blob: 6a6708d881585c9db3cb5d25396e04aa854716a7 [file] [log] [blame] [edit]
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
class QueryTests : public DawnTest {
protected:
wgpu::Buffer CreateResolveBuffer(uint64_t size) {
wgpu::BufferDescriptor descriptor;
descriptor.size = size;
descriptor.usage = wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc |
wgpu::BufferUsage::CopyDst;
return device.CreateBuffer(&descriptor);
}
};
// Clear the content of the result buffer into 0xFFFFFFFF.
constexpr static uint64_t kSentinelValue = ~uint64_t(0u);
constexpr static uint64_t kZero = 0u;
constexpr uint64_t kMinDestinationOffset = 256;
constexpr uint64_t kMinCount = kMinDestinationOffset / sizeof(uint64_t);
class OcclusionExpectation : public detail::Expectation {
public:
enum class Result { Zero, NonZero };
~OcclusionExpectation() override = default;
OcclusionExpectation(Result expected) {
mExpected = expected;
}
testing::AssertionResult Check(const void* data, size_t size) override {
ASSERT(size % sizeof(uint64_t) == 0);
const uint64_t* actual = static_cast<const uint64_t*>(data);
for (size_t i = 0; i < size / sizeof(uint64_t); i++) {
if (actual[i] == kSentinelValue) {
return testing::AssertionFailure()
<< "Data[" << i << "] was not written (it kept the sentinel value of "
<< kSentinelValue << ")." << std::endl;
}
if (mExpected == Result::Zero && actual[i] != 0) {
return testing::AssertionFailure()
<< "Expected data[" << i << "] to be zero, actual: " << actual[i] << "."
<< std::endl;
}
if (mExpected == Result::NonZero && actual[i] == 0) {
return testing::AssertionFailure()
<< "Expected data[" << i << "] to be non-zero." << std::endl;
}
}
return testing::AssertionSuccess();
}
private:
Result mExpected;
};
class OcclusionQueryTests : public QueryTests {
protected:
void SetUp() override {
DawnTest::SetUp();
// Create basic render pipeline
vsModule = utils::CreateShaderModule(device, R"(
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] VertexIndex : u32) -> [[builtin(position)]] vec4<f32> {
var pos = array<vec2<f32>, 3>(
vec2<f32>( 1.0, 1.0),
vec2<f32>(-1.0, -1.0),
vec2<f32>( 1.0, -1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
})");
fsModule = utils::CreateShaderModule(device, R"(
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
pipeline = device.CreateRenderPipeline(&descriptor);
}
struct ScissorRect {
uint32_t x;
uint32_t y;
uint32_t width;
uint32_t height;
};
wgpu::QuerySet CreateOcclusionQuerySet(uint32_t count) {
wgpu::QuerySetDescriptor descriptor;
descriptor.count = count;
descriptor.type = wgpu::QueryType::Occlusion;
return device.CreateQuerySet(&descriptor);
}
wgpu::Texture CreateRenderTexture(wgpu::TextureFormat format) {
wgpu::TextureDescriptor descriptor;
descriptor.size = {kRTSize, kRTSize, 1};
descriptor.format = format;
descriptor.usage = wgpu::TextureUsage::RenderAttachment;
return device.CreateTexture(&descriptor);
}
void TestOcclusionQueryWithDepthStencilTest(bool depthTestEnabled,
bool stencilTestEnabled,
OcclusionExpectation::Result expected) {
constexpr uint32_t kQueryCount = 1;
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
// Enable depth and stencil tests and set comparison tests never pass.
