[stage(fragment)]] fn main(fragmentIn: A) -> [[location(0)]] vec4<f32> {
return fragmentIn.a;
})";
fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str());
}
}
auto GetAppliedInterpolationAttribute = [](const InterpolationAttribute& attribute) {
InterpolationAttribute appliedAttribute = {attribute.interpolationType,
attribute.interpolationSampling};
switch (attribute.interpolationType) {
// If the interpolation attribute is not specified, then
// [[interpolate(perspective, center)]] or [[interpolate(perspective)]] is assumed.
case InterpolationType::None:
appliedAttribute.interpolationType = InterpolationType::Perspective;
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
break;
// If the interpolation type is perspective or linear, and the interpolation
// sampling is not specified, then 'center' is assumed.
case InterpolationType::Perspective:
case InterpolationType::Linear:
if (appliedAttribute.interpolationSampling == InterpolationSampling::None) {
appliedAttribute.interpolationSampling = InterpolationSampling::Center;
}
break;
case InterpolationType::Flat:
break;
default:
UNREACHABLE();
}
return appliedAttribute;
};
auto InterpolationAttributeMatch = [GetAppliedInterpolationAttribute](
const InterpolationAttribute& attribute1,
const InterpolationAttribute& attribute2) {
InterpolationAttribute appliedAttribute1 = GetAppliedInterpolationAttribute(attribute1);
InterpolationAttribute appliedAttribute2 = GetAppliedInterpolationAttribute(attribute2);
return appliedAttribute1.interpolationType == appliedAttribute2.interpolationType &&
appliedAttribute1.interpolationSampling == appliedAttribute2.interpolationSampling;
};
for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < validInterpolationAttributes.size();
++vertexModuleIndex) {
wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex];
for (uint32_t fragmentModuleIndex = 0;
fragmentModuleIndex < validInterpolationAttributes.size(); ++fragmentModuleIndex) {
wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex];
bool shouldSuccess =
InterpolationAttributeMatch(validInterpolationAttributes[vertexModuleIndex],
validInterpolationAttributes[fragmentModuleIndex]);
CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess);
}
}
}