blob: 31c673184186715d193a85aba79db56584d8f019 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/Device.h"
#include "common/Log.h"
#include "dawn_native/Adapter.h"
#include "dawn_native/AsyncTask.h"
#include "dawn_native/AttachmentState.h"
#include "dawn_native/BindGroup.h"
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Buffer.h"
#include "dawn_native/ChainUtils_autogen.h"
#include "dawn_native/CommandBuffer.h"
#include "dawn_native/CommandEncoder.h"
#include "dawn_native/CompilationMessages.h"
#include "dawn_native/CreatePipelineAsyncTask.h"
#include "dawn_native/DynamicUploader.h"
#include "dawn_native/ErrorData.h"
#include "dawn_native/ErrorInjector.h"
#include "dawn_native/ErrorScope.h"
#include "dawn_native/ExternalTexture.h"
#include "dawn_native/Instance.h"
#include "dawn_native/InternalPipelineStore.h"
#include "dawn_native/ObjectType_autogen.h"
#include "dawn_native/PersistentCache.h"
#include "dawn_native/QuerySet.h"
#include "dawn_native/Queue.h"
#include "dawn_native/RenderBundleEncoder.h"
#include "dawn_native/RenderPipeline.h"
#include "dawn_native/Sampler.h"
#include "dawn_native/Surface.h"
#include "dawn_native/SwapChain.h"
#include "dawn_native/Texture.h"
#include "dawn_native/ValidationUtils_autogen.h"
#include "dawn_platform/DawnPlatform.h"
#include "dawn_platform/tracing/TraceEvent.h"
#include "utils/WGPUHelpers.h"
#include <array>
#include <mutex>
#include <unordered_set>
namespace dawn::native {
// DeviceBase sub-structures
// The caches are unordered_sets of pointers with special hash and compare functions
// to compare the value of the objects, instead of the pointers.
template <typename Object>
using ContentLessObjectCache =
std::unordered_set<Object*, typename Object::HashFunc, typename Object::EqualityFunc>;
struct DeviceBase::Caches {
~Caches() {
ASSERT(attachmentStates.empty());
ASSERT(bindGroupLayouts.empty());
ASSERT(computePipelines.empty());
ASSERT(pipelineLayouts.empty());
ASSERT(renderPipelines.empty());
ASSERT(samplers.empty());
ASSERT(shaderModules.empty());
}
ContentLessObjectCache<AttachmentStateBlueprint> attachmentStates;
ContentLessObjectCache<BindGroupLayoutBase> bindGroupLayouts;
ContentLessObjectCache<ComputePipelineBase> computePipelines;
ContentLessObjectCache<PipelineLayoutBase> pipelineLayouts;
ContentLessObjectCache<RenderPipelineBase> renderPipelines;
ContentLessObjectCache<SamplerBase> samplers;
ContentLessObjectCache<ShaderModuleBase> shaderModules;
};
struct DeviceBase::DeprecationWarnings {
std::unordered_set<std::string> emitted;
size_t count = 0;
};
namespace {
struct LoggingCallbackTask : CallbackTask {
public:
LoggingCallbackTask() = delete;
LoggingCallbackTask(wgpu::LoggingCallback loggingCallback,
WGPULoggingType loggingType,
const char* message,
void* userdata)
: mCallback(loggingCallback),
mLoggingType(loggingType),
mMessage(message),
mUserdata(userdata) {
// Since the Finish() will be called in uncertain future in which time the message
// may already disposed, we must keep a local copy in the CallbackTask.
}
void Finish() override {
mCallback(mLoggingType, mMessage.c_str(), mUserdata);
}
void HandleShutDown() override {
// Do the logging anyway
mCallback(mLoggingType, mMessage.c_str(), mUserdata);
}
void HandleDeviceLoss() override {
mCallback(mLoggingType, mMessage.c_str(), mUserdata);
}
private:
// As all deferred callback tasks will be triggered before modifying the registered
// callback or shutting down, we are ensured that callback function and userdata pointer
// stored in tasks is valid when triggered.
wgpu::LoggingCallback mCallback;
WGPULoggingType mLoggingType;
std::string mMessage;
void* mUserdata;
};
ResultOrError<Ref<PipelineLayoutBase>>
ValidateLayoutAndGetComputePipelineDescriptorWithDefaults(
DeviceBase* device,
const ComputePipelineDescriptor& descriptor,
ComputePipelineDescriptor* outDescriptor) {
Ref<PipelineLayoutBase> layoutRef;
*outDescriptor = descriptor;
if (outDescriptor->layout == nullptr) {
DAWN_TRY_ASSIGN(layoutRef, PipelineLayoutBase::CreateDefault(
device, {{
SingleShaderStage::Compute,
outDescriptor->compute.module,
outDescriptor->compute.entryPoint,
outDescriptor->compute.constantCount,
outDescriptor->compute.constants,
}}));
outDescriptor->layout = layoutRef.Get();
}
return layoutRef;
}
ResultOrError<Ref<PipelineLayoutBase>>
ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults(
DeviceBase* device,
const RenderPipelineDescriptor& descriptor,
RenderPipelineDescriptor* outDescriptor) {
Ref<PipelineLayoutBase> layoutRef;
*outDescriptor = descriptor;
if (descriptor.layout == nullptr) {
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
DAWN_TRY_ASSIGN(layoutRef,
PipelineLayoutBase::CreateDefault(
device, GetRenderStagesAndSetDummyShader(device, &descriptor)));
outDescriptor->layout = layoutRef.Get();
}
return layoutRef;
}
} // anonymous namespace
// DeviceBase
DeviceBase::DeviceBase(AdapterBase* adapter, const DeviceDescriptor* descriptor)
: mInstance(adapter->GetInstance()), mAdapter(adapter), mNextPipelineCompatibilityToken(1) {
ASSERT(descriptor != nullptr);
const DawnTogglesDeviceDescriptor* togglesDesc = nullptr;
FindInChain(descriptor->nextInChain, &togglesDesc);
if (togglesDesc != nullptr) {
ApplyToggleOverrides(togglesDesc);
}
ApplyFeatures(descriptor);
if (descriptor->requiredLimits != nullptr) {
mLimits.v1 = ReifyDefaultLimits(descriptor->requiredLimits->limits);
} else {
GetDefaultLimits(&mLimits.v1);
}
mFormatTable = BuildFormatTable(this);
SetDefaultToggles();
}
DeviceBase::DeviceBase() : mState(State::Alive) {
mCaches = std::make_unique<DeviceBase::Caches>();
}
DeviceBase::~DeviceBase() {
// We need to explicitly release the Queue before we complete the destructor so that the
// Queue does not get destroyed after the Device.