wgpu::DepthStencilState* depthStencil =
descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth24PlusStencil8);
depthStencil->depthCompare =
depthTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
depthStencil->stencilFront.compare =
stencilTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
depthStencil->stencilBack.compare =
stencilTestEnabled ? wgpu::CompareFunction::Never : wgpu::CompareFunction::Always;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&descriptor);
wgpu::Texture renderTarget = CreateRenderTexture(wgpu::TextureFormat::RGBA8Unorm);
wgpu::TextureView renderTargetView = renderTarget.CreateView();
wgpu::Texture depthTexture = CreateRenderTexture(wgpu::TextureFormat::Depth24PlusStencil8);
wgpu::TextureView depthTextureView = depthTexture.CreateView();
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
// occlusion testing
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
utils::ComboRenderPassDescriptor renderPass({renderTargetView}, depthTextureView);
renderPass.occlusionQuerySet = querySet;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(renderPipeline);
pass.SetStencilReference(0);
pass.BeginOcclusionQuery(0);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new OcclusionExpectation(expected));
}
void TestOcclusionQueryWithScissorTest(ScissorRect rect,
OcclusionExpectation::Result expected) {
constexpr uint32_t kQueryCount = 1;
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
// occlusion testing
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
renderPass.renderPassInfo.occlusionQuerySet = querySet;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetScissorRect(rect.x, rect.y, rect.width, rect.height);
pass.BeginOcclusionQuery(0);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new OcclusionExpectation(expected));
}
wgpu::ShaderModule vsModule;
wgpu::ShaderModule fsModule;
wgpu::RenderPipeline pipeline;
constexpr static unsigned int kRTSize = 4;
};
// Test creating query set with the type of Occlusion
TEST_P(OcclusionQueryTests, QuerySetCreation) {
// Zero-sized query set is allowed.
CreateOcclusionQuerySet(0);
CreateOcclusionQuerySet(1);
}
// Test destroying query set
TEST_P(OcclusionQueryTests, QuerySetDestroy) {
wgpu::QuerySet querySet = CreateOcclusionQuerySet(1);
querySet.Destroy();
}
// Draw a bottom right triangle with depth/stencil testing enabled and check whether there is
// sample passed the testing by non-precise occlusion query with the results:
// zero indicates that no sample passed depth/stencil testing,
// non-zero indicates that at least one sample passed depth/stencil testing.
TEST_P(OcclusionQueryTests, QueryWithDepthStencilTest) {
// Disable depth/stencil testing, the samples always pass the testing, the expected occlusion
// result is non-zero.
TestOcclusionQueryWithDepthStencilTest(false, false, OcclusionExpectation::Result::NonZero);
// Only enable depth testing and set the samples never pass the testing, the expected occlusion
// result is zero.
TestOcclusionQueryWithDepthStencilTest(true, false, OcclusionExpectation::Result::Zero);
// Only enable stencil testing and set the samples never pass the testing, the expected
// occlusion result is zero.
TestOcclusionQueryWithDepthStencilTest(false, true, OcclusionExpectation::Result::Zero);
}
// Draw a bottom right triangle with scissor testing enabled and check whether there is
// sample passed the testing by non-precise occlusion query with the results:
// zero indicates that no sample passed scissor testing,
// non-zero indicates that at least one sample passed scissor testing.
TEST_P(OcclusionQueryTests, QueryWithScissorTest) {
// TODO(hao.x.li@intel.com): It's failed weirdly on Intel TGL(Window Vulkan) which says
// the destination buffer keep sentinel value in the second case, it cannot be reproduced with
// any debug actions including Vulkan validation layers enabled, and takes time to find out if
// the WriteBuffer and ResolveQuerySet are not executed in order or the ResolveQuerySet does not
// copy the result to the buffer. In order to integrate end2end tests to Intel driver CL without
// unknown issues, skip it until we find the root cause.
DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
// Test there are samples passed scissor testing, the expected occlusion result is non-zero.
TestOcclusionQueryWithScissorTest({2, 1, 2, 1}, OcclusionExpectation::Result::NonZero);
// Test there is no sample passed scissor testing, the expected occlusion result is zero.
