blob: eb8f30e47a8eaa8418a5b3440669dd05fb690190 [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/intrinsic_table.h"
#include <algorithm>
#include <limits>
#include <unordered_map>
#include <utility>
#include "src/tint/program_builder.h"
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/abstract_numeric.h"
#include "src/tint/sem/atomic.h"
#include "src/tint/sem/depth_multisampled_texture.h"
#include "src/tint/sem/depth_texture.h"
#include "src/tint/sem/external_texture.h"
#include "src/tint/sem/multisampled_texture.h"
#include "src/tint/sem/pipeline_stage_set.h"
#include "src/tint/sem/sampled_texture.h"
#include "src/tint/sem/storage_texture.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
#include "src/tint/utils/hash.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/math.h"
#include "src/tint/utils/scoped_assignment.h"
namespace tint::resolver {
namespace {
// Forward declarations
struct OverloadInfo;
class Matchers;
class NumberMatcher;
class TypeMatcher;
/// A special type that matches all TypeMatchers
class Any final : public Castable<Any, sem::Type> {
public:
Any() = default;
~Any() override = default;
// Stub implementations for sem::Type conformance.
size_t Hash() const override { return 0; }
bool Equals(const sem::Type&) const override { return false; }
std::string FriendlyName(const SymbolTable&) const override { return "<any>"; }
};
/// Number is an 32 bit unsigned integer, which can be in one of three states:
/// * Invalid - Number has not been assigned a value
/// * Valid - a fixed integer value
/// * Any - matches any other non-invalid number
struct Number {
static const Number any;
static const Number invalid;
/// Constructed as a valid number with the value v
explicit Number(uint32_t v) : value_(v), state_(kValid) {}
/// @returns the value of the number
inline uint32_t Value() const { return value_; }
/// @returns the true if the number is valid
inline bool IsValid() const { return state_ == kValid; }
/// @returns the true if the number is any
inline bool IsAny() const { return state_ == kAny; }
/// Assignment operator.
/// The number becomes valid, with the value n
inline Number& operator=(uint32_t n) {
value_ = n;
state_ = kValid;
return *this;
}
private:
enum State {
kInvalid,
kValid,
kAny,
};
constexpr explicit Number(State state) : state_(state) {}
uint32_t value_ = 0;
State state_ = kInvalid;
};
const Number Number::any{Number::kAny};
const Number Number::invalid{Number::kInvalid};
/// TemplateState holds the state of the template numbers and types.
/// Used by the MatchState.
class TemplateState {
public:
/// If the template type with index `idx` is undefined, then it is defined with the `ty` and
/// Type() returns `ty`.
/// If the template type is defined, and `ty` can be converted to the template type then the
/// template type is returned.
/// If the template type is defined, and the template type can be converted to `ty`, then the
/// template type is replaced with `ty`, and `ty` is returned.
/// If none of the above applies, then `ty` is a type mismatch for the template type, and
/// nullptr is returned.
const sem::Type* Type(size_t idx, const sem::Type* ty) {
auto res = types_.emplace(idx, ty);
if (res.second) {
return ty;
}
auto* existing = res.first->second;
if (existing == ty) {
return ty;
}
ty = sem::Type::Common({existing, ty});
if (ty) {
res.first->second = ty;
}
return ty;
}
/// If the number with index `idx` is undefined, then it is defined with the number `number` and
/// Num() returns true. If the number is defined, then `Num()` returns true iff it is equal to
/// `ty`.
bool Num(size_t idx, Number number) {
auto res = numbers_.emplace(idx, number.Value());
return res.second || res.first->second == number.Value();
}
/// Type returns the template type with index `idx`, or nullptr if the type was not defined.
const sem::Type* Type(size_t idx) const {
auto it = types_.find(idx);
return (it != types_.end()) ? it->second : nullptr;
}
/// SetType replaces the template type with index `idx` with type `ty`.
void SetType(size_t idx, const sem::Type* ty) { types_[idx] = ty; }
/// Type returns the number type with index `idx`.