mQueue = nullptr;
}
MaybeError DeviceBase::Initialize(QueueBase* defaultQueue) {
mQueue = AcquireRef(defaultQueue);
#if defined(DAWN_ENABLE_ASSERTS)
mUncapturedErrorCallback = [](WGPUErrorType, char const*, void*) {
static bool calledOnce = false;
if (!calledOnce) {
calledOnce = true;
dawn::WarningLog() << "No Dawn device uncaptured error callback was set. This is "
"probably not intended. If you really want to ignore errors "
"and suppress this message, set the callback to null.";
}
};
mDeviceLostCallback = [](WGPUDeviceLostReason, char const*, void*) {
static bool calledOnce = false;
if (!calledOnce) {
calledOnce = true;
dawn::WarningLog() << "No Dawn device lost callback was set. This is probably not "
"intended. If you really want to ignore device lost "
"and suppress this message, set the callback to null.";
}
};
#endif // DAWN_ENABLE_ASSERTS
mCaches = std::make_unique<DeviceBase::Caches>();
mErrorScopeStack = std::make_unique<ErrorScopeStack>();
mDynamicUploader = std::make_unique<DynamicUploader>(this);
mCallbackTaskManager = std::make_unique<CallbackTaskManager>();
mDeprecationWarnings = std::make_unique<DeprecationWarnings>();
mInternalPipelineStore = std::make_unique<InternalPipelineStore>(this);
mPersistentCache = std::make_unique<PersistentCache>(this);
ASSERT(GetPlatform() != nullptr);
mWorkerTaskPool = GetPlatform()->CreateWorkerTaskPool();
mAsyncTaskManager = std::make_unique<AsyncTaskManager>(mWorkerTaskPool.get());
// Starting from now the backend can start doing reentrant calls so the device is marked as
// alive.
mState = State::Alive;
DAWN_TRY_ASSIGN(mEmptyBindGroupLayout, CreateEmptyBindGroupLayout());
// If dummy fragment shader module is needed, initialize it
if (IsToggleEnabled(Toggle::UseDummyFragmentInVertexOnlyPipeline)) {
// The empty fragment shader, used as a work around for vertex-only render pipeline
constexpr char kEmptyFragmentShader[] = R"(
[[stage(fragment)]] fn fs_empty_main() {}
)";
ShaderModuleDescriptor descriptor;
ShaderModuleWGSLDescriptor wgslDesc;
wgslDesc.source = kEmptyFragmentShader;
descriptor.nextInChain = &wgslDesc;
DAWN_TRY_ASSIGN(mInternalPipelineStore->dummyFragmentShader,
CreateShaderModule(&descriptor));
}
return {};
}
void DeviceBase::DestroyObjects() {
// List of object types in reverse "dependency" order so we can iterate and delete the
// objects safely starting at leaf objects. We define dependent here such that if B has
// a ref to A, then B depends on A. We therefore try to destroy B before destroying A. Note
// that this only considers the immediate frontend dependencies, while backend objects could
// add complications and extra dependencies.
//
// Note that AttachmentState is not an ApiObject so it cannot be eagerly destroyed. However,
// since AttachmentStates are cached by the device, objects that hold references to
// AttachmentStates should make sure to un-ref them in their Destroy operation so that we
// can destroy the frontend cache.
// clang-format off
static constexpr std::array<ObjectType, 19> kObjectTypeDependencyOrder = {
ObjectType::ComputePassEncoder,
ObjectType::RenderPassEncoder,
ObjectType::RenderBundleEncoder,
ObjectType::RenderBundle,
ObjectType::CommandEncoder,
ObjectType::CommandBuffer,
ObjectType::RenderPipeline,
ObjectType::ComputePipeline,
ObjectType::PipelineLayout,
ObjectType::SwapChain,
ObjectType::BindGroup,
ObjectType::BindGroupLayout,
ObjectType::ShaderModule,
ObjectType::ExternalTexture,
ObjectType::TextureView,
ObjectType::Texture,
ObjectType::QuerySet,
ObjectType::Sampler,
ObjectType::Buffer,
};
// clang-format on
// We first move all objects out from the tracking list into a separate list so that we can
// avoid locking the same mutex twice. We can then iterate across the separate list to call
// the actual destroy function.
LinkedList<ApiObjectBase> objects;
for (ObjectType type : kObjectTypeDependencyOrder) {
ApiObjectList& objList = mObjectLists[type];
const std::lock_guard<std::mutex> lock(objList.mutex);
objList.objects.MoveInto(&objects);
}
for (LinkNode<ApiObjectBase>* node : objects) {
node->value()->Destroy();
}
}
void DeviceBase::Destroy() {
// Skip if we are already destroyed.
if (mState == State::Destroyed) {
return;
}
// Skip handling device facilities if they haven't even been created (or failed doing so)
if (mState != State::BeingCreated) {
// The device is being destroyed so it will be lost, call the application callback.
if (mDeviceLostCallback != nullptr) {
mDeviceLostCallback(WGPUDeviceLostReason_Destroyed, "Device was destroyed.",
mDeviceLostUserdata);
mDeviceLostCallback = nullptr;
}
// Call all the callbacks immediately as the device is about to shut down.
// TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible.
mAsyncTaskManager->WaitAllPendingTasks();
auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks();
for (std::unique_ptr<CallbackTask>& callbackTask : callbackTasks) {
callbackTask->HandleShutDown();
}
}
// Disconnect the device, depending on which state we are currently in.
switch (mState) {
case State::BeingCreated:
// The GPU timeline was never started so we don't have to wait.
break;
case State::Alive:
// Alive is the only state which can have GPU work happening. Wait for all of it to
// complete before proceeding with destruction.
// Ignore errors so that we can continue with destruction
IgnoreErrors(WaitForIdleForDestruction());
AssumeCommandsComplete();
break;
case State::BeingDisconnected:
// Getting disconnected is a transient state happening in a single API call so there
// is always an external reference keeping the Device alive, which means the
// destructor cannot run while BeingDisconnected.
UNREACHABLE();
break;
case State::Disconnected:
break;
case State::Destroyed:
// If we are already destroyed we should've skipped this work entirely.
UNREACHABLE();
break;
}
ASSERT(mCompletedSerial == mLastSubmittedSerial);
ASSERT(mFutureSerial <= mCompletedSerial);
if (mState != State::BeingCreated) {
// The GPU timeline is finished.
// Finish destroying all objects owned by the device and tick the queue-related tasks
// since they should be complete. This must be done before DestroyImpl() it may
// relinquish resources that will be freed by backends in the DestroyImpl() call.
DestroyObjects();
mQueue->Tick(GetCompletedCommandSerial());
// Call TickImpl once last time to clean up resources
// Ignore errors so that we can continue with destruction
IgnoreErrors(TickImpl());
}
// At this point GPU operations are always finished, so we are in the disconnected state.
// Note that currently this state change is required because some of the backend
// implementations of DestroyImpl checks that we are disconnected before doing work.
mState = State::Disconnected;
mDynamicUploader = nullptr;
mCallbackTaskManager = nullptr;
mAsyncTaskManager = nullptr;
mPersistentCache = nullptr;
mEmptyBindGroupLayout = nullptr;
mInternalPipelineStore = nullptr;
AssumeCommandsComplete();
// Now that the GPU timeline is empty, destroy the backend device.
DestroyImpl();
mCaches = nullptr;
mState = State::Destroyed;
}
void DeviceBase::APIDestroy() {
// TODO(crbug.com/dawn/628) Re-enable once CTS testing is in place and passing.
if (IsToggleEnabled(Toggle::DisallowUnsafeAPIs)) {
ConsumedError(DAWN_VALIDATION_ERROR(
"Explicit device.destroy() is disallowed because it is not fully implemented"));
return;
}
Destroy();
}
void DeviceBase::HandleError(InternalErrorType type, const char* message) {
if (type == InternalErrorType::DeviceLost) {
mState = State::Disconnected;
// If the ErrorInjector is enabled, then the device loss might be fake and the device
// still be executing commands. Force a wait for idle in this case, with State being
// Disconnected so we can detect this case in WaitForIdleForDestruction.
if (ErrorInjectorEnabled()) {
IgnoreErrors(WaitForIdleForDestruction());
}
// A real device lost happened. Set the state to disconnected as the device cannot be
// used. Also tags all commands as completed since the device stopped running.