TestOcclusionQueryWithScissorTest({0, 0, 2, 1}, OcclusionExpectation::Result::Zero);
}
// Test begin occlusion query with same query index on different render pass
TEST_P(OcclusionQueryTests, Rewrite) {
constexpr uint32_t kQueryCount = 1;
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set all bits in buffer to check 0 is correctly written if there is no sample passed the
// occlusion testing
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
renderPass.renderPassInfo.occlusionQuerySet = querySet;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
// Begin occlusion without draw call
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.BeginOcclusionQuery(0);
pass.EndOcclusionQuery();
pass.EndPass();
// Begin occlusion with same query index with draw call
wgpu::RenderPassEncoder rewritePass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
rewritePass.SetPipeline(pipeline);
rewritePass.BeginOcclusionQuery(0);
rewritePass.Draw(3);
rewritePass.EndOcclusionQuery();
rewritePass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t),
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
}
// Test resolving occlusion query correctly if the queries are written sparsely, which also tests
// the query resetting at the start of render passes on Vulkan backend.
TEST_P(OcclusionQueryTests, ResolveSparseQueries) {
// TODO(hao.x.li@intel.com): Fails on Intel Windows Vulkan due to a driver issue that
// vkCmdFillBuffer and vkCmdCopyQueryPoolResults are not executed in order, skip it util
// the issue is fixed.
DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
// TODO(hao.x.li@intel.com): Investigate why it's failed on D3D12 on Nvidia when running with
// the previous occlusion tests. Expect resolve to 0 for these unwritten queries but the
// occlusion result of the previous tests is got.
DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsNvidia());
constexpr uint32_t kQueryCount = 7;
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set sentinel values to check the queries are resolved correctly if the queries are
// written sparsely.
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
renderPass.renderPassInfo.occlusionQuerySet = querySet;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
// Write queries sparsely for testing the query resetting on Vulkan and resolving unwritten
// queries to 0.
// 0 - not written (tests starting with not written).
// 1 - written (tests combing multiple written, although other tests already do it).
// 2 - written.
// 3 - not written (tests skipping over not written in the middle).
// 4 - not written.
// 5 - written (tests another written query in the middle).
// 6 - not written (tests the last query not being written).
pass.BeginOcclusionQuery(1);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.BeginOcclusionQuery(2);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.BeginOcclusionQuery(5);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// The query at index 0 should be resolved to 0.
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 0, 1);
EXPECT_BUFFER(destination, sizeof(uint64_t), 2 * sizeof(uint64_t),
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
// The queries at index 3 and 4 should be resolved to 0.
std::vector<uint64_t> zeros(2, kZero);
EXPECT_BUFFER_U64_RANGE_EQ(zeros.data(), destination, 3 * sizeof(uint64_t), 2);
EXPECT_BUFFER(destination, 5 * sizeof(uint64_t), sizeof(uint64_t),
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
// The query at index 6 should be resolved to 0.
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 6 * sizeof(uint64_t), 1);
}
// Test resolving occlusion query to 0 if all queries are not written
TEST_P(OcclusionQueryTests, ResolveWithoutWritten) {
// TODO(hao.x.li@intel.com): Investigate why it's failed on D3D12 on Nvidia when running with
// the previous occlusion tests. Expect resolve to 0 but the occlusion result of the previous
// tests is got.
DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsNvidia());
constexpr uint32_t kQueryCount = 1;
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set sentinel values to check 0 is correctly written if resolving query set without
// any written.
queue.WriteBuffer(destination, 0, &kSentinelValue, sizeof(kSentinelValue));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 0, 1);
}
// Test resolving occlusion query to the destination buffer with offset
TEST_P(OcclusionQueryTests, ResolveToBufferWithOffset) {
constexpr uint32_t kQueryCount = 2;
wgpu::QuerySet querySet = CreateOcclusionQuerySet(kQueryCount);
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
renderPass.renderPassInfo.occlusionQuerySet = querySet;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.BeginOcclusionQuery(0);
pass.Draw(3);
pass.EndOcclusionQuery();
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
constexpr uint64_t kBufferSize = kQueryCount * sizeof(uint64_t) + kMinDestinationOffset;
constexpr uint64_t kCount = kQueryCount + kMinCount;
// Resolve the query result to first slot in the buffer, other slots should not be written.
