blob: 28be2d9f85c5fb6483be2ea3f02ab95426c2c0f3 [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// WGSL builtin definition file //
// //
// This file is used to generate parts of the Tint BuiltinTable, various //
// enum definition files, as well as test .wgsl files. //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Enumerators //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class
enum storage_class {
function
private
workgroup
uniform
storage
[[internal]] handle
}
// https://gpuweb.github.io/gpuweb/wgsl/#memory-access-mode
enum access {
read
write
read_write
}
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
enum texel_format {
rgba8unorm
rgba8snorm
rgba8uint
rgba8sint
rgba16uint
rgba16sint
rgba16float
r32uint
r32sint
r32float
rg32uint
rg32sint
rg32float
rgba32uint
rgba32sint
rgba32float
}
////////////////////////////////////////////////////////////////////////////////
// WGSL primitive types //
// Types may be decorated with [[precedence(N)]] to prioritize which type //
// will be picked when multiple types of a matcher match. //
// This is used to ensure that abstract numerical types materialize to the //
// concrete type with the lowest conversion rank. //
// Types with higher the precedence values will be matched first. //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
type bool
[[precedence(4), display("abstract-float")]] type af
[[precedence(3), display("abstract-int")]] type ai
[[precedence(2)]] type i32
[[precedence(1)]] type u32
[[precedence(0)]] type f32
type vec2<T>
type vec3<T>
type vec4<T>
type mat2x2<T>
type mat2x3<T>
type mat2x4<T>
type mat3x2<T>
type mat3x3<T>
type mat3x4<T>
type mat4x2<T>
type mat4x3<T>
type mat4x4<T>
[[display("vec{N}<{T}>")]] type vec<N: num, T>
[[display("mat{N}x{M}<{T}>")]] type mat<N: num, M: num, T>
type ptr<S: storage_class, T, A: access>
type atomic<T>
type array<T>
type sampler
type sampler_comparison
type texture_1d<T>
type texture_2d<T>
type texture_2d_array<T>
type texture_3d<T>
type texture_cube<T>
type texture_cube_array<T>
type texture_multisampled_2d<T>
type texture_depth_2d
type texture_depth_2d_array
type texture_depth_cube
type texture_depth_cube_array
type texture_depth_multisampled_2d
type texture_storage_1d<F: texel_format, A: access>
type texture_storage_2d<F: texel_format, A: access>
type texture_storage_2d_array<F: texel_format, A: access>
type texture_storage_3d<F: texel_format, A: access>
type texture_external
type __modf_result
[[display("__modf_result_vec{N}")]] type __modf_result_vec<N: num>
type __frexp_result
[[display("__frexp_result_vec{N}")]] type __frexp_result_vec<N: num>
type __atomic_compare_exchange_result<T>
////////////////////////////////////////////////////////////////////////////////
// Type matchers //
// //
// A type matcher that can match one or more types. //
////////////////////////////////////////////////////////////////////////////////
match fiu32: f32 | i32 | u32
match fi32: f32 | i32
match iu32: i32 | u32
match scalar: f32 | i32 | u32 | bool
match abstract_or_scalar: ai | af | f32 | i32 | u32 | bool
match af_f32: af | f32
match scalar_no_f32: i32 | u32 | bool
match scalar_no_i32: f32 | u32 | bool
match scalar_no_u32: f32 | i32 | bool
match scalar_no_bool: f32 | i32 | u32
////////////////////////////////////////////////////////////////////////////////
// Enum matchers //
// //
// A number matcher that can match one or more enumerator values. //
// All enumerator values listed in the match declaration need to be from the //
// same enum. //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
match f32_texel_format:
rgba8unorm | rgba8snorm | rgba16float | r32float | rg32float | rgba32float
match i32_texel_format:
rgba8sint | rgba16sint | r32sint | rg32sint | rgba32sint
match u32_texel_format:
rgba8uint | rgba16uint | r32uint | rg32uint | rgba32uint
match write_only: write
match function_private_workgroup: function | private | workgroup
match workgroup_or_storage: workgroup | storage
////////////////////////////////////////////////////////////////////////////////
// Builtin Functions //
// //
// The builtin function declarations below declare all the built-in //
// functions supported by the WGSL language. This builtin definition //