AssumeCommandsComplete();
} else if (type == InternalErrorType::Internal) {
// If we receive an internal error, assume the backend can't recover and proceed with
// device destruction. We first wait for all previous commands to be completed so that
// backend objects can be freed immediately, before handling the loss.
// Move away from the Alive state so that the application cannot use this device
// anymore.
// TODO(crbug.com/dawn/831): Do we need atomics for this to become visible to other
// threads in a multithreaded scenario?
mState = State::BeingDisconnected;
// Ignore errors so that we can continue with destruction
// Assume all commands are complete after WaitForIdleForDestruction (because they were)
IgnoreErrors(WaitForIdleForDestruction());
IgnoreErrors(TickImpl());
AssumeCommandsComplete();
ASSERT(mFutureSerial <= mCompletedSerial);
mState = State::Disconnected;
// Now everything is as if the device was lost.
type = InternalErrorType::DeviceLost;
}
if (type == InternalErrorType::DeviceLost) {
// The device was lost, call the application callback.
if (mDeviceLostCallback != nullptr) {
mDeviceLostCallback(WGPUDeviceLostReason_Undefined, message, mDeviceLostUserdata);
mDeviceLostCallback = nullptr;
}
mQueue->HandleDeviceLoss();
// TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible.
mAsyncTaskManager->WaitAllPendingTasks();
auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks();
for (std::unique_ptr<CallbackTask>& callbackTask : callbackTasks) {
callbackTask->HandleDeviceLoss();
}
// Still forward device loss errors to the error scopes so they all reject.
mErrorScopeStack->HandleError(ToWGPUErrorType(type), message);
} else {
// Pass the error to the error scope stack and call the uncaptured error callback
// if it isn't handled. DeviceLost is not handled here because it should be
// handled by the lost callback.
bool captured = mErrorScopeStack->HandleError(ToWGPUErrorType(type), message);
if (!captured && mUncapturedErrorCallback != nullptr) {
mUncapturedErrorCallback(static_cast<WGPUErrorType>(ToWGPUErrorType(type)), message,
mUncapturedErrorUserdata);
}
}
}
void DeviceBase::ConsumeError(std::unique_ptr<ErrorData> error) {
ASSERT(error != nullptr);
HandleError(error->GetType(), error->GetFormattedMessage().c_str());
}
void DeviceBase::APISetLoggingCallback(wgpu::LoggingCallback callback, void* userdata) {
// The registered callback function and userdata pointer are stored and used by deferred
// callback tasks, and after setting a different callback (especially in the case of
// resetting) the resources pointed by such pointer may be freed. Flush all deferred
// callback tasks to guarantee we are never going to use the previous callback after
// this call.
if (IsLost()) {
return;
}
FlushCallbackTaskQueue();
mLoggingCallback = callback;
mLoggingUserdata = userdata;
}
void DeviceBase::APISetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata) {
// The registered callback function and userdata pointer are stored and used by deferred
// callback tasks, and after setting a different callback (especially in the case of
// resetting) the resources pointed by such pointer may be freed. Flush all deferred
// callback tasks to guarantee we are never going to use the previous callback after
// this call.
if (IsLost()) {
return;
}
FlushCallbackTaskQueue();
mUncapturedErrorCallback = callback;
mUncapturedErrorUserdata = userdata;
}
void DeviceBase::APISetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata) {
// The registered callback function and userdata pointer are stored and used by deferred
// callback tasks, and after setting a different callback (especially in the case of
// resetting) the resources pointed by such pointer may be freed. Flush all deferred
// callback tasks to guarantee we are never going to use the previous callback after
// this call.
if (IsLost()) {
return;
}
FlushCallbackTaskQueue();
mDeviceLostCallback = callback;
mDeviceLostUserdata = userdata;
}
void DeviceBase::APIPushErrorScope(wgpu::ErrorFilter filter) {
if (ConsumedError(ValidateErrorFilter(filter))) {
return;
}
mErrorScopeStack->Push(filter);
}
bool DeviceBase::APIPopErrorScope(wgpu::ErrorCallback callback, void* userdata) {
if (mErrorScopeStack->Empty()) {
return false;
}
ErrorScope scope = mErrorScopeStack->Pop();
if (callback != nullptr) {
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(static_cast<WGPUErrorType>(scope.GetErrorType()), scope.GetErrorMessage(),
userdata);
}
return true;
}
PersistentCache* DeviceBase::GetPersistentCache() {
ASSERT(mPersistentCache.get() != nullptr);
return mPersistentCache.get();
}
MaybeError DeviceBase::ValidateObject(const ApiObjectBase* object) const {
ASSERT(object != nullptr);
DAWN_INVALID_IF(object->GetDevice() != this,
"%s is associated with %s, and cannot be used with %s.", object,
object->GetDevice(), this);
// TODO(dawn:563): Preserve labels for error objects.
DAWN_INVALID_IF(object->IsError(), "%s is invalid.", object);
return {};
}
MaybeError DeviceBase::ValidateIsAlive() const {
DAWN_INVALID_IF(mState != State::Alive, "%s is lost.", this);
return {};
}
void DeviceBase::APILoseForTesting() {
if (mState != State::Alive) {
return;
}
HandleError(InternalErrorType::Internal, "Device lost for testing");
}
DeviceBase::State DeviceBase::GetState() const {
return mState;
}
bool DeviceBase::IsLost() const {
ASSERT(mState != State::BeingCreated);
return mState != State::Alive;
}
void DeviceBase::TrackObject(ApiObjectBase* object) {
ApiObjectList& objectList = mObjectLists[object->GetType()];
std::lock_guard<std::mutex> lock(objectList.mutex);
object->InsertBefore(objectList.objects.head());
}
std::mutex* DeviceBase::GetObjectListMutex(ObjectType type) {
return &mObjectLists[type].mutex;
}
AdapterBase* DeviceBase::GetAdapter() const {
return mAdapter;
}
dawn::platform::Platform* DeviceBase::GetPlatform() const {
return GetAdapter()->GetInstance()->GetPlatform();
}
ExecutionSerial DeviceBase::GetCompletedCommandSerial() const {
return mCompletedSerial;
}
ExecutionSerial DeviceBase::GetLastSubmittedCommandSerial() const {
return mLastSubmittedSerial;
}
ExecutionSerial DeviceBase::GetFutureSerial() const {
return mFutureSerial;
}
InternalPipelineStore* DeviceBase::GetInternalPipelineStore() {
return mInternalPipelineStore.get();
}
void DeviceBase::IncrementLastSubmittedCommandSerial() {
mLastSubmittedSerial++;
}
void DeviceBase::AssumeCommandsComplete() {
ExecutionSerial maxSerial =
ExecutionSerial(std::max(mLastSubmittedSerial + ExecutionSerial(1), mFutureSerial));
mLastSubmittedSerial = maxSerial;
mCompletedSerial = maxSerial;
}
bool DeviceBase::IsDeviceIdle() {
if (mAsyncTaskManager->HasPendingTasks()) {
return false;
}
ExecutionSerial maxSerial = std::max(mLastSubmittedSerial, mFutureSerial);
if (mCompletedSerial == maxSerial) {
return true;
}
return false;
}
ExecutionSerial DeviceBase::GetPendingCommandSerial() const {
return mLastSubmittedSerial + ExecutionSerial(1);
}
void DeviceBase::AddFutureSerial(ExecutionSerial serial) {
if (serial > mFutureSerial) {
mFutureSerial = serial;
}
}
MaybeError DeviceBase::CheckPassedSerials() {
ExecutionSerial completedSerial;
DAWN_TRY_ASSIGN(completedSerial, CheckAndUpdateCompletedSerials());
ASSERT(completedSerial <= mLastSubmittedSerial);
// completedSerial should not be less than mCompletedSerial unless it is 0.