Number Num(size_t idx) const {
auto it = numbers_.find(idx);
return (it != numbers_.end()) ? Number(it->second) : Number::invalid;
}
private:
std::unordered_map<size_t, const sem::Type*> types_;
std::unordered_map<size_t, uint32_t> numbers_;
};
/// Index type used for matcher indices
using MatcherIndex = uint8_t;
/// Index value used for template types / numbers that do not have a constraint
constexpr MatcherIndex kNoMatcher = std::numeric_limits<MatcherIndex>::max();
/// MatchState holds the state used to match an overload.
class MatchState {
public:
MatchState(ProgramBuilder& b,
TemplateState& t,
const Matchers& m,
const OverloadInfo* o,
MatcherIndex const* matcher_indices)
: builder(b), templates(t), matchers(m), overload(o), matcher_indices_(matcher_indices) {}
/// The program builder
ProgramBuilder& builder;
/// The template types and numbers
TemplateState& templates;
/// The type and number matchers
Matchers const& matchers;
/// The current overload being evaluated
OverloadInfo const* overload;
/// Type uses the next TypeMatcher from the matcher indices to match the type
/// `ty`. If the type matches, the canonical expected type is returned. If the
/// type `ty` does not match, then nullptr is returned.
/// @note: The matcher indices are progressed on calling.
const sem::Type* Type(const sem::Type* ty);
/// Num uses the next NumMatcher from the matcher indices to match the number
/// `num`. If the number matches, the canonical expected number is returned.
/// If the number `num` does not match, then an invalid number is returned.
/// @note: The matcher indices are progressed on calling.
Number Num(Number num);
/// @returns a string representation of the next TypeMatcher from the matcher
/// indices.
/// @note: The matcher indices are progressed on calling.
std::string TypeName();
/// @returns a string representation of the next NumberMatcher from the
/// matcher indices.
/// @note: The matcher indices are progressed on calling.
std::string NumName();
private:
MatcherIndex const* matcher_indices_ = nullptr;
};
/// A TypeMatcher is the interface used to match an type used as part of an
/// overload's parameter or return type.
class TypeMatcher {
public:
/// Destructor
virtual ~TypeMatcher() = default;
/// Checks whether the given type matches the matcher rules, and returns the
/// expected, canonicalized type on success.
/// Match may define and refine the template types and numbers in state.
/// @param type the type to match
/// @returns the canonicalized type on match, otherwise nullptr
virtual const sem::Type* Match(MatchState& state, const sem::Type* type) const = 0;
/// @return a string representation of the matcher. Used for printing error
/// messages when no overload is found.
virtual std::string String(MatchState* state) const = 0;
};
/// A NumberMatcher is the interface used to match a number or enumerator used
/// as part of an overload's parameter or return type.
class NumberMatcher {
public:
/// Destructor
virtual ~NumberMatcher() = default;
/// Checks whether the given number matches the matcher rules.
/// Match may define template numbers in state.
/// @param number the number to match
/// @returns true if the argument type is as expected.
virtual Number Match(MatchState& state, Number number) const = 0;
/// @return a string representation of the matcher. Used for printing error
/// messages when no overload is found.
virtual std::string String(MatchState* state) const = 0;
};
/// TemplateTypeMatcher is a Matcher for a template type.
/// The TemplateTypeMatcher will initially match against any type, and then will only be further
/// constrained based on the conversion rules defined at https://www.w3.org/TR/WGSL/#conversion-rank
class TemplateTypeMatcher : public TypeMatcher {
public:
/// Constructor
explicit TemplateTypeMatcher(size_t index) : index_(index) {}
const sem::Type* Match(MatchState& state, const sem::Type* type) const override {
if (type->Is<Any>()) {
return state.templates.Type(index_);
}
if (auto* templates = state.templates.Type(index_, type)) {
return templates;
}
return nullptr;
}
std::string String(MatchState* state) const override;
private:
size_t index_;
};
/// TemplateNumberMatcher is a Matcher for a template number.