// language supports simple static-type function declarations, as well as //
// single overload declarations that can match a number of different //
// argument types via the use of template types and template numbers //
// //
// * Basic example: //
// //
// fn isInf(f32) -> bool //
// //
// Declares an overload of the function 'isInf' that accepts a single //
// parameter of type 'f32' and returns a 'bool'. //
// //
// A template type is a type determined by the arguments to the builtin. //
// //
// * Template type example without constraint: //
// //
// fn arrayLength<T>(array<T>) -> u32 //
// //
// Declares an overload of the function 'arrayLength' that accepts a //
// single argument of an array type with no constraints on the array //
// element type. This overload will always return a value of the same type //
// as its single argument. //
// //
// * Template type example with constraint: //
// //
// fn abs<T: fiu32>(T) -> T //
// //
// Declares an overload of the function 'abs' that accepts a single //
// argument of type 'f32', 'i32' or 'u32', which returns a value of the //
// same argument type. //
// //
// Similarly a template number is a number or enumerator that is determined //
// by the arguments to the builtin. //
// //
// * Template number example: //
// //
// fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> //
// //
// Declares an overload of the function 'dpdx' that accepts a single //
// argument of a variable-sized vector of 'f32', which returns a value of //
// the same argument type. //
// //
// //
// Matching algorithm for a single overload: //
// ----------------------------------------- //
// //
// The goal of matching is to compare a function call's arguments and any //
// explicitly provided template types in the program source against an //
// overload declaration in this file, and determine if the call satisfies //
// the form and type constraints of the overload. If the call matches an //
// overload, then the overload is added to the list of 'overload candidates' //
// used for overload resolution (described below). //
// //
// Prior to matching an overload, all template types are undefined. //
// //
// Template types are first defined with the type of the leftmost argument //
// that matches against that template type name. Subsequent arguments that //
// attempt to match against the template type name will either reject the //
// overload or refine the template, in one of 3 ways: //
// (a) Fail to match, causing the overload to be immediately rejected. //
// (b) Match the existing template type, either exactly or via implicit //
// conversion, and overload resolution continues. //
// (c) Match via implicit conversion of the currently defined template type //
// to the argument type. In this situation, the template type is refined //
// with the more constrained argument type, and overload resolution //
// continues. //
// //
// To better understand, let's consider the following hypothetical overload //
// declaration: //
// //
// fn foo<T: scalar>(T, T); //
// //
// T - is the template type name //
// scalar - is a matcher for the types 'f32', 'i32', 'u32' or 'bool' //
// (declared above) //
// <T: scalar> - declares the template type T, with the constraint that T //
// must match one of 'f32', 'i32', 'u32' or 'bool'. //
// //
// The process for resolving this overload is as follows: //
// //
// (1) The overload resolver begins by attempting to match the argument //
// types from left to right. //
// The first parameter type is compared against the argument type T. //
// As the template type T has not been defined yet, T is defined as the //
// type of the first argument. //
// There's no verification that the T type is a scalar at this stage. //
// (2) The second parameter is then compared against the second argument. //
// As the template type T is now defined the argument type is compared //
// against the value of the defined type of T. Depending on the //
// comparison of the argument type to the template type, either the //
// actions of (a), (b) or (c) from above will occur. //
// (3) If all the parameters matched, constraints on the template types //
// need to be checked next. If the defined type does not match the //
// 'match' constraint, then the overload is no longer considered. //