// It can be 0 when there's no fences to check.
ASSERT(completedSerial >= mCompletedSerial || completedSerial == ExecutionSerial(0));
if (completedSerial > mCompletedSerial) {
mCompletedSerial = completedSerial;
}
return {};
}
ResultOrError<const Format*> DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const {
size_t index = ComputeFormatIndex(format);
DAWN_INVALID_IF(index >= mFormatTable.size(), "Unknown texture format %s.", format);
const Format* internalFormat = &mFormatTable[index];
DAWN_INVALID_IF(!internalFormat->isSupported, "Unsupported texture format %s.", format);
return internalFormat;
}
const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const {
size_t index = ComputeFormatIndex(format);
ASSERT(index < mFormatTable.size());
ASSERT(mFormatTable[index].isSupported);
return mFormatTable[index];
}
ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::GetOrCreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken) {
BindGroupLayoutBase blueprint(this, descriptor, pipelineCompatibilityToken,
ApiObjectBase::kUntrackedByDevice);
const size_t blueprintHash = blueprint.ComputeContentHash();
blueprint.SetContentHash(blueprintHash);
Ref<BindGroupLayoutBase> result;
auto iter = mCaches->bindGroupLayouts.find(&blueprint);
if (iter != mCaches->bindGroupLayouts.end()) {
result = *iter;
} else {
DAWN_TRY_ASSIGN(result,
CreateBindGroupLayoutImpl(descriptor, pipelineCompatibilityToken));
result->SetIsCachedReference();
result->SetContentHash(blueprintHash);
mCaches->bindGroupLayouts.insert(result.Get());
}
return std::move(result);
}
void DeviceBase::UncacheBindGroupLayout(BindGroupLayoutBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->bindGroupLayouts.erase(obj);
ASSERT(removedCount == 1);
}
// Private function used at initialization
ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateEmptyBindGroupLayout() {
BindGroupLayoutDescriptor desc = {};
desc.entryCount = 0;
desc.entries = nullptr;
return GetOrCreateBindGroupLayout(&desc);
}
BindGroupLayoutBase* DeviceBase::GetEmptyBindGroupLayout() {
ASSERT(mEmptyBindGroupLayout != nullptr);
return mEmptyBindGroupLayout.Get();
}
Ref<ComputePipelineBase> DeviceBase::GetCachedComputePipeline(
ComputePipelineBase* uninitializedComputePipeline) {
Ref<ComputePipelineBase> cachedPipeline;
auto iter = mCaches->computePipelines.find(uninitializedComputePipeline);
if (iter != mCaches->computePipelines.end()) {
cachedPipeline = *iter;
}
return cachedPipeline;
}
Ref<RenderPipelineBase> DeviceBase::GetCachedRenderPipeline(
RenderPipelineBase* uninitializedRenderPipeline) {
Ref<RenderPipelineBase> cachedPipeline;
auto iter = mCaches->renderPipelines.find(uninitializedRenderPipeline);
if (iter != mCaches->renderPipelines.end()) {
cachedPipeline = *iter;
}
return cachedPipeline;
}
Ref<ComputePipelineBase> DeviceBase::AddOrGetCachedComputePipeline(
Ref<ComputePipelineBase> computePipeline) {
auto [cachedPipeline, inserted] = mCaches->computePipelines.insert(computePipeline.Get());
if (inserted) {
computePipeline->SetIsCachedReference();
return computePipeline;
} else {
return *cachedPipeline;
}
}
Ref<RenderPipelineBase> DeviceBase::AddOrGetCachedRenderPipeline(
Ref<RenderPipelineBase> renderPipeline) {
auto [cachedPipeline, inserted] = mCaches->renderPipelines.insert(renderPipeline.Get());
if (inserted) {
renderPipeline->SetIsCachedReference();
return renderPipeline;
} else {
return *cachedPipeline;
}
}
void DeviceBase::UncacheComputePipeline(ComputePipelineBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->computePipelines.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::GetOrCreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor) {
PipelineLayoutBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice);
const size_t blueprintHash = blueprint.ComputeContentHash();
blueprint.SetContentHash(blueprintHash);
Ref<PipelineLayoutBase> result;
auto iter = mCaches->pipelineLayouts.find(&blueprint);
if (iter != mCaches->pipelineLayouts.end()) {
result = *iter;
} else {
DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(descriptor));
result->SetIsCachedReference();
result->SetContentHash(blueprintHash);
mCaches->pipelineLayouts.insert(result.Get());
}
return std::move(result);
}
void DeviceBase::UncachePipelineLayout(PipelineLayoutBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->pipelineLayouts.erase(obj);
ASSERT(removedCount == 1);
}
void DeviceBase::UncacheRenderPipeline(RenderPipelineBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->renderPipelines.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<Ref<SamplerBase>> DeviceBase::GetOrCreateSampler(
const SamplerDescriptor* descriptor) {
SamplerBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice);
const size_t blueprintHash = blueprint.ComputeContentHash();
blueprint.SetContentHash(blueprintHash);
Ref<SamplerBase> result;
auto iter = mCaches->samplers.find(&blueprint);
if (iter != mCaches->samplers.end()) {
result = *iter;
} else {
DAWN_TRY_ASSIGN(result, CreateSamplerImpl(descriptor));
result->SetIsCachedReference();
result->SetContentHash(blueprintHash);
mCaches->samplers.insert(result.Get());
}
return std::move(result);
}
void DeviceBase::UncacheSampler(SamplerBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->samplers.erase(obj);
ASSERT(removedCount == 1);
}
ResultOrError<Ref<ShaderModuleBase>> DeviceBase::GetOrCreateShaderModule(
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult,
OwnedCompilationMessages* compilationMessages) {
ASSERT(parseResult != nullptr);
ShaderModuleBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice);
const size_t blueprintHash = blueprint.ComputeContentHash();
blueprint.SetContentHash(blueprintHash);
Ref<ShaderModuleBase> result;
auto iter = mCaches->shaderModules.find(&blueprint);
if (iter != mCaches->shaderModules.end()) {
result = *iter;
} else {
if (!parseResult->HasParsedShader()) {
// We skip the parse on creation if validation isn't enabled which let's us quickly
// lookup in the cache without validating and parsing. We need the parsed module
// now, so call validate. Most of |ValidateShaderModuleDescriptor| is parsing, but
// we can consider splitting it if additional validation is added.
