blob: c6eca064ca2b690d43f7731a50808630e7789c9c [file] [log] [blame] [edit]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/Assert.h"
#include "dawn_wire/BufferConsumer_impl.h"
#include "dawn_wire/WireCmd_autogen.h"
#include "dawn_wire/server/Server.h"
#include <memory>
namespace dawn::wire::server {
bool Server::PreHandleBufferUnmap(const BufferUnmapCmd& cmd) {
auto* buffer = BufferObjects().Get(cmd.selfId);
DAWN_ASSERT(buffer != nullptr);
if (buffer->mappedAtCreation && !(buffer->usage & WGPUMapMode_Write)) {
// This indicates the writeHandle is for mappedAtCreation only. Destroy on unmap
// writeHandle could have possibly been deleted if buffer is already destroyed so we
// don't assert it's non-null
buffer->writeHandle = nullptr;
}
buffer->mapWriteState = BufferMapWriteState::Unmapped;
return true;
}
bool Server::PreHandleBufferDestroy(const BufferDestroyCmd& cmd) {
// Destroying a buffer does an implicit unmapping.
auto* buffer = BufferObjects().Get(cmd.selfId);
DAWN_ASSERT(buffer != nullptr);
// The buffer was destroyed. Clear the Read/WriteHandle.
buffer->readHandle = nullptr;
buffer->writeHandle = nullptr;
buffer->mapWriteState = BufferMapWriteState::Unmapped;
return true;
}
bool Server::DoBufferMapAsync(ObjectId bufferId,
uint64_t requestSerial,
WGPUMapModeFlags mode,
uint64_t offset64,
uint64_t size64) {
// These requests are just forwarded to the buffer, with userdata containing what the
// client will require in the return command.
// The null object isn't valid as `self`
if (bufferId == 0) {
return false;
}
auto* buffer = BufferObjects().Get(bufferId);
if (buffer == nullptr) {
return false;
}
std::unique_ptr<MapUserdata> userdata = MakeUserdata<MapUserdata>();
userdata->buffer = ObjectHandle{bufferId, buffer->generation};
userdata->bufferObj = buffer->handle;
userdata->requestSerial = requestSerial;
userdata->mode = mode;
// Make sure that the deserialized offset and size are no larger than
// std::numeric_limits<size_t>::max() so that they are CPU-addressable, and size is not
// WGPU_WHOLE_MAP_SIZE, which is by definition std::numeric_limits<size_t>::max(). Since
// client does the default size computation, we should always have a valid actual size here
// in server. All other invalid actual size can be caught by dawn native side validation.
if (offset64 > std::numeric_limits<size_t>::max() || size64 >= WGPU_WHOLE_MAP_SIZE) {
OnBufferMapAsyncCallback(userdata.get(), WGPUBufferMapAsyncStatus_Error);
return true;
}
size_t offset = static_cast<size_t>(offset64);
size_t size = static_cast<size_t>(size64);
userdata->offset = offset;
userdata->size = size;
mProcs.bufferMapAsync(buffer->handle, mode, offset, size,
ForwardToServer<&Server::OnBufferMapAsyncCallback>,
userdata.release());
return true;
}
bool Server::DoDeviceCreateBuffer(ObjectId deviceId,
const WGPUBufferDescriptor* descriptor,
ObjectHandle bufferResult,
uint64_t readHandleCreateInfoLength,
const uint8_t* readHandleCreateInfo,
uint64_t writeHandleCreateInfoLength,
const uint8_t* writeHandleCreateInfo) {
auto* device = DeviceObjects().Get(deviceId);
if (device == nullptr) {
return false;
}
// Create and register the buffer object.
auto* resultData = BufferObjects().Allocate(bufferResult.id);
if (resultData == nullptr) {
return false;
}
resultData->generation = bufferResult.generation;
resultData->handle = mProcs.deviceCreateBuffer(device->handle, descriptor);
resultData->deviceInfo = device->info.get();
resultData->usage = descriptor->usage;
resultData->mappedAtCreation = descriptor->mappedAtCreation;
if (!TrackDeviceChild(resultData->deviceInfo, ObjectType::Buffer, bufferResult.id)) {
return false;
}
// isReadMode and isWriteMode could be true at the same time if usage contains
// WGPUMapMode_Read and buffer is mappedAtCreation
bool isReadMode = descriptor->usage & WGPUMapMode_Read;
bool isWriteMode = descriptor->usage & WGPUMapMode_Write || descriptor->mappedAtCreation;
// This is the size of data deserialized from the command stream to create the read/write
// handle, which must be CPU-addressable.
if (readHandleCreateInfoLength > std::numeric_limits<size_t>::max() ||
writeHandleCreateInfoLength > std::numeric_limits<size_t>::max() ||
readHandleCreateInfoLength >
std::numeric_limits<size_t>::max() - writeHandleCreateInfoLength) {
return false;
}
if (isWriteMode) {
MemoryTransferService::WriteHandle* writeHandle = nullptr;
// Deserialize metadata produced from the client to create a companion server handle.
if (!mMemoryTransferService->DeserializeWriteHandle(
writeHandleCreateInfo, static_cast<size_t>(writeHandleCreateInfoLength),
&writeHandle)) {
return false;
}
ASSERT(writeHandle != nullptr);
resultData->writeHandle.reset(writeHandle);
writeHandle->SetDataLength(descriptor->size);
if (descriptor->mappedAtCreation) {
void* mapping =
mProcs.bufferGetMappedRange(resultData->handle, 0, descriptor->size);
if (mapping == nullptr) {
// A zero mapping is used to indicate an allocation error of an error buffer.