{
wgpu::Buffer destination = CreateResolveBuffer(kBufferSize);
// Set sentinel values to check the query is resolved to the correct slot of the buffer.
std::vector<uint64_t> sentinelValues(kCount, kSentinelValue);
queue.WriteBuffer(destination, 0, sentinelValues.data(), kBufferSize);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.ResolveQuerySet(querySet, 0, 1, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t),
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
EXPECT_BUFFER_U64_RANGE_EQ(sentinelValues.data(), destination, sizeof(uint64_t),
kCount - 1);
}
// Resolve the query result to second slot in the buffer, the first one should not be written.
{
wgpu::Buffer destination = CreateResolveBuffer(kBufferSize);
// Set sentinel values to check the query is resolved to the correct slot of the buffer.
std::vector<uint64_t> sentinelValues(kCount, kSentinelValue);
queue.WriteBuffer(destination, 0, sentinelValues.data(), kBufferSize);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.ResolveQuerySet(querySet, 0, 1, destination, kMinDestinationOffset);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U64_RANGE_EQ(sentinelValues.data(), destination, 0, kMinCount);
EXPECT_BUFFER(destination, kMinDestinationOffset, sizeof(uint64_t),
new OcclusionExpectation(OcclusionExpectation::Result::NonZero));
}
}
DAWN_INSTANTIATE_TEST(OcclusionQueryTests, D3D12Backend(), MetalBackend(), VulkanBackend());
class PipelineStatisticsQueryTests : public QueryTests {
protected:
void SetUp() override {
DawnTest::SetUp();
// Skip all tests if pipeline statistics feature is not supported
DAWN_TEST_UNSUPPORTED_IF(!SupportsFeatures({"pipeline-statistics-query"}));
}
std::vector<const char*> GetRequiredFeatures() override {
std::vector<const char*> requiredFeatures = {};
if (SupportsFeatures({"pipeline-statistics-query"})) {
requiredFeatures.push_back("pipeline-statistics-query");
}
return requiredFeatures;
}
wgpu::QuerySet CreateQuerySetForPipelineStatistics(
uint32_t queryCount,
std::vector<wgpu::PipelineStatisticName> pipelineStatistics = {}) {
wgpu::QuerySetDescriptor descriptor;
descriptor.count = queryCount;
descriptor.type = wgpu::QueryType::PipelineStatistics;
if (pipelineStatistics.size() > 0) {
descriptor.pipelineStatistics = pipelineStatistics.data();
descriptor.pipelineStatisticsCount = pipelineStatistics.size();
}
return device.CreateQuerySet(&descriptor);
}
};
// Test creating query set with the type of PipelineStatistics
TEST_P(PipelineStatisticsQueryTests, QuerySetCreation) {
// Zero-sized query set is allowed.
CreateQuerySetForPipelineStatistics(0, {wgpu::PipelineStatisticName::ClipperInvocations,
wgpu::PipelineStatisticName::VertexShaderInvocations});
CreateQuerySetForPipelineStatistics(1, {wgpu::PipelineStatisticName::ClipperInvocations,
wgpu::PipelineStatisticName::VertexShaderInvocations});
}
DAWN_INSTANTIATE_TEST(PipelineStatisticsQueryTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
class TimestampExpectation : public detail::Expectation {
public:
~TimestampExpectation() override = default;
// Expect the timestamp results are greater than 0.