// //
// This algorithm for matching a single overload is less general than the //
// algorithm described in the WGSL spec. But it makes the same decisions //
// because the overloads defined by WGSL are monotonic in the sense that once //
// a template parameter has been refined, there is never a need to backtrack //
// and un-refine it to match a later argument. //
// //
// The algorithm for matching template numbers is similar to matching //
// template types, except numbers need to exactly match across all uses - //
// there is no implicit conversion. Template numbers may match integer //
// numbers or enumerators. //
// //
// //
// Overload resolution for candidate overloads //
// ------------------------------------------- //
// //
// If multiple candidate overloads match a given set of arguments, then a //
// final overload resolution pass needs to be performed. The arguments and //
// overload parameter types for each candidate overload are compared, //
// following the algorithm described at: //
// https://www.w3.org/TR/WGSL/#overload-resolution-section //
// //
// If the candidate list contains a single entry, then that single candidate //
// is picked, and no overload resolution needs to be performed. //
// //
// If the candidate list is empty, then the call fails to resolve and an //
// error diagnostic is raised. //
// //
// //
// More examples //
// ------------- //
// //
// fn F() //
// - Function called F. //
// No template types or numbers, no parameters, no return value //
// //
// fn F() -> RETURN_TYPE //
// - Function with RETURN_TYPE as the return type value //
// //
// fn F(f32, i32) //
// - Two fixed-type, anonymous parameters //
// //
// fn F(USAGE : f32) //
// - Single parameter with name USAGE. //
// Note: Parameter names are used by Tint to infer parameter order for //
// some builtin functions //
// //
// fn F<T>(T) //
// - Single parameter of unconstrained template type T (any type) //
// //
// fn F<T: scalar>(T) //
// - Single parameter of constrained template type T (must be a scalar) //
// //
// fn F<T: fiu32>(T) -> T //
// - Single parameter of constrained template type T (must be a one of //
// fiu32) Return type matches parameter type //
// //
// fn F<T, N: num>(vec<N, T>) //
// - Single parameter of vector type with template number size N and //
// element template type T //
// //
// fn F<A: access>(texture_storage_1d<f32_texel_format, A>) //
// - Single parameter of texture_storage_1d type with template number //
// access-control C, and of a texel format that is listed in //
// f32_texel_format //
// //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#builtin-functions
fn abs<T: fiu32>(T) -> T
fn abs<N: num, T: fiu32>(vec<N, T>) -> vec<N, T>
fn acos(f32) -> f32
fn acos<N: num>(vec<N, f32>) -> vec<N, f32>
fn all(bool) -> bool
fn all<N: num>(vec<N, bool>) -> bool
fn any(bool) -> bool
fn any<N: num>(vec<N, bool>) -> bool
fn arrayLength<T, A: access>(ptr<storage, array<T>, A>) -> u32
fn asin(f32) -> f32
fn asin<N: num>(vec<N, f32>) -> vec<N, f32>
fn atan(f32) -> f32
fn atan<N: num>(vec<N, f32>) -> vec<N, f32>
fn atan2(f32, f32) -> f32
fn atan2<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn ceil(f32) -> f32
fn ceil<N: num>(vec<N, f32>) -> vec<N, f32>
fn clamp<T: fiu32>(T, T, T) -> T
fn clamp<N: num, T: fiu32>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
fn cos(f32) -> f32
fn cos<N: num>(vec<N, f32>) -> vec<N, f32>
fn cosh(f32) -> f32
fn cosh<N: num>(vec<N, f32>) -> vec<N, f32>
fn countLeadingZeros<T: iu32>(T) -> T
fn countLeadingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn countOneBits<T: iu32>(T) -> T
fn countOneBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn countTrailingZeros<T: iu32>(T) -> T
fn countTrailingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn cross(vec3<f32>, vec3<f32>) -> vec3<f32>
fn degrees(f32) -> f32
fn degrees<N: num>(vec<N, f32>) -> vec<N, f32>
fn determinant<N: num>(mat<N, N, f32>) -> f32
fn distance(f32, f32) -> f32
fn distance<N: num>(vec<N, f32>, vec<N, f32>) -> f32
fn dot<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> T
fn dot4I8Packed(u32, u32) -> i32
fn dot4U8Packed(u32, u32) -> u32
[[stage("fragment")]] fn dpdx(f32) -> f32