ASSERT(!IsValidationEnabled());
DAWN_TRY(ValidateShaderModuleDescriptor(this, descriptor, parseResult,
compilationMessages));
}
DAWN_TRY_ASSIGN(result, CreateShaderModuleImpl(descriptor, parseResult));
result->SetIsCachedReference();
result->SetContentHash(blueprintHash);
mCaches->shaderModules.insert(result.Get());
}
return std::move(result);
}
void DeviceBase::UncacheShaderModule(ShaderModuleBase* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->shaderModules.erase(obj);
ASSERT(removedCount == 1);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
AttachmentStateBlueprint* blueprint) {
auto iter = mCaches->attachmentStates.find(blueprint);
if (iter != mCaches->attachmentStates.end()) {
return static_cast<AttachmentState*>(*iter);
}
Ref<AttachmentState> attachmentState = AcquireRef(new AttachmentState(this, *blueprint));
attachmentState->SetIsCachedReference();
attachmentState->SetContentHash(attachmentState->ComputeContentHash());
mCaches->attachmentStates.insert(attachmentState.Get());
return attachmentState;
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderBundleEncoderDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderPipelineDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(
const RenderPassDescriptor* descriptor) {
AttachmentStateBlueprint blueprint(descriptor);
return GetOrCreateAttachmentState(&blueprint);
}
void DeviceBase::UncacheAttachmentState(AttachmentState* obj) {
ASSERT(obj->IsCachedReference());
size_t removedCount = mCaches->attachmentStates.erase(obj);
ASSERT(removedCount == 1);
}
// Object creation API methods
BindGroupBase* DeviceBase::APICreateBindGroup(const BindGroupDescriptor* descriptor) {
Ref<BindGroupBase> result;
if (ConsumedError(CreateBindGroup(descriptor), &result, "calling %s.CreateBindGroup(%s).",
this, descriptor)) {
return BindGroupBase::MakeError(this);
}
return result.Detach();
}
BindGroupLayoutBase* DeviceBase::APICreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor) {
Ref<BindGroupLayoutBase> result;
if (ConsumedError(CreateBindGroupLayout(descriptor), &result,
"calling %s.CreateBindGroupLayout(%s).", this, descriptor)) {
return BindGroupLayoutBase::MakeError(this);
}
return result.Detach();
}
BufferBase* DeviceBase::APICreateBuffer(const BufferDescriptor* descriptor) {
Ref<BufferBase> result = nullptr;
if (ConsumedError(CreateBuffer(descriptor), &result, "calling %s.CreateBuffer(%s).", this,
descriptor)) {
ASSERT(result == nullptr);
return BufferBase::MakeError(this, descriptor);
}
return result.Detach();
}
CommandEncoder* DeviceBase::APICreateCommandEncoder(
const CommandEncoderDescriptor* descriptor) {
const CommandEncoderDescriptor defaultDescriptor = {};
if (descriptor == nullptr) {
descriptor = &defaultDescriptor;
}
Ref<CommandEncoder> result;
if (ConsumedError(CreateCommandEncoder(descriptor), &result,
"calling %s.CreateCommandEncoder(%s).", this, descriptor)) {
return CommandEncoder::MakeError(this);
}
return result.Detach();
}
ComputePipelineBase* DeviceBase::APICreateComputePipeline(
const ComputePipelineDescriptor* descriptor) {
TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipeline", "label",
utils::GetLabelForTrace(descriptor->label));
Ref<ComputePipelineBase> result;
if (ConsumedError(CreateComputePipeline(descriptor), &result,
"calling %s.CreateComputePipeline(%s).", this, descriptor)) {
return ComputePipelineBase::MakeError(this);
}
return result.Detach();
}
void DeviceBase::APICreateComputePipelineAsync(const ComputePipelineDescriptor* descriptor,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata) {
TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipelineAsync", "label",
utils::GetLabelForTrace(descriptor->label));
MaybeError maybeResult = CreateComputePipelineAsync(descriptor, callback, userdata);
// Call the callback directly when a validation error has been found in the front-end
// validations. If there is no error, then CreateComputePipelineAsync will call the
// callback.
if (maybeResult.IsError()) {
std::unique_ptr<ErrorData> error = maybeResult.AcquireError();
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(WGPUCreatePipelineAsyncStatus_Error, nullptr, error->GetMessage().c_str(),
userdata);
}
}
PipelineLayoutBase* DeviceBase::APICreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor) {
Ref<PipelineLayoutBase> result;
if (ConsumedError(CreatePipelineLayout(descriptor), &result,
"calling %s.CreatePipelineLayout(%s).", this, descriptor)) {
return PipelineLayoutBase::MakeError(this);
}
return result.Detach();
}
QuerySetBase* DeviceBase::APICreateQuerySet(const QuerySetDescriptor* descriptor) {
Ref<QuerySetBase> result;
if (ConsumedError(CreateQuerySet(descriptor), &result, "calling %s.CreateQuerySet(%s).",
this, descriptor)) {
return QuerySetBase::MakeError(this);
}
return result.Detach();
}
SamplerBase* DeviceBase::APICreateSampler(const SamplerDescriptor* descriptor) {
Ref<SamplerBase> result;
if (ConsumedError(CreateSampler(descriptor), &result, "calling %s.CreateSampler(%s).", this,
descriptor)) {
return SamplerBase::MakeError(this);
}
return result.Detach();
}
void DeviceBase::APICreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata) {
TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipelineAsync", "label",
utils::GetLabelForTrace(descriptor->label));
// TODO(dawn:563): Add validation error context.
MaybeError maybeResult = CreateRenderPipelineAsync(descriptor, callback, userdata);
// Call the callback directly when a validation error has been found in the front-end
// validations. If there is no error, then CreateRenderPipelineAsync will call the
// callback.
if (maybeResult.IsError()) {
std::unique_ptr<ErrorData> error = maybeResult.AcquireError();
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(WGPUCreatePipelineAsyncStatus_Error, nullptr, error->GetMessage().c_str(),
userdata);
}
}
RenderBundleEncoder* DeviceBase::APICreateRenderBundleEncoder(
const RenderBundleEncoderDescriptor* descriptor) {
Ref<RenderBundleEncoder> result;
if (ConsumedError(CreateRenderBundleEncoder(descriptor), &result,
"calling %s.CreateRenderBundleEncoder(%s).", this, descriptor)) {
return RenderBundleEncoder::MakeError(this);
}
return result.Detach();
}
RenderPipelineBase* DeviceBase::APICreateRenderPipeline(
const RenderPipelineDescriptor* descriptor) {
TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipeline", "label",
utils::GetLabelForTrace(descriptor->label));
Ref<RenderPipelineBase> result;
if (ConsumedError(CreateRenderPipeline(descriptor), &result,
"calling %s.CreateRenderPipeline(%s).", this, descriptor)) {
return RenderPipelineBase::MakeError(this);
}
return result.Detach();
}
ShaderModuleBase* DeviceBase::APICreateShaderModule(const ShaderModuleDescriptor* descriptor) {
TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateShaderModule", "label",
utils::GetLabelForTrace(descriptor->label));
Ref<ShaderModuleBase> result;
std::unique_ptr<OwnedCompilationMessages> compilationMessages(
std::make_unique<OwnedCompilationMessages>());
if (ConsumedError(CreateShaderModule(descriptor, compilationMessages.get()), &result,
"calling %s.CreateShaderModule(%s).", this, descriptor)) {
DAWN_ASSERT(result == nullptr);
result = ShaderModuleBase::MakeError(this);
}
// Move compilation messages into ShaderModuleBase and emit tint errors and warnings
// after all other operations are finished successfully.
result->InjectCompilationMessages(std::move(compilationMessages));
return result.Detach();
}
SwapChainBase* DeviceBase::APICreateSwapChain(Surface* surface,
const SwapChainDescriptor* descriptor) {
Ref<SwapChainBase> result;
if (ConsumedError(CreateSwapChain(surface, descriptor), &result,
"calling %s.CreateSwapChain(%s).", this, descriptor)) {
return SwapChainBase::MakeError(this);
}
return result.Detach();
}
TextureBase* DeviceBase::APICreateTexture(const TextureDescriptor* descriptor) {
Ref<TextureBase> result;
if (ConsumedError(CreateTexture(descriptor), &result, "calling %s.CreateTexture(%s).", this,
descriptor)) {
return TextureBase::MakeError(this);
}
return result.Detach();
}
// For Dawn Wire
BufferBase* DeviceBase::APICreateErrorBuffer() {
BufferDescriptor desc = {};
return BufferBase::MakeError(this, &desc);
}
// Other Device API methods
// Returns true if future ticking is needed.
bool DeviceBase::APITick() {
if (IsLost() || ConsumedError(Tick())) {
return false;
}
return !IsDeviceIdle();
}
MaybeError DeviceBase::Tick() {
DAWN_TRY(ValidateIsAlive());
// to avoid overly ticking, we only want to tick when:
// 1. the last submitted serial has moved beyond the completed serial
// 2. or the completed serial has not reached the future serial set by the trackers
if (mLastSubmittedSerial > mCompletedSerial || mCompletedSerial < mFutureSerial) {
DAWN_TRY(CheckPassedSerials());
DAWN_TRY(TickImpl());
// There is no GPU work in flight, we need to move the serials forward so that
// so that CPU operations waiting on GPU completion can know they don't have to wait.