testing::AssertionResult Check(const void* data, size_t size) override {
ASSERT(size % sizeof(uint64_t) == 0);
const uint64_t* timestamps = static_cast<const uint64_t*>(data);
for (size_t i = 0; i < size / sizeof(uint64_t); i++) {
if (timestamps[i] == 0) {
return testing::AssertionFailure()
<< "Expected data[" << i << "] to be greater than 0." << std::endl;
}
}
return testing::AssertionSuccess();
}
};
class TimestampQueryTests : public QueryTests {
protected:
void SetUp() override {
DawnTest::SetUp();
// Skip all tests if timestamp feature is not supported
DAWN_TEST_UNSUPPORTED_IF(!SupportsFeatures({"timestamp-query"}));
}
std::vector<const char*> GetRequiredFeatures() override {
std::vector<const char*> requiredFeatures = {};
if (SupportsFeatures({"timestamp-query"})) {
requiredFeatures.push_back("timestamp-query");
}
return requiredFeatures;
}
wgpu::QuerySet CreateQuerySetForTimestamp(uint32_t queryCount) {
wgpu::QuerySetDescriptor descriptor;
descriptor.count = queryCount;
descriptor.type = wgpu::QueryType::Timestamp;
return device.CreateQuerySet(&descriptor);
}
};
// Test creating query set with the type of Timestamp
TEST_P(TimestampQueryTests, QuerySetCreation) {
// Zero-sized query set is allowed.
CreateQuerySetForTimestamp(0);
CreateQuerySetForTimestamp(1);
}
// Test calling timestamp query from command encoder
TEST_P(TimestampQueryTests, TimestampOnCommandEncoder) {
constexpr uint32_t kQueryCount = 2;
// Write timestamp with different query indexes
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 1);
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
// Write timestamp with same query index outside pass on same encoder
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 1);
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 1);
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
}
// Test calling timestamp query from render pass encoder
TEST_P(TimestampQueryTests, TimestampOnRenderPass) {
constexpr uint32_t kQueryCount = 2;
// Write timestamp with different query indexes
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
// Write timestamp with same query index, not need test rewrite inside render pass due to it's
// not allowed
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 1);
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
}
// Test calling timestamp query from compute pass encoder
TEST_P(TimestampQueryTests, TimestampOnComputePass) {
constexpr uint32_t kQueryCount = 2;
// Write timestamp with different query indexes
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
// Write timestamp with same query index on both the outside and the inside of the compute pass
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 1);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
// Write timestamp with same query index inside compute pass
{
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.WriteTimestamp(querySet, 0);
pass.WriteTimestamp(querySet, 1);
pass.EndPass();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
}
// Test resolving timestamp query from another different encoder
TEST_P(TimestampQueryTests, ResolveFromAnotherEncoder) {
constexpr uint32_t kQueryCount = 2;
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder timestampEncoder = device.CreateCommandEncoder();
timestampEncoder.WriteTimestamp(querySet, 0);
timestampEncoder.WriteTimestamp(querySet, 1);
wgpu::CommandBuffer timestampCommands = timestampEncoder.Finish();
queue.Submit(1, &timestampCommands);
wgpu::CommandEncoder resolveEncoder = device.CreateCommandEncoder();
resolveEncoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer resolveCommands = resolveEncoder.Finish();
queue.Submit(1, &resolveCommands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
// Test resolving timestamp query correctly if the queries are written sparsely
TEST_P(TimestampQueryTests, ResolveSparseQueries) {
// TODO(hao.x.li@intel.com): Fails on Intel Windows Vulkan due to a driver issue that
// vkCmdFillBuffer and vkCmdCopyQueryPoolResults are not executed in order, skip it util
// the issue is fixed.
DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
constexpr uint32_t kQueryCount = 4;
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set sentinel values to check the queries are resolved correctly if the queries are
// written sparsely
std::vector<uint64_t> sentinelValues{0, kSentinelValue, 0, kSentinelValue};
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.WriteTimestamp(querySet, 2);
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new TimestampExpectation);
// The query with no value written should be resolved to 0.
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, sizeof(uint64_t), 1);
EXPECT_BUFFER(destination, 2 * sizeof(uint64_t), sizeof(uint64_t), new TimestampExpectation);
// The query with no value written should be resolved to 0.