/// The TemplateNumberMatcher will match against any number (so long as it is
/// consistent for all uses in the overload)
class TemplateNumberMatcher : public NumberMatcher {
public:
explicit TemplateNumberMatcher(size_t index) : index_(index) {}
Number Match(MatchState& state, Number number) const override {
if (number.IsAny()) {
return state.templates.Num(index_);
}
return state.templates.Num(index_, number) ? number : Number::invalid;
}
std::string String(MatchState* state) const override;
private:
size_t index_;
};
////////////////////////////////////////////////////////////////////////////////
// Binding functions for use in the generated builtin_table.inl
// TODO(bclayton): See if we can move more of this hand-rolled code to the
// template
////////////////////////////////////////////////////////////////////////////////
using TexelFormat = ast::TexelFormat;
using Access = ast::Access;
using StorageClass = ast::StorageClass;
using ParameterUsage = sem::ParameterUsage;
using PipelineStage = ast::PipelineStage;
/// Unique flag bits for overloads
enum class OverloadFlag {
kIsBuiltin, // The overload is a builtin ('fn')
kIsOperator, // The overload is an operator ('op')
kIsConstructor, // The overload is a type constructor ('ctor')
kIsConverter, // The overload is a type converter ('conv')
kSupportsVertexPipeline, // The overload can be used in vertex shaders
kSupportsFragmentPipeline, // The overload can be used in fragment shaders
kSupportsComputePipeline, // The overload can be used in compute shaders
kIsDeprecated, // The overload is deprecated
};
// An enum set of OverloadFlag, used by OperatorInfo
using OverloadFlags = utils::EnumSet<OverloadFlag>;
bool match_bool(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::Bool>();
}
const sem::AbstractFloat* build_af(MatchState& state) {
return state.builder.create<sem::AbstractFloat>();
}
bool match_af(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::AbstractFloat>();
}
const sem::AbstractInt* build_ai(MatchState& state) {
return state.builder.create<sem::AbstractInt>();
}
bool match_ai(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::AbstractInt>();
}
const sem::Bool* build_bool(MatchState& state) {
return state.builder.create<sem::Bool>();
}
const sem::F32* build_f32(MatchState& state) {
return state.builder.create<sem::F32>();
}
bool match_f32(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::F32, sem::AbstractNumeric>();
}
const sem::I32* build_i32(MatchState& state) {
return state.builder.create<sem::I32>();
}
bool match_i32(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::I32, sem::AbstractInt>();
}
const sem::U32* build_u32(MatchState& state) {
return state.builder.create<sem::U32>();
}
bool match_u32(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::U32, sem::AbstractInt>();
}
bool match_vec(const sem::Type* ty, Number& N, const sem::Type*& T) {
if (ty->Is<Any>()) {
N = Number::any;
T = ty;
return true;
}
if (auto* v = ty->As<sem::Vector>()) {
N = v->Width();
T = v->type();
return true;
}
return false;
}
template <uint32_t N>
bool match_vec(const sem::Type* ty, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* v = ty->As<sem::Vector>()) {
if (v->Width() == N) {
T = v->type();
return true;
}
}
return false;
}
const sem::Vector* build_vec(MatchState& state, Number N, const sem::Type* el) {
return state.builder.create<sem::Vector>(el, N.Value());
}
template <uint32_t N>
const sem::Vector* build_vec(MatchState& state, const sem::Type* el) {