[[stage("fragment")]] fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn dpdxCoarse(f32) -> f32
[[stage("fragment")]] fn dpdxCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn dpdxFine(f32) -> f32
[[stage("fragment")]] fn dpdxFine<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn dpdy(f32) -> f32
[[stage("fragment")]] fn dpdy<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn dpdyCoarse(f32) -> f32
[[stage("fragment")]] fn dpdyCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn dpdyFine(f32) -> f32
[[stage("fragment")]] fn dpdyFine<N: num>(vec<N, f32>) -> vec<N, f32>
fn exp(f32) -> f32
fn exp<N: num>(vec<N, f32>) -> vec<N, f32>
fn exp2(f32) -> f32
fn exp2<N: num>(vec<N, f32>) -> vec<N, f32>
fn extractBits<T: iu32>(T, u32, u32) -> T
fn extractBits<N: num, T: iu32>(vec<N, T>, u32, u32) -> vec<N, T>
fn faceForward<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn firstLeadingBit<T: iu32>(T) -> T
fn firstLeadingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn firstTrailingBit<T: iu32>(T) -> T
fn firstTrailingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn floor(f32) -> f32
fn floor<N: num>(vec<N, f32>) -> vec<N, f32>
fn fma(f32, f32, f32) -> f32
fn fma<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn fract(f32) -> f32
fn fract<N: num>(vec<N, f32>) -> vec<N, f32>
fn frexp(f32) -> __frexp_result
fn frexp<N: num>(vec<N, f32>) -> __frexp_result_vec<N>
[[stage("fragment")]] fn fwidth(f32) -> f32
[[stage("fragment")]] fn fwidth<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn fwidthCoarse(f32) -> f32
[[stage("fragment")]] fn fwidthCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
[[stage("fragment")]] fn fwidthFine(f32) -> f32
[[stage("fragment")]] fn fwidthFine<N: num>(vec<N, f32>) -> vec<N, f32>
fn insertBits<T: iu32>(T, T, u32, u32) -> T
fn insertBits<N: num, T: iu32>(vec<N, T>, vec<N, T>, u32, u32) -> vec<N, T>
fn inverseSqrt(f32) -> f32
fn inverseSqrt<N: num>(vec<N, f32>) -> vec<N, f32>
fn ldexp(f32, i32) -> f32
fn ldexp<N: num>(vec<N, f32>, vec<N, i32>) -> vec<N, f32>
fn length(f32) -> f32
fn length<N: num>(vec<N, f32>) -> f32
fn log(f32) -> f32
fn log<N: num>(vec<N, f32>) -> vec<N, f32>
fn log2(f32) -> f32
fn log2<N: num>(vec<N, f32>) -> vec<N, f32>
fn max<T: fiu32>(T, T) -> T
fn max<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T>
fn min<T: fiu32>(T, T) -> T
fn min<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T>
fn mix(f32, f32, f32) -> f32
fn mix<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn mix<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32>
fn modf(f32) -> __modf_result
fn modf<N: num>(vec<N, f32>) -> __modf_result_vec<N>
fn normalize<N: num>(vec<N, f32>) -> vec<N, f32>
fn pack2x16float(vec2<f32>) -> u32
fn pack2x16snorm(vec2<f32>) -> u32
fn pack2x16unorm(vec2<f32>) -> u32
fn pack4x8snorm(vec4<f32>) -> u32
fn pack4x8unorm(vec4<f32>) -> u32
fn pow(f32, f32) -> f32
fn pow<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn radians(f32) -> f32
fn radians<N: num>(vec<N, f32>) -> vec<N, f32>
fn reflect<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn refract<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32>
fn reverseBits<T: iu32>(T) -> T
fn reverseBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn round(f32) -> f32
fn round<N: num>(vec<N, f32>) -> vec<N, f32>
fn select<T: scalar>(T, T, bool) -> T
fn select<T: scalar, N: num>(vec<N, T>, vec<N, T>, bool) -> vec<N, T>
fn select<N: num, T: scalar>(vec<N, T>, vec<N, T>, vec<N, bool>) -> vec<N, T>
fn sign(f32) -> f32
fn sign<N: num>(vec<N, f32>) -> vec<N, f32>
fn sin(f32) -> f32
fn sin<N: num>(vec<N, f32>) -> vec<N, f32>
fn sinh(f32) -> f32
fn sinh<N: num>(vec<N, f32>) -> vec<N, f32>
fn smoothstep(f32, f32, f32) -> f32
fn smoothstep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
[[deprecated]] fn smoothStep(f32, f32, f32) -> f32
[[deprecated]] fn smoothStep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn sqrt(f32) -> f32
fn sqrt<N: num>(vec<N, f32>) -> vec<N, f32>
fn step(f32, f32) -> f32
fn step<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
[[stage("compute")]] fn storageBarrier()
fn tan(f32) -> f32
fn tan<N: num>(vec<N, f32>) -> vec<N, f32>
fn tanh(f32) -> f32
fn tanh<N: num>(vec<N, f32>) -> vec<N, f32>