// AssumeCommandsComplete will assign the max serial we must tick to in order to
// fire the awaiting callbacks.
if (mCompletedSerial == mLastSubmittedSerial) {
AssumeCommandsComplete();
}
// TODO(crbug.com/dawn/833): decouple TickImpl from updating the serial so that we can
// tick the dynamic uploader before the backend resource allocators. This would allow
// reclaiming resources one tick earlier.
mDynamicUploader->Deallocate(mCompletedSerial);
mQueue->Tick(mCompletedSerial);
}
// We have to check callback tasks in every Tick because it is not related to any global
// serials.
FlushCallbackTaskQueue();
return {};
}
QueueBase* DeviceBase::APIGetQueue() {
// Backends gave the primary queue during initialization.
ASSERT(mQueue != nullptr);
// Returns a new reference to the queue.
mQueue->Reference();
return mQueue.Get();
}
ExternalTextureBase* DeviceBase::APICreateExternalTexture(
const ExternalTextureDescriptor* descriptor) {
Ref<ExternalTextureBase> result = nullptr;
if (ConsumedError(CreateExternalTexture(descriptor), &result,
"calling %s.CreateExternalTexture(%s).", this, descriptor)) {
return ExternalTextureBase::MakeError(this);
}
return result.Detach();
}
void DeviceBase::ApplyFeatures(const DeviceDescriptor* deviceDescriptor) {
ASSERT(deviceDescriptor);
ASSERT(GetAdapter()->SupportsAllRequiredFeatures(
{deviceDescriptor->requiredFeatures, deviceDescriptor->requiredFeaturesCount}));
for (uint32_t i = 0; i < deviceDescriptor->requiredFeaturesCount; ++i) {
mEnabledFeatures.EnableFeature(deviceDescriptor->requiredFeatures[i]);
}
}
bool DeviceBase::IsFeatureEnabled(Feature feature) const {
return mEnabledFeatures.IsEnabled(feature);
}
bool DeviceBase::IsValidationEnabled() const {
return !IsToggleEnabled(Toggle::SkipValidation);
}
bool DeviceBase::IsRobustnessEnabled() const {
return !IsToggleEnabled(Toggle::DisableRobustness);
}
size_t DeviceBase::GetLazyClearCountForTesting() {
return mLazyClearCountForTesting;
}
void DeviceBase::IncrementLazyClearCountForTesting() {
++mLazyClearCountForTesting;
}
size_t DeviceBase::GetDeprecationWarningCountForTesting() {
return mDeprecationWarnings->count;
}
void DeviceBase::EmitDeprecationWarning(const char* warning) {
mDeprecationWarnings->count++;
if (mDeprecationWarnings->emitted.insert(warning).second) {
dawn::WarningLog() << warning;
}
}
void DeviceBase::EmitLog(const char* message) {
this->EmitLog(WGPULoggingType_Info, message);
}
void DeviceBase::EmitLog(WGPULoggingType loggingType, const char* message) {
if (mLoggingCallback != nullptr) {
// Use the thread-safe CallbackTaskManager routine
std::unique_ptr<LoggingCallbackTask> callbackTask =
std::make_unique<LoggingCallbackTask>(mLoggingCallback, loggingType, message,
mLoggingUserdata);
mCallbackTaskManager->AddCallbackTask(std::move(callbackTask));
}
}
bool DeviceBase::APIGetLimits(SupportedLimits* limits) const {
ASSERT(limits != nullptr);
if (limits->nextInChain != nullptr) {
return false;
}
limits->limits = mLimits.v1;
return true;
}
bool DeviceBase::APIHasFeature(wgpu::FeatureName feature) const {
return mEnabledFeatures.IsEnabled(feature);
}
size_t DeviceBase::APIEnumerateFeatures(wgpu::FeatureName* features) const {
return mEnabledFeatures.EnumerateFeatures(features);
}
void DeviceBase::APIInjectError(wgpu::ErrorType type, const char* message) {
if (ConsumedError(ValidateErrorType(type))) {
return;
}
// This method should only be used to make error scope reject. For DeviceLost there is the
// LoseForTesting function that can be used instead.
if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) {
HandleError(InternalErrorType::Validation,
"Invalid injected error, must be Validation or OutOfMemory");
return;
}
HandleError(FromWGPUErrorType(type), message);
}
QueueBase* DeviceBase::GetQueue() const {
return mQueue.Get();
}
// Implementation details of object creation
ResultOrError<Ref<BindGroupBase>> DeviceBase::CreateBindGroup(
const BindGroupDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateBindGroupDescriptor(this, descriptor),
"validating %s against %s", descriptor, descriptor->layout);
}
return CreateBindGroupImpl(descriptor);
}
ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor,
bool allowInternalBinding) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(
ValidateBindGroupLayoutDescriptor(this, descriptor, allowInternalBinding),
"validating %s", descriptor);
}
return GetOrCreateBindGroupLayout(descriptor);
}
ResultOrError<Ref<BufferBase>> DeviceBase::CreateBuffer(const BufferDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateBufferDescriptor(this, descriptor), "validating %s",
descriptor);
}
Ref<BufferBase> buffer;
DAWN_TRY_ASSIGN(buffer, CreateBufferImpl(descriptor));
if (descriptor->mappedAtCreation) {
DAWN_TRY(buffer->MapAtCreation());
}
return std::move(buffer);
}
ResultOrError<Ref<ComputePipelineBase>> DeviceBase::CreateComputePipeline(
const ComputePipelineDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor));
}
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
Ref<PipelineLayoutBase> layoutRef;
ComputePipelineDescriptor appliedDescriptor;
DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults(
this, *descriptor, &appliedDescriptor));
Ref<ComputePipelineBase> uninitializedComputePipeline =
CreateUninitializedComputePipelineImpl(&appliedDescriptor);
Ref<ComputePipelineBase> cachedComputePipeline =
GetCachedComputePipeline(uninitializedComputePipeline.Get());
if (cachedComputePipeline.Get() != nullptr) {
return cachedComputePipeline;
}
DAWN_TRY(uninitializedComputePipeline->Initialize());
return AddOrGetCachedComputePipeline(std::move(uninitializedComputePipeline));
}
ResultOrError<Ref<CommandEncoder>> DeviceBase::CreateCommandEncoder(
const CommandEncoderDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateCommandEncoderDescriptor(this, descriptor));
}
return CommandEncoder::Create(this, descriptor);
}
MaybeError DeviceBase::CreateComputePipelineAsync(
const ComputePipelineDescriptor* descriptor,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor));
}
Ref<PipelineLayoutBase> layoutRef;
ComputePipelineDescriptor appliedDescriptor;
DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults(
this, *descriptor, &appliedDescriptor));
Ref<ComputePipelineBase> uninitializedComputePipeline =
CreateUninitializedComputePipelineImpl(&appliedDescriptor);
// Call the callback directly when we can get a cached compute pipeline object.