// This is a valid case and isn't fatal. Remember the buffer is an error so as
// to skip subsequent mapping operations.
resultData->mapWriteState = BufferMapWriteState::MapError;
return true;
}
ASSERT(mapping != nullptr);
writeHandle->SetTarget(mapping);
resultData->mapWriteState = BufferMapWriteState::Mapped;
}
}
if (isReadMode) {
MemoryTransferService::ReadHandle* readHandle = nullptr;
// Deserialize metadata produced from the client to create a companion server handle.
if (!mMemoryTransferService->DeserializeReadHandle(
readHandleCreateInfo, static_cast<size_t>(readHandleCreateInfoLength),
&readHandle)) {
return false;
}
ASSERT(readHandle != nullptr);
resultData->readHandle.reset(readHandle);
}
return true;
}
bool Server::DoBufferUpdateMappedData(ObjectId bufferId,
uint64_t writeDataUpdateInfoLength,
const uint8_t* writeDataUpdateInfo,
uint64_t offset,
uint64_t size) {
// The null object isn't valid as `self`
if (bufferId == 0) {
return false;
}
if (writeDataUpdateInfoLength > std::numeric_limits<size_t>::max() ||
offset > std::numeric_limits<size_t>::max() ||
size > std::numeric_limits<size_t>::max()) {
return false;
}
auto* buffer = BufferObjects().Get(bufferId);
if (buffer == nullptr) {
return false;
}
switch (buffer->mapWriteState) {
case BufferMapWriteState::Unmapped:
return false;
case BufferMapWriteState::MapError:
// The buffer is mapped but there was an error allocating mapped data.
// Do not perform the memcpy.
return true;
case BufferMapWriteState::Mapped:
break;
}
if (!buffer->writeHandle) {
// This check is performed after the check for the MapError state. It is permissible
// to Unmap and attempt to update mapped data of an error buffer.
return false;
}
// Deserialize the flush info and flush updated data from the handle into the target
// of the handle. The target is set via WriteHandle::SetTarget.
return buffer->writeHandle->DeserializeDataUpdate(
writeDataUpdateInfo, static_cast<size_t>(writeDataUpdateInfoLength),
static_cast<size_t>(offset), static_cast<size_t>(size));
}
void Server::OnBufferMapAsyncCallback(MapUserdata* data, WGPUBufferMapAsyncStatus status) {
// Skip sending the callback if the buffer has already been destroyed.
auto* bufferData = BufferObjects().Get(data->buffer.id);
if (bufferData == nullptr || bufferData->generation != data->buffer.generation) {
return;
}
bool isRead = data->mode & WGPUMapMode_Read;
bool isSuccess = status == WGPUBufferMapAsyncStatus_Success;
ReturnBufferMapAsyncCallbackCmd cmd;
cmd.buffer = data->buffer;
cmd.requestSerial = data->requestSerial;
cmd.status = status;
cmd.readDataUpdateInfoLength = 0;
cmd.readDataUpdateInfo = nullptr;
const void* readData = nullptr;
if (isSuccess) {
if (isRead) {
// Get the serialization size of the message to initialize ReadHandle data.
readData =
mProcs.bufferGetConstMappedRange(data->bufferObj, data->offset, data->size);
cmd.readDataUpdateInfoLength =
bufferData->readHandle->SizeOfSerializeDataUpdate(data->offset, data->size);
} else {
ASSERT(data->mode & WGPUMapMode_Write);
// The in-flight map request returned successfully.
bufferData->mapWriteState = BufferMapWriteState::Mapped;
// Set the target of the WriteHandle to the mapped buffer data.
// writeHandle Target always refers to the buffer base address.
// but we call getMappedRange exactly with the range of data that is potentially
// modified (i.e. we don't want getMappedRange(0, wholeBufferSize) if only a
// subset of the buffer is actually mapped) in case the implementation does some
// range tracking.
bufferData->writeHandle->SetTarget(
static_cast<uint8_t*>(
mProcs.bufferGetMappedRange(data->bufferObj, data->offset, data->size)) -
data->offset);
}
}
SerializeCommand(cmd, cmd.readDataUpdateInfoLength, [&](SerializeBuffer* serializeBuffer) {
if (isSuccess && isRead) {
char* readHandleBuffer;
WIRE_TRY(serializeBuffer->NextN(cmd.readDataUpdateInfoLength, &readHandleBuffer));
// The in-flight map request returned successfully.
bufferData->readHandle->SerializeDataUpdate(readData, data->offset, data->size,
readHandleBuffer);
}
return WireResult::Success;
});
}
} // namespace dawn::wire::server