fn transpose<M: num, N: num>(mat<M, N, f32>) -> mat<N, M, f32>
fn trunc(f32) -> f32
fn trunc<N: num>(vec<N, f32>) -> vec<N, f32>
fn unpack2x16float(u32) -> vec2<f32>
fn unpack2x16snorm(u32) -> vec2<f32>
fn unpack2x16unorm(u32) -> vec2<f32>
fn unpack4x8snorm(u32) -> vec4<f32>
fn unpack4x8unorm(u32) -> vec4<f32>
[[stage("compute")]] fn workgroupBarrier()
fn textureDimensions<T: fiu32>(texture: texture_1d<T>) -> i32
fn textureDimensions<T: fiu32>(texture: texture_1d<T>, level: i32) -> i32
fn textureDimensions<T: fiu32>(texture: texture_2d<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_3d<T>) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_3d<T>, level: i32) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_multisampled_2d<T>) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d_array) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d_array, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_cube) -> vec2<i32>
fn textureDimensions(texture: texture_depth_cube, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_cube_array) -> vec2<i32>
fn textureDimensions(texture: texture_depth_cube_array, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_multisampled_2d) -> vec2<i32>
fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_1d<F, A>) -> i32
fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d<F, A>) -> vec2<i32>
fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> vec2<i32>
fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_3d<F, A>) -> vec3<i32>
fn textureDimensions(texture: texture_external) -> vec2<i32>
fn textureGather<T: fiu32>(component: i32, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>) -> vec4<T>
fn textureGather<T: fiu32>(component: i32, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> vec4<T>
fn textureGather<T: fiu32>(component: i32, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<T>
fn textureGather<T: fiu32>(component: i32, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> vec4<T>
fn textureGather<T: fiu32>(component: i32, texture: texture_cube<T>, sampler: sampler, coords: vec3<f32>) -> vec4<T>
fn textureGather<T: fiu32>(component: i32, texture: texture_cube_array<T>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<T>
fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureGather(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32>
fn textureGather(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> vec4<f32>
fn textureGather(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
fn textureGather(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> vec4<f32>
fn textureNumLayers<T: fiu32>(texture: texture_2d_array<T>) -> i32
fn textureNumLayers<T: fiu32>(texture: texture_cube_array<T>) -> i32
fn textureNumLayers(texture: texture_depth_2d_array) -> i32
fn textureNumLayers(texture: texture_depth_cube_array) -> i32
fn textureNumLayers<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_1d<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_2d<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_2d_array<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_3d<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_cube<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_cube_array<T>) -> i32
fn textureNumLevels(texture: texture_depth_2d) -> i32
fn textureNumLevels(texture: texture_depth_2d_array) -> i32
fn textureNumLevels(texture: texture_depth_cube) -> i32
fn textureNumLevels(texture: texture_depth_cube_array) -> i32
fn textureNumSamples<T: fiu32>(texture: texture_multisampled_2d<T>) -> i32
fn textureNumSamples(texture: texture_depth_multisampled_2d) -> i32
[[stage("fragment")]] fn textureSample(texture: texture_1d<f32>, sampler: sampler, coords: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, offset: vec3<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32>
[[stage("fragment")]] fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> f32
[[stage("fragment")]] fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> f32
[[stage("fragment")]] fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> f32
[[stage("fragment")]] fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> f32
[[stage("fragment")]] fn textureSample(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> f32