Ref<ComputePipelineBase> cachedComputePipeline =
GetCachedComputePipeline(uninitializedComputePipeline.Get());
if (cachedComputePipeline.Get() != nullptr) {
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(cachedComputePipeline.Detach()),
"", userdata);
} else {
// Otherwise we will create the pipeline object in InitializeComputePipelineAsyncImpl(),
// where the pipeline object may be initialized asynchronously and the result will be
// saved to mCreatePipelineAsyncTracker.
InitializeComputePipelineAsyncImpl(std::move(uninitializedComputePipeline), callback,
userdata);
}
return {};
}
// This function is overwritten with the async version on the backends that supports
// initializing compute pipelines asynchronously.
void DeviceBase::InitializeComputePipelineAsyncImpl(
Ref<ComputePipelineBase> computePipeline,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata) {
Ref<ComputePipelineBase> result;
std::string errorMessage;
MaybeError maybeError = computePipeline->Initialize();
if (maybeError.IsError()) {
std::unique_ptr<ErrorData> error = maybeError.AcquireError();
errorMessage = error->GetMessage();
} else {
result = AddOrGetCachedComputePipeline(std::move(computePipeline));
}
std::unique_ptr<CreateComputePipelineAsyncCallbackTask> callbackTask =
std::make_unique<CreateComputePipelineAsyncCallbackTask>(
std::move(result), errorMessage, callback, userdata);
mCallbackTaskManager->AddCallbackTask(std::move(callbackTask));
}
// This function is overwritten with the async version on the backends
// that supports initializing render pipeline asynchronously
void DeviceBase::InitializeRenderPipelineAsyncImpl(
Ref<RenderPipelineBase> renderPipeline,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata) {
Ref<RenderPipelineBase> result;
std::string errorMessage;
MaybeError maybeError = renderPipeline->Initialize();
if (maybeError.IsError()) {
std::unique_ptr<ErrorData> error = maybeError.AcquireError();
errorMessage = error->GetMessage();
} else {
result = AddOrGetCachedRenderPipeline(std::move(renderPipeline));
}
std::unique_ptr<CreateRenderPipelineAsyncCallbackTask> callbackTask =
std::make_unique<CreateRenderPipelineAsyncCallbackTask>(std::move(result), errorMessage,
callback, userdata);
mCallbackTaskManager->AddCallbackTask(std::move(callbackTask));
}
ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::CreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidatePipelineLayoutDescriptor(this, descriptor));
}
return GetOrCreatePipelineLayout(descriptor);
}
ResultOrError<Ref<ExternalTextureBase>> DeviceBase::CreateExternalTexture(
const ExternalTextureDescriptor* descriptor) {
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateExternalTextureDescriptor(this, descriptor), "validating %s",
descriptor);
}
return ExternalTextureBase::Create(this, descriptor);
}
ResultOrError<Ref<QuerySetBase>> DeviceBase::CreateQuerySet(
const QuerySetDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateQuerySetDescriptor(this, descriptor), "validating %s",
descriptor);
}
return CreateQuerySetImpl(descriptor);
}
ResultOrError<Ref<RenderBundleEncoder>> DeviceBase::CreateRenderBundleEncoder(
const RenderBundleEncoderDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateRenderBundleEncoderDescriptor(this, descriptor));
}
return RenderBundleEncoder::Create(this, descriptor);
}
ResultOrError<Ref<RenderPipelineBase>> DeviceBase::CreateRenderPipeline(
const RenderPipelineDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor));
}
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
Ref<PipelineLayoutBase> layoutRef;
RenderPipelineDescriptor appliedDescriptor;
DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults(
this, *descriptor, &appliedDescriptor));
Ref<RenderPipelineBase> uninitializedRenderPipeline =
CreateUninitializedRenderPipelineImpl(&appliedDescriptor);
Ref<RenderPipelineBase> cachedRenderPipeline =
GetCachedRenderPipeline(uninitializedRenderPipeline.Get());
if (cachedRenderPipeline != nullptr) {
return cachedRenderPipeline;
}
DAWN_TRY(uninitializedRenderPipeline->Initialize());
return AddOrGetCachedRenderPipeline(std::move(uninitializedRenderPipeline));
}
MaybeError DeviceBase::CreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor));
}
// Ref will keep the pipeline layout alive until the end of the function where
// the pipeline will take another reference.
Ref<PipelineLayoutBase> layoutRef;
RenderPipelineDescriptor appliedDescriptor;
DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults(
this, *descriptor, &appliedDescriptor));
Ref<RenderPipelineBase> uninitializedRenderPipeline =
CreateUninitializedRenderPipelineImpl(&appliedDescriptor);
// Call the callback directly when we can get a cached render pipeline object.
Ref<RenderPipelineBase> cachedRenderPipeline =
GetCachedRenderPipeline(uninitializedRenderPipeline.Get());
if (cachedRenderPipeline != nullptr) {
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(cachedRenderPipeline.Detach()),
"", userdata);
} else {
// Otherwise we will create the pipeline object in InitializeRenderPipelineAsyncImpl(),
// where the pipeline object may be initialized asynchronously and the result will be
// saved to mCreatePipelineAsyncTracker.
InitializeRenderPipelineAsyncImpl(std::move(uninitializedRenderPipeline), callback,
userdata);
}
return {};
}
ResultOrError<Ref<SamplerBase>> DeviceBase::CreateSampler(const SamplerDescriptor* descriptor) {
const SamplerDescriptor defaultDescriptor = {};
DAWN_TRY(ValidateIsAlive());
descriptor = descriptor != nullptr ? descriptor : &defaultDescriptor;
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateSamplerDescriptor(this, descriptor), "validating %s",
descriptor);
}
return GetOrCreateSampler(descriptor);
}
ResultOrError<Ref<ShaderModuleBase>> DeviceBase::CreateShaderModule(
const ShaderModuleDescriptor* descriptor,
OwnedCompilationMessages* compilationMessages) {
DAWN_TRY(ValidateIsAlive());
// CreateShaderModule can be called from inside dawn_native. If that's the case handle the
// error directly in Dawn and no compilationMessages held in the shader module. It is ok as
// long as dawn_native don't use the compilationMessages of these internal shader modules.