return state.builder.create<sem::Vector>(el, N);
}
constexpr auto match_vec2 = match_vec<2>;
constexpr auto match_vec3 = match_vec<3>;
constexpr auto match_vec4 = match_vec<4>;
constexpr auto build_vec2 = build_vec<2>;
constexpr auto build_vec3 = build_vec<3>;
constexpr auto build_vec4 = build_vec<4>;
bool match_mat(const sem::Type* ty, Number& M, Number& N, const sem::Type*& T) {
if (ty->Is<Any>()) {
M = Number::any;
N = Number::any;
T = ty;
return true;
}
if (auto* m = ty->As<sem::Matrix>()) {
M = m->columns();
N = m->ColumnType()->Width();
T = m->type();
return true;
}
return false;
}
template <uint32_t C, uint32_t R>
bool match_mat(const sem::Type* ty, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* m = ty->As<sem::Matrix>()) {
if (m->columns() == C && m->rows() == R) {
T = m->type();
return true;
}
}
return false;
}
const sem::Matrix* build_mat(MatchState& state, Number C, Number R, const sem::Type* T) {
auto* column_type = state.builder.create<sem::Vector>(T, R.Value());
return state.builder.create<sem::Matrix>(column_type, C.Value());
}
template <uint32_t C, uint32_t R>
const sem::Matrix* build_mat(MatchState& state, const sem::Type* T) {
auto* column_type = state.builder.create<sem::Vector>(T, R);
return state.builder.create<sem::Matrix>(column_type, C);
}
constexpr auto build_mat2x2 = build_mat<2, 2>;
constexpr auto build_mat2x3 = build_mat<2, 3>;
constexpr auto build_mat2x4 = build_mat<2, 4>;
constexpr auto build_mat3x2 = build_mat<3, 2>;
constexpr auto build_mat3x3 = build_mat<3, 3>;
constexpr auto build_mat3x4 = build_mat<3, 4>;
constexpr auto build_mat4x2 = build_mat<4, 2>;
constexpr auto build_mat4x3 = build_mat<4, 3>;
constexpr auto build_mat4x4 = build_mat<4, 4>;
constexpr auto match_mat2x2 = match_mat<2, 2>;
constexpr auto match_mat2x3 = match_mat<2, 3>;
constexpr auto match_mat2x4 = match_mat<2, 4>;
constexpr auto match_mat3x2 = match_mat<3, 2>;
constexpr auto match_mat3x3 = match_mat<3, 3>;
constexpr auto match_mat3x4 = match_mat<3, 4>;
constexpr auto match_mat4x2 = match_mat<4, 2>;
constexpr auto match_mat4x3 = match_mat<4, 3>;
constexpr auto match_mat4x4 = match_mat<4, 4>;
bool match_array(const sem::Type* ty, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* a = ty->As<sem::Array>()) {
if (a->Count() == 0) {
T = a->ElemType();
return true;
}
}
return false;
}
const sem::Array* build_array(MatchState& state, const sem::Type* el) {
return state.builder.create<sem::Array>(el,
/* count */ 0u,
/* align */ 0u,
/* size */ 0u,
/* stride */ 0u,
/* stride_implicit */ 0u);
}
bool match_ptr(const sem::Type* ty, Number& S, const sem::Type*& T, Number& A) {
if (ty->Is<Any>()) {
S = Number::any;
T = ty;
A = Number::any;
return true;
}
if (auto* p = ty->As<sem::Pointer>()) {
S = Number(static_cast<uint32_t>(p->StorageClass()));
T = p->StoreType();
A = Number(static_cast<uint32_t>(p->Access()));
return true;
}
return false;
}
const sem::Pointer* build_ptr(MatchState& state, Number S, const sem::Type* T, Number& A) {
return state.builder.create<sem::Pointer>(T, static_cast<ast::StorageClass>(S.Value()),
static_cast<ast::Access>(A.Value()));
}
bool match_atomic(const sem::Type* ty, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* a = ty->As<sem::Atomic>()) {
T = a->Type();
return true;
}
return false;
}
const sem::Atomic* build_atomic(MatchState& state, const sem::Type* T) {
return state.builder.create<sem::Atomic>(T);
}
bool match_sampler(const sem::Type* ty) {
if (ty->Is<Any>()) {