[[stage("fragment")]] fn textureSample(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> f32
[[stage("fragment")]] fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32, offset: vec2<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32, offset: vec2<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32, offset: vec3<i32>) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSampleBias(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, bias: f32) -> vec4<f32>
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> f32
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> f32
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32
[[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> f32
fn textureSampleCompareLevel(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>, offset: vec3<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32, offset: vec3<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32, offset: vec2<i32>) -> f32
fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32, offset: vec2<i32>) -> f32
fn textureSampleLevel(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_cube_array,sampler: sampler, coords: vec3<f32>, array_index: i32, level: i32) -> f32
fn textureSampleLevel(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureStore(texture: texture_storage_1d<f32_texel_format, write>, coords: i32, value: vec4<f32>)
fn textureStore(texture: texture_storage_2d<f32_texel_format, write>, coords: vec2<i32>, value: vec4<f32>)
fn textureStore(texture: texture_storage_2d_array<f32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<f32>)
fn textureStore(texture: texture_storage_3d<f32_texel_format, write>, coords: vec3<i32>, value: vec4<f32>)
fn textureStore(texture: texture_storage_1d<i32_texel_format, write>, coords: i32, value: vec4<i32>)
fn textureStore(texture: texture_storage_2d<i32_texel_format, write>, coords: vec2<i32>, value: vec4<i32>)
fn textureStore(texture: texture_storage_2d_array<i32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<i32>)
fn textureStore(texture: texture_storage_3d<i32_texel_format, write>, coords: vec3<i32>, value: vec4<i32>)
fn textureStore(texture: texture_storage_1d<u32_texel_format, write>, coords: i32, value: vec4<u32>)
fn textureStore(texture: texture_storage_2d<u32_texel_format, write>, coords: vec2<i32>, value: vec4<u32>)
fn textureStore(texture: texture_storage_2d_array<u32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<u32>)
fn textureStore(texture: texture_storage_3d<u32_texel_format, write>, coords: vec3<i32>, value: vec4<u32>)
fn textureLoad<T: fiu32>(texture: texture_1d<T>, coords: i32, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_2d<T>, coords: vec2<i32>, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_2d_array<T>, coords: vec2<i32>, array_index: i32, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_3d<T>, coords: vec3<i32>, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_multisampled_2d<T>, coords: vec2<i32>, sample_index: i32) -> vec4<T>
fn textureLoad(texture: texture_depth_2d, coords: vec2<i32>, level: i32) -> f32
fn textureLoad(texture: texture_depth_2d_array, coords: vec2<i32>, array_index: i32, level: i32) -> f32
fn textureLoad(texture: texture_depth_multisampled_2d, coords: vec2<i32>, sample_index: i32) -> f32
fn textureLoad(texture: texture_external, coords: vec2<i32>) -> vec4<f32>
[[stage("fragment", "compute")]] fn atomicLoad<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>) -> T
[[stage("fragment", "compute")]] fn atomicStore<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T)
[[stage("fragment", "compute")]] fn atomicAdd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicSub<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicMax<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicMin<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicAnd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicOr<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicXor<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicExchange<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
[[stage("fragment", "compute")]] fn atomicCompareExchangeWeak<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T, T) -> __atomic_compare_exchange_result<T>
////////////////////////////////////////////////////////////////////////////////
