blob: 493ce878a155757d1d4bcc4a3f05d0f3e58ff89e [file] [log] [blame] [edit]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ast/bitcast_expression.h"
#include "src/tint/reader/wgsl/parser_impl_test_helper.h"
namespace tint::reader::wgsl {
namespace {
TEST_F(ParserImplTest, PrimaryExpression_Ident) {
auto p = parser("a");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::IdentifierExpression>());
auto* ident = e->As<ast::IdentifierExpression>();
EXPECT_EQ(ident->symbol, p->builder().Symbols().Get("a"));
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl) {
auto p = parser("vec4<i32>(1, 2, 3, 4))");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::CallExpression>());
auto* call = e->As<ast::CallExpression>();
EXPECT_NE(call->target.type, nullptr);
ASSERT_EQ(call->args.size(), 4u);
const auto& val = call->args;
ASSERT_TRUE(val[0]->Is<ast::IntLiteralExpression>());
EXPECT_EQ(val[0]->As<ast::IntLiteralExpression>()->value, 1);
EXPECT_EQ(val[0]->As<ast::IntLiteralExpression>()->suffix,
ast::IntLiteralExpression::Suffix::kNone);
ASSERT_TRUE(val[1]->Is<ast::IntLiteralExpression>());
EXPECT_EQ(val[1]->As<ast::IntLiteralExpression>()->value, 2);
EXPECT_EQ(val[1]->As<ast::IntLiteralExpression>()->suffix,
ast::IntLiteralExpression::Suffix::kNone);
ASSERT_TRUE(val[2]->Is<ast::IntLiteralExpression>());
EXPECT_EQ(val[2]->As<ast::IntLiteralExpression>()->value, 3);
EXPECT_EQ(val[2]->As<ast::IntLiteralExpression>()->suffix,
ast::IntLiteralExpression::Suffix::kNone);
ASSERT_TRUE(val[3]->Is<ast::IntLiteralExpression>());
EXPECT_EQ(val[3]->As<ast::IntLiteralExpression>()->value, 4);
EXPECT_EQ(val[3]->As<ast::IntLiteralExpression>()->suffix,
ast::IntLiteralExpression::Suffix::kNone);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_ZeroConstructor) {
auto p = parser("vec4<i32>()");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::CallExpression>());
auto* call = e->As<ast::CallExpression>();
ASSERT_EQ(call->args.size(), 0u);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidTypeDecl) {
auto p = parser("vec4<if>(2., 3., 4., 5.)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:6: invalid type for vector");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingLeftParen) {
auto p = parser("vec4<f32> 2., 3., 4., 5.)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:11: expected '(' for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingRightParen) {
auto p = parser("vec4<f32>(2., 3., 4., 5.");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:25: expected ')' for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidValue) {
auto p = parser("i32(if(a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:5: expected ')' for type constructor");
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_StructConstructor_Empty) {
auto p = parser(R"(
struct S { a : i32, b : f32, }
S()
)");
p->global_decl();
ASSERT_FALSE(p->has_error()) << p->error();
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::CallExpression>());
auto* call = e->As<ast::CallExpression>();
ASSERT_NE(call->target.name, nullptr);
EXPECT_EQ(call->target.name->symbol, p->builder().Symbols().Get("S"));
ASSERT_EQ(call->args.size(), 0u);
}
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_StructConstructor_NotEmpty) {
auto p = parser(R"(
struct S { a : i32, b : f32, }
S(1u, 2.0)
)");
p->global_decl();
ASSERT_FALSE(p->has_error()) << p->error();
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::CallExpression>());
auto* call = e->As<ast::CallExpression>();
ASSERT_NE(call->target.name, nullptr);
EXPECT_EQ(call->target.name->symbol, p->builder().Symbols().Get("S"));
ASSERT_EQ(call->args.size(), 2u);
ASSERT_TRUE(call->args[0]->Is<ast::IntLiteralExpression>());
EXPECT_EQ(call->args[0]->As<ast::IntLiteralExpression>()->value, 1u);
EXPECT_EQ(call->args[0]->As<ast::IntLiteralExpression>()->suffix,
ast::IntLiteralExpression::Suffix::kU);
ASSERT_TRUE(call->args[1]->Is<ast::FloatLiteralExpression>());
EXPECT_EQ(call->args[1]->As<ast::FloatLiteralExpression>()->value, 2.f);
}
TEST_F(ParserImplTest, PrimaryExpression_ConstLiteral_True) {
auto p = parser("true");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BoolLiteralExpression>());
EXPECT_TRUE(e->As<ast::BoolLiteralExpression>()->value);
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr) {
auto p = parser("(a == b)");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingRightParen) {
auto p = parser("(a == b");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:8: expected ')'");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingExpr) {
auto p = parser("()");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_InvalidExpr) {
auto p = parser("(if (a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Cast) {
auto p = parser("f32(1)");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::CallExpression>());
auto* call = e->As<ast::CallExpression>();
ASSERT_TRUE(call->target.type->Is<ast::F32>());
ASSERT_EQ(call->args.size(), 1u);
ASSERT_TRUE(call->args[0]->Is<ast::IntLiteralExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast) {
auto p = parser("bitcast<f32>(1)");
auto e = p->primary_expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BitcastExpression>());
auto* c = e->As<ast::BitcastExpression>();
ASSERT_TRUE(c->type->Is<ast::F32>());
ASSERT_TRUE(c->expr->Is<ast::IntLiteralExpression>());
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingGreaterThan) {
auto p = parser("bitcast<f32(1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:12: expected '>' for bitcast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingType) {
auto p = parser("bitcast<>(1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:9: invalid type for bitcast expression");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingLeftParen) {
auto p = parser("bitcast<f32>1)");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:13: expected '('");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingRightParen) {
auto p = parser("bitcast<f32>(1");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:15: expected ')'");
}
TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingExpression) {
auto p = parser("bitcast<f32>()");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: unable to parse expression");
}
TEST_F(ParserImplTest, PrimaryExpression_bitcast_InvalidExpression) {
auto p = parser("bitcast<f32>(if (a) {})");
auto e = p->primary_expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
ASSERT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:14: unable to parse expression");
}
} // namespace
} // namespace tint::reader::wgsl