return true;
}
return ty->Is([](const sem::Sampler* s) { return s->kind() == ast::SamplerKind::kSampler; });
}
const sem::Sampler* build_sampler(MatchState& state) {
return state.builder.create<sem::Sampler>(ast::SamplerKind::kSampler);
}
bool match_sampler_comparison(const sem::Type* ty) {
if (ty->Is<Any>()) {
return true;
}
return ty->Is(
[](const sem::Sampler* s) { return s->kind() == ast::SamplerKind::kComparisonSampler; });
}
const sem::Sampler* build_sampler_comparison(MatchState& state) {
return state.builder.create<sem::Sampler>(ast::SamplerKind::kComparisonSampler);
}
bool match_texture(const sem::Type* ty, ast::TextureDimension dim, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* v = ty->As<sem::SampledTexture>()) {
if (v->dim() == dim) {
T = v->type();
return true;
}
}
return false;
}
#define JOIN(a, b) a##b
#define DECLARE_SAMPLED_TEXTURE(suffix, dim) \
bool JOIN(match_texture_, suffix)(const sem::Type* ty, const sem::Type*& T) { \
return match_texture(ty, dim, T); \
} \
const sem::SampledTexture* JOIN(build_texture_, suffix)(MatchState & state, \
const sem::Type* T) { \
return state.builder.create<sem::SampledTexture>(dim, T); \
}
DECLARE_SAMPLED_TEXTURE(1d, ast::TextureDimension::k1d)
DECLARE_SAMPLED_TEXTURE(2d, ast::TextureDimension::k2d)
DECLARE_SAMPLED_TEXTURE(2d_array, ast::TextureDimension::k2dArray)
DECLARE_SAMPLED_TEXTURE(3d, ast::TextureDimension::k3d)
DECLARE_SAMPLED_TEXTURE(cube, ast::TextureDimension::kCube)
DECLARE_SAMPLED_TEXTURE(cube_array, ast::TextureDimension::kCubeArray)
#undef DECLARE_SAMPLED_TEXTURE
bool match_texture_multisampled(const sem::Type* ty,
ast::TextureDimension dim,
const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
if (auto* v = ty->As<sem::MultisampledTexture>()) {
if (v->dim() == dim) {
T = v->type();
return true;
}
}
return false;
}
#define DECLARE_MULTISAMPLED_TEXTURE(suffix, dim) \
bool JOIN(match_texture_multisampled_, suffix)(const sem::Type* ty, const sem::Type*& T) { \
return match_texture_multisampled(ty, dim, T); \
} \
const sem::MultisampledTexture* JOIN(build_texture_multisampled_, suffix)( \
MatchState & state, const sem::Type* T) { \
return state.builder.create<sem::MultisampledTexture>(dim, T); \
}
DECLARE_MULTISAMPLED_TEXTURE(2d, ast::TextureDimension::k2d)
#undef DECLARE_MULTISAMPLED_TEXTURE
bool match_texture_depth(const sem::Type* ty, ast::TextureDimension dim) {
if (ty->Is<Any>()) {
return true;
}
return ty->Is([&](const sem::DepthTexture* t) { return t->dim() == dim; });
}
#define DECLARE_DEPTH_TEXTURE(suffix, dim) \
bool JOIN(match_texture_depth_, suffix)(const sem::Type* ty) { \
return match_texture_depth(ty, dim); \
} \
const sem::DepthTexture* JOIN(build_texture_depth_, suffix)(MatchState & state) { \
return state.builder.create<sem::DepthTexture>(dim); \
}
DECLARE_DEPTH_TEXTURE(2d, ast::TextureDimension::k2d)
DECLARE_DEPTH_TEXTURE(2d_array, ast::TextureDimension::k2dArray)
DECLARE_DEPTH_TEXTURE(cube, ast::TextureDimension::kCube)
DECLARE_DEPTH_TEXTURE(cube_array, ast::TextureDimension::kCubeArray)
#undef DECLARE_DEPTH_TEXTURE
bool match_texture_depth_multisampled_2d(const sem::Type* ty) {
if (ty->Is<Any>()) {
return true;
}
return ty->Is([&](const sem::DepthMultisampledTexture* t) {
return t->dim() == ast::TextureDimension::k2d;
});
}
sem::DepthMultisampledTexture* build_texture_depth_multisampled_2d(MatchState& state) {
return state.builder.create<sem::DepthMultisampledTexture>(ast::TextureDimension::k2d);
}