// Type constructors //
////////////////////////////////////////////////////////////////////////////////
// Zero value constructors
ctor i32() -> i32
ctor u32() -> u32
ctor f32() -> f32
ctor bool() -> bool
ctor vec2<T: scalar>() -> vec2<T>
ctor vec3<T: scalar>() -> vec3<T>
ctor vec4<T: scalar>() -> vec4<T>
ctor mat2x2() -> mat2x2<f32>
ctor mat2x3() -> mat2x3<f32>
ctor mat2x4() -> mat2x4<f32>
ctor mat3x2() -> mat3x2<f32>
ctor mat3x3() -> mat3x3<f32>
ctor mat3x4() -> mat3x4<f32>
ctor mat4x2() -> mat4x2<f32>
ctor mat4x3() -> mat4x3<f32>
ctor mat4x4() -> mat4x4<f32>
// Identity constructors
ctor i32(i32) -> i32
ctor u32(u32) -> u32
ctor f32(f32) -> f32
ctor bool(bool) -> bool
ctor vec2<T: scalar>(vec2<T>) -> vec2<T>
ctor vec3<T: scalar>(vec3<T>) -> vec3<T>
ctor vec4<T: scalar>(vec4<T>) -> vec4<T>
ctor mat2x2<f32>(mat2x2<f32>) -> mat2x2<f32>
ctor mat2x3<f32>(mat2x3<f32>) -> mat2x3<f32>
ctor mat2x4<f32>(mat2x4<f32>) -> mat2x4<f32>
ctor mat3x2<f32>(mat3x2<f32>) -> mat3x2<f32>
ctor mat3x3<f32>(mat3x3<f32>) -> mat3x3<f32>
ctor mat3x4<f32>(mat3x4<f32>) -> mat3x4<f32>
ctor mat4x2<f32>(mat4x2<f32>) -> mat4x2<f32>
ctor mat4x3<f32>(mat4x3<f32>) -> mat4x3<f32>
ctor mat4x4<f32>(mat4x4<f32>) -> mat4x4<f32>
// Vector constructors
ctor vec2<T: abstract_or_scalar>(T) -> vec2<T>
ctor vec2<T: abstract_or_scalar>(x: T, y: T) -> vec2<T>
ctor vec3<T: abstract_or_scalar>(T) -> vec3<T>
ctor vec3<T: abstract_or_scalar>(x: T, y: T, z: T) -> vec3<T>
ctor vec3<T: abstract_or_scalar>(xy: vec2<T>, z: T) -> vec3<T>
ctor vec3<T: abstract_or_scalar>(x: T, yz: vec2<T>) -> vec3<T>
ctor vec4<T: abstract_or_scalar>(T) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(x: T, y: T, z: T, w: T) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(xy: vec2<T>, z: T, w: T) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(x: T, yz: vec2<T>, w: T) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(x: T, y: T, zw: vec2<T>) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(xy: vec2<T>, zw: vec2<T>) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(xyz: vec3<T>, w: T) -> vec4<T>
ctor vec4<T: abstract_or_scalar>(x: T, zyw: vec3<T>) -> vec4<T>
// Matrix constructors
ctor mat2x2<T: af_f32>(T) -> mat2x2<T>
ctor mat2x2<T: af_f32>(T, T,
T, T) -> mat2x2<T>
ctor mat2x2<T: af_f32>(vec2<T>, vec2<T>) -> mat2x2<T>
ctor mat2x3<T: af_f32>(T) -> mat2x3<T>
ctor mat2x3<T: af_f32>(T, T, T,
T, T, T) -> mat2x3<T>
ctor mat2x3<T: af_f32>(vec3<T>, vec3<T>) -> mat2x3<T>
ctor mat2x4<T: af_f32>(T) -> mat2x4<T>
ctor mat2x4<T: af_f32>(T, T, T, T,
T, T, T, T) -> mat2x4<T>
ctor mat2x4<T: af_f32>(vec4<T>, vec4<T>) -> mat2x4<T>
ctor mat3x2<T: af_f32>(T) -> mat3x2<T>
ctor mat3x2<T: af_f32>(T, T,
T, T,
T, T) -> mat3x2<T>
ctor mat3x2<T: af_f32>(vec2<T>, vec2<T>, vec2<T>) -> mat3x2<T>
ctor mat3x3<T: af_f32>(T) -> mat3x3<T>
ctor mat3x3<T: af_f32>(T, T, T,
T, T, T,
T, T, T) -> mat3x3<T>
ctor mat3x3<T: af_f32>(vec3<T>, vec3<T>, vec3<T>) -> mat3x3<T>
ctor mat3x4<T: af_f32>(T) -> mat3x4<T>
ctor mat3x4<T: af_f32>(T, T, T, T,
T, T, T, T,
T, T, T, T) -> mat3x4<T>
ctor mat3x4<T: af_f32>(vec4<T>, vec4<T>, vec4<T>) -> mat3x4<T>
ctor mat4x2<T: af_f32>(T) -> mat4x2<T>
ctor mat4x2<T: af_f32>(T, T,
T, T,
T, T,
T, T) -> mat4x2<T>
ctor mat4x2<T: af_f32>(vec2<T>, vec2<T>, vec2<T>, vec2<T>) -> mat4x2<T>
ctor mat4x3<T: af_f32>(T) -> mat4x3<T>
ctor mat4x3<T: af_f32>(T, T, T,
T, T, T,
T, T, T,
T, T, T) -> mat4x3<T>
ctor mat4x3<T: af_f32>(vec3<T>, vec3<T>, vec3<T>, vec3<T>) -> mat4x3<T>
ctor mat4x4<T: af_f32>(T) -> mat4x4<T>
ctor mat4x4<T: af_f32>(T, T, T, T,
T, T, T, T,
T, T, T, T,
T, T, T, T) -> mat4x4<T>
ctor mat4x4<T: af_f32>(vec4<T>, vec4<T>, vec4<T>, vec4<T>) -> mat4x4<T>
////////////////////////////////////////////////////////////////////////////////
// Type conversions //
////////////////////////////////////////////////////////////////////////////////
conv f32<T: scalar_no_f32>(T) -> f32
conv i32<T: scalar_no_i32>(T) -> i32
conv u32<T: scalar_no_u32>(T) -> u32
conv bool<T: scalar_no_bool>(T) -> bool
conv vec2<T: f32, U: scalar_no_f32>(vec2<U>) -> vec2<f32>
conv vec2<T: i32, U: scalar_no_i32>(vec2<U>) -> vec2<i32>
conv vec2<T: u32, U: scalar_no_u32>(vec2<U>) -> vec2<u32>
conv vec2<T: bool, U: scalar_no_bool>(vec2<U>) -> vec2<bool>