EXPECT_BUFFER_U64_RANGE_EQ(&kZero, destination, 3 * sizeof(uint64_t), 1);
}
// Test resolving timestamp query to 0 if all queries are not written
TEST_P(TimestampQueryTests, ResolveWithoutWritten) {
constexpr uint32_t kQueryCount = 2;
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
// Set sentinel values to check 0 is correctly written if resolving query set with no
// query is written
std::vector<uint64_t> sentinelValues(kQueryCount, kSentinelValue);
queue.WriteBuffer(destination, 0, sentinelValues.data(), kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.ResolveQuerySet(querySet, 0, kQueryCount, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
std::vector<uint64_t> expectedZeros(kQueryCount);
EXPECT_BUFFER_U64_RANGE_EQ(expectedZeros.data(), destination, 0, kQueryCount);
}
// Test resolving timestamp query to one slot in the buffer
TEST_P(TimestampQueryTests, ResolveToBufferWithOffset) {
// TODO(hao.x.li@intel.com): Fails on Intel Windows Vulkan due to a driver issue that
// vkCmdFillBuffer and vkCmdCopyQueryPoolResults are not executed in order, skip it util
// the issue is fixed.
DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
constexpr uint32_t kQueryCount = 2;
constexpr uint64_t kBufferSize = kQueryCount * sizeof(uint64_t) + kMinDestinationOffset;
constexpr uint64_t kCount = kQueryCount + kMinCount;
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
// Resolve the query result to first slot in the buffer, other slots should not be written
{
wgpu::Buffer destination = CreateResolveBuffer(kBufferSize);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.ResolveQuerySet(querySet, 0, 1, destination, 0);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
std::vector<uint64_t> zeros(kCount - 1, kZero);
EXPECT_BUFFER(destination, 0, sizeof(uint64_t), new TimestampExpectation);
EXPECT_BUFFER_U64_RANGE_EQ(zeros.data(), destination, sizeof(uint64_t), kCount - 1);
}
// Resolve the query result to the buffer with offset, the slots before the offset
// should not be written
{
wgpu::Buffer destination = CreateResolveBuffer(kBufferSize);
// Set sentinel values to check the query is resolved to the correct slot of the buffer.
std::vector<uint64_t> sentinelValues(kCount, kZero);
queue.WriteBuffer(destination, 0, sentinelValues.data(), kBufferSize);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.WriteTimestamp(querySet, 0);
encoder.ResolveQuerySet(querySet, 0, 1, destination, kMinDestinationOffset);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
std::vector<uint64_t> zeros(kMinCount, kZero);
EXPECT_BUFFER_U64_RANGE_EQ(zeros.data(), destination, 0, kMinCount);
EXPECT_BUFFER(destination, kMinDestinationOffset, sizeof(uint64_t),
new TimestampExpectation);
}
}
// Test resolving a query set twice into the same destination buffer with potentially overlapping
// ranges
TEST_P(TimestampQueryTests, ResolveTwiceToSameBuffer) {
// TODO(hao.x.li@intel.com): Fails on Intel Windows Vulkan due to a driver issue that
// vkCmdFillBuffer and vkCmdCopyQueryPoolResults are not executed in order, skip it util
// the issue is fixed.
DAWN_SUPPRESS_TEST_IF(IsWindows() && IsVulkan() && IsIntel());
constexpr uint32_t kQueryCount = kMinCount + 2;
wgpu::QuerySet querySet = CreateQuerySetForTimestamp(kQueryCount);
wgpu::Buffer destination = CreateResolveBuffer(kQueryCount * sizeof(uint64_t));
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
for (uint32_t i = 0; i < kQueryCount; i++) {
encoder.WriteTimestamp(querySet, i);
}
encoder.ResolveQuerySet(querySet, 0, kMinCount + 1, destination, 0);
encoder.ResolveQuerySet(querySet, kMinCount, 2, destination, kMinDestinationOffset);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(destination, 0, kQueryCount * sizeof(uint64_t), new TimestampExpectation);
}
DAWN_INSTANTIATE_TEST(TimestampQueryTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());