bool match_texture_storage(const sem::Type* ty, ast::TextureDimension dim, Number& F, Number& A) {
if (ty->Is<Any>()) {
F = Number::any;
A = Number::any;
return true;
}
if (auto* v = ty->As<sem::StorageTexture>()) {
if (v->dim() == dim) {
F = Number(static_cast<uint32_t>(v->texel_format()));
A = Number(static_cast<uint32_t>(v->access()));
return true;
}
}
return false;
}
#define DECLARE_STORAGE_TEXTURE(suffix, dim) \
bool JOIN(match_texture_storage_, suffix)(const sem::Type* ty, Number& F, Number& A) { \
return match_texture_storage(ty, dim, F, A); \
} \
const sem::StorageTexture* JOIN(build_texture_storage_, suffix)(MatchState & state, Number F, \
Number A) { \
auto format = static_cast<TexelFormat>(F.Value()); \
auto access = static_cast<Access>(A.Value()); \
auto* T = sem::StorageTexture::SubtypeFor(format, state.builder.Types()); \
return state.builder.create<sem::StorageTexture>(dim, format, access, T); \
}
DECLARE_STORAGE_TEXTURE(1d, ast::TextureDimension::k1d)
DECLARE_STORAGE_TEXTURE(2d, ast::TextureDimension::k2d)
DECLARE_STORAGE_TEXTURE(2d_array, ast::TextureDimension::k2dArray)
DECLARE_STORAGE_TEXTURE(3d, ast::TextureDimension::k3d)
#undef DECLARE_STORAGE_TEXTURE
bool match_texture_external(const sem::Type* ty) {
return ty->IsAnyOf<Any, sem::ExternalTexture>();
}
const sem::ExternalTexture* build_texture_external(MatchState& state) {
return state.builder.create<sem::ExternalTexture>();
}
// Builtin types starting with a _ prefix cannot be declared in WGSL, so they
// can only be used as return types. Because of this, they must only match Any,
// which is used as the return type matcher.
bool match_modf_result(const sem::Type* ty) {
return ty->Is<Any>();
}
bool match_modf_result_vec(const sem::Type* ty, Number& N) {
if (!ty->Is<Any>()) {
return false;
}
N = Number::any;
return true;
}
bool match_frexp_result(const sem::Type* ty) {
return ty->Is<Any>();
}
bool match_frexp_result_vec(const sem::Type* ty, Number& N) {
if (!ty->Is<Any>()) {
return false;
}
N = Number::any;
return true;
}
bool match_atomic_compare_exchange_result(const sem::Type* ty, const sem::Type*& T) {
if (ty->Is<Any>()) {
T = ty;
return true;
}
return false;
}
struct NameAndType {
std::string name;
sem::Type* type;
};
const sem::Struct* build_struct(MatchState& state,
std::string name,
std::initializer_list<NameAndType> member_names_and_types) {
uint32_t offset = 0;
uint32_t max_align = 0;
sem::StructMemberList members;
for (auto& m : member_names_and_types) {
uint32_t align = m.type->Align();
uint32_t size = m.type->Size();
offset = utils::RoundUp(align, offset);
max_align = std::max(max_align, align);
members.emplace_back(state.builder.create<sem::StructMember>(
/* declaration */ nullptr,
/* name */ state.builder.Sym(m.name),
/* type */ m.type,
/* index */ static_cast<uint32_t>(members.size()),
/* offset */ offset,
/* align */ align,
/* size */ size));
offset += size;
}
uint32_t size_without_padding = offset;
uint32_t size_with_padding = utils::RoundUp(max_align, offset);
return state.builder.create<sem::Struct>(
/* declaration */ nullptr,
/* name */ state.builder.Sym(name),
/* members */ members,
/* align */ max_align,
/* size */ size_with_padding,
/* size_no_padding */ size_without_padding);
}
const sem::Struct* build_modf_result(MatchState& state) {
auto* f32 = state.builder.create<sem::F32>();
return build_struct(state, "__modf_result", {{"fract", f32}, {"whole", f32}});
}
const sem::Struct* build_modf_result_vec(MatchState& state, Number& n) {
auto* vec_f32 = state.builder.create<sem::Vector>(state.builder.create<sem::F32>(), n.Value());
return build_struct(state, "__modf_result_vec" + std::to_string(n.Value()),
{{"fract", vec_f32}, {"whole", vec_f32}});
}
const sem::Struct* build_frexp_result(MatchState& state) {
auto* f32 = state.builder.create<sem::F32>();
auto* i32 = state.builder.create<sem::I32>();
return build_struct(state, "__frexp_result", {{"sig", f32}, {"exp", i32}});
}
const sem::Struct* build_frexp_result_vec(MatchState& state, Number& n) {
auto* vec_f32 = state.builder.create<sem::Vector>(state.builder.create<sem::F32>(), n.Value());
auto* vec_i32 = state.builder.create<sem::Vector>(state.builder.create<sem::I32>(), n.Value());
return build_struct(state, "__frexp_result_vec" + std::to_string(n.Value()),
{{"sig", vec_f32}, {"exp", vec_i32}});
}
const sem::Struct* build_atomic_compare_exchange_result(MatchState& state, const sem::Type* ty) {
return build_struct(
state, "__atomic_compare_exchange_result" + ty->FriendlyName(state.builder.Symbols()),
{{"old_value", const_cast<sem::Type*>(ty)},
{"exchanged", state.builder.create<sem::Bool>()}});
}
/// ParameterInfo describes a parameter
struct ParameterInfo {
/// The parameter usage (parameter name in definition file)
const ParameterUsage usage;
/// Pointer to a list of indices that are used to match the parameter type.
/// The matcher indices index on Matchers::type and / or Matchers::number.
/// These indices are consumed by the matchers themselves.
/// The first index is always a TypeMatcher.
MatcherIndex const* const matcher_indices;
};
/// TemplateTypeInfo describes an template type
struct TemplateTypeInfo {
/// Name of the template type (e.g. 'T')
const char* name;
/// Optional type matcher constraint.
/// Either an index in Matchers::type, or kNoMatcher
const MatcherIndex matcher_index;
};
/// TemplateNumberInfo describes a template number
struct TemplateNumberInfo {
/// Name of the template number (e.g. 'N')
const char* name;
/// Optional number matcher constraint.
/// Either an index in Matchers::number, or kNoMatcher
const MatcherIndex matcher_index;
};
/// OverloadInfo describes a single function overload
struct OverloadInfo {
/// Total number of parameters for the overload
const uint8_t num_parameters;
/// Total number of template types for the overload
const uint8_t num_template_types;
/// Total number of template numbers for the overload
const uint8_t num_template_numbers;
/// Pointer to the first template type
TemplateTypeInfo const* const template_types;
/// Pointer to the first template number
TemplateNumberInfo const* const template_numbers;
/// Pointer to the first parameter
ParameterInfo const* const parameters;
/// Pointer to a list of matcher indices that index on Matchers::type and
/// Matchers::number, used to build the return type. If the function has no
/// return type then this is null
MatcherIndex const* const return_matcher_indices;
/// The flags for the overload
OverloadFlags flags;
/// The function used to evaluate the overload at shader-creation time.
const_eval::Function* const const_eval_fn;
};
/// IntrinsicInfo describes a builtin function or operator overload
struct IntrinsicInfo {
/// Number of overloads of the intrinsic
const uint8_t num_overloads;
/// Pointer to the start of the overloads for the function
OverloadInfo const* const overloads;
};
#include "intrinsic_table.inl"
/// IntrinsicPrototype describes a fully matched intrinsic.
struct IntrinsicPrototype {