conv vec3<T: f32, U: scalar_no_f32>(vec3<U>) -> vec3<f32>
conv vec3<T: i32, U: scalar_no_i32>(vec3<U>) -> vec3<i32>
conv vec3<T: u32, U: scalar_no_u32>(vec3<U>) -> vec3<u32>
conv vec3<T: bool, U: scalar_no_bool>(vec3<U>) -> vec3<bool>
conv vec4<T: f32, U: scalar_no_f32>(vec4<U>) -> vec4<f32>
conv vec4<T: i32, U: scalar_no_i32>(vec4<U>) -> vec4<i32>
conv vec4<T: u32, U: scalar_no_u32>(vec4<U>) -> vec4<u32>
conv vec4<T: bool, U: scalar_no_bool>(vec4<U>) -> vec4<bool>
////////////////////////////////////////////////////////////////////////////////
// Operators //
// //
// The operator declarations below declare all the unary and binary operators //
// supported by the WGSL language (with exception for address-of and //
// dereference unary operators). //
// //
// The syntax is almost identical to builtin functions, except we use 'op' //
// instead of 'fn'. The resolving rules are identical to builtins, which is //
// described in detail above. //
// //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Unary Operators //
////////////////////////////////////////////////////////////////////////////////
op ! (bool) -> bool
op ! <N: num> (vec<N, bool>) -> vec<N, bool>
op ~ <T: iu32>(T) -> T
op ~ <T: iu32, N: num> (vec<N, T>) -> vec<N, T>
op - <T: fi32>(T) -> T
op - <T: fi32, N: num> (vec<N, T>) -> vec<N, T>
////////////////////////////////////////////////////////////////////////////////
// Binary Operators //
////////////////////////////////////////////////////////////////////////////////
op + <T: fiu32>(T, T) -> T
op + <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op + <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T>
op + <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T>
op + <N: num, M: num> (mat<N, M, f32>, mat<N, M, f32>) -> mat<N, M, f32>
op - <T: fiu32>(T, T) -> T
op - <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op - <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T>
op - <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T>
op - <N: num, M: num> (mat<N, M, f32>, mat<N, M, f32>) -> mat<N, M, f32>
op * <T: fiu32>(T, T) -> T
op * <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op * <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T>
op * <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T>
op * <N: num, M: num> (f32, mat<N, M, f32>) -> mat<N, M, f32>
op * <N: num, M: num> (mat<N, M, f32>, f32) -> mat<N, M, f32>
op * <C: num, R: num> (mat<C, R, f32>, vec<C, f32>) -> vec<R, f32>
op * <C: num, R: num> (vec<R, f32>, mat<C, R, f32>) -> vec<C, f32>
op * <K: num, C: num, R: num> (mat<K, R, f32>, mat<C, K, f32>) -> mat<C, R, f32>
op / <T: fiu32>(T, T) -> T
op / <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op / <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T>
op / <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T>
op % <T: fiu32>(T, T) -> T
op % <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op % <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T>
op % <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T>
op ^ <T: iu32>(T, T) -> T
op ^ <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op & (bool, bool) -> bool
op & <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool>
op & <T: iu32>(T, T) -> T
op & <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op | (bool, bool) -> bool
op | <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool>
op | <T: iu32>(T, T) -> T
op | <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
op && (bool, bool) -> bool
op || (bool, bool) -> bool
op == <T: scalar>(T, T) -> bool
op == <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op != <T: scalar>(T, T) -> bool
op != <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op < <T: fiu32>(T, T) -> bool
op < <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op > <T: fiu32>(T, T) -> bool
op > <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op <= <T: fiu32>(T, T) -> bool
op <= <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op >= <T: fiu32>(T, T) -> bool
op >= <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
op << <T: iu32>(T, u32) -> T
op << <T: iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T>
op >> <T: iu32>(T, u32) -> T
op >> <T: iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T>