ShaderModuleParseResult parseResult;
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(
ValidateShaderModuleDescriptor(this, descriptor, &parseResult, compilationMessages),
"validating %s", descriptor);
}
return GetOrCreateShaderModule(descriptor, &parseResult, compilationMessages);
}
ResultOrError<Ref<SwapChainBase>> DeviceBase::CreateSwapChain(
Surface* surface,
const SwapChainDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateSwapChainDescriptor(this, surface, descriptor),
"validating %s", descriptor);
}
// TODO(dawn:269): Remove this code path once implementation-based swapchains are removed.
if (surface == nullptr) {
return CreateSwapChainImpl(descriptor);
} else {
ASSERT(descriptor->implementation == 0);
NewSwapChainBase* previousSwapChain = surface->GetAttachedSwapChain();
ResultOrError<Ref<NewSwapChainBase>> maybeNewSwapChain =
CreateSwapChainImpl(surface, previousSwapChain, descriptor);
if (previousSwapChain != nullptr) {
previousSwapChain->DetachFromSurface();
}
Ref<NewSwapChainBase> newSwapChain;
DAWN_TRY_ASSIGN(newSwapChain, std::move(maybeNewSwapChain));
newSwapChain->SetIsAttached();
surface->SetAttachedSwapChain(newSwapChain.Get());
return newSwapChain;
}
}
ResultOrError<Ref<TextureBase>> DeviceBase::CreateTexture(const TextureDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateTextureDescriptor(this, descriptor), "validating %s.",
descriptor);
}
return CreateTextureImpl(descriptor);
}
ResultOrError<Ref<TextureViewBase>> DeviceBase::CreateTextureView(
TextureBase* texture,
const TextureViewDescriptor* descriptor) {
DAWN_TRY(ValidateIsAlive());
DAWN_TRY(ValidateObject(texture));
TextureViewDescriptor desc = GetTextureViewDescriptorWithDefaults(texture, descriptor);
if (IsValidationEnabled()) {
DAWN_TRY_CONTEXT(ValidateTextureViewDescriptor(this, texture, &desc),
"validating %s against %s.", &desc, texture);
}
return CreateTextureViewImpl(texture, &desc);
}
// Other implementation details
DynamicUploader* DeviceBase::GetDynamicUploader() const {
return mDynamicUploader.get();
}
// The Toggle device facility
std::vector<const char*> DeviceBase::GetTogglesUsed() const {
return mEnabledToggles.GetContainedToggleNames();
}
bool DeviceBase::IsToggleEnabled(Toggle toggle) const {
return mEnabledToggles.Has(toggle);
}
void DeviceBase::SetToggle(Toggle toggle, bool isEnabled) {
if (!mOverridenToggles.Has(toggle)) {
mEnabledToggles.Set(toggle, isEnabled);
}
}
void DeviceBase::ForceSetToggle(Toggle toggle, bool isEnabled) {
if (!mOverridenToggles.Has(toggle) && mEnabledToggles.Has(toggle) != isEnabled) {
dawn::WarningLog() << "Forcing toggle \"" << ToggleEnumToName(toggle) << "\" to "
<< isEnabled << " when it was overriden to be " << !isEnabled;
}
mEnabledToggles.Set(toggle, isEnabled);
}
void DeviceBase::SetDefaultToggles() {
SetToggle(Toggle::LazyClearResourceOnFirstUse, true);
SetToggle(Toggle::DisallowUnsafeAPIs, true);
}
void DeviceBase::ApplyToggleOverrides(const DawnTogglesDeviceDescriptor* togglesDescriptor) {
ASSERT(togglesDescriptor != nullptr);
for (uint32_t i = 0; i < togglesDescriptor->forceEnabledTogglesCount; ++i) {
Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(
togglesDescriptor->forceEnabledToggles[i]);
if (toggle != Toggle::InvalidEnum) {
mEnabledToggles.Set(toggle, true);
mOverridenToggles.Set(toggle, true);
}
}
for (uint32_t i = 0; i < togglesDescriptor->forceDisabledTogglesCount; ++i) {
Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(
togglesDescriptor->forceDisabledToggles[i]);
if (toggle != Toggle::InvalidEnum) {
mEnabledToggles.Set(toggle, false);
mOverridenToggles.Set(toggle, true);
}
}
}
void DeviceBase::FlushCallbackTaskQueue() {
if (!mCallbackTaskManager->IsEmpty()) {
// If a user calls Queue::Submit inside the callback, then the device will be ticked,
// which in turns ticks the tracker, causing reentrance and dead lock here. To prevent
// such reentrant call, we remove all the callback tasks from mCallbackTaskManager,
// update mCallbackTaskManager, then call all the callbacks.
auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks();
for (std::unique_ptr<CallbackTask>& callbackTask : callbackTasks) {
callbackTask->Finish();
}
}
}
const CombinedLimits& DeviceBase::GetLimits() const {
return mLimits;
}
AsyncTaskManager* DeviceBase::GetAsyncTaskManager() const {
return mAsyncTaskManager.get();
}
CallbackTaskManager* DeviceBase::GetCallbackTaskManager() const {
return mCallbackTaskManager.get();
}
dawn::platform::WorkerTaskPool* DeviceBase::GetWorkerTaskPool() const {
return mWorkerTaskPool.get();
}
void DeviceBase::AddComputePipelineAsyncCallbackTask(
Ref<ComputePipelineBase> pipeline,
std::string errorMessage,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata) {
// CreateComputePipelineAsyncWaitableCallbackTask is declared as an internal class as it
// needs to call the private member function DeviceBase::AddOrGetCachedComputePipeline().
struct CreateComputePipelineAsyncWaitableCallbackTask final
: CreateComputePipelineAsyncCallbackTask {
using CreateComputePipelineAsyncCallbackTask::CreateComputePipelineAsyncCallbackTask;
void Finish() final {
// TODO(dawn:529): call AddOrGetCachedComputePipeline() asynchronously in
// CreateComputePipelineAsyncTaskImpl::Run() when the front-end pipeline cache is
// thread-safe.
if (mPipeline.Get() != nullptr) {
mPipeline = mPipeline->GetDevice()->AddOrGetCachedComputePipeline(mPipeline);
}
CreateComputePipelineAsyncCallbackTask::Finish();
}
};
mCallbackTaskManager->AddCallbackTask(
std::make_unique<CreateComputePipelineAsyncWaitableCallbackTask>(
std::move(pipeline), errorMessage, callback, userdata));
}
void DeviceBase::AddRenderPipelineAsyncCallbackTask(
Ref<RenderPipelineBase> pipeline,
std::string errorMessage,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata) {
// CreateRenderPipelineAsyncWaitableCallbackTask is declared as an internal class as it
// needs to call the private member function DeviceBase::AddOrGetCachedRenderPipeline().
struct CreateRenderPipelineAsyncWaitableCallbackTask final
: CreateRenderPipelineAsyncCallbackTask {
using CreateRenderPipelineAsyncCallbackTask::CreateRenderPipelineAsyncCallbackTask;
void Finish() final {
// TODO(dawn:529): call AddOrGetCachedRenderPipeline() asynchronously in
// CreateRenderPipelineAsyncTaskImpl::Run() when the front-end pipeline cache is
// thread-safe.
if (mPipeline.Get() != nullptr) {
mPipeline = mPipeline->GetDevice()->AddOrGetCachedRenderPipeline(mPipeline);
}
CreateRenderPipelineAsyncCallbackTask::Finish();
}
};
mCallbackTaskManager->AddCallbackTask(
std::make_unique<CreateRenderPipelineAsyncWaitableCallbackTask>(
std::move(pipeline), errorMessage, callback, userdata));
}
PipelineCompatibilityToken DeviceBase::GetNextPipelineCompatibilityToken() {
return PipelineCompatibilityToken(mNextPipelineCompatibilityToken++);
}
const std::string& DeviceBase::GetLabel() const {
return mLabel;
}
void DeviceBase::APISetLabel(const char* label) {
mLabel = label;
SetLabelImpl();
}
void DeviceBase::SetLabelImpl() {
}
bool DeviceBase::ShouldDuplicateNumWorkgroupsForDispatchIndirect(
ComputePipelineBase* computePipeline) const {
return false;
}
} // namespace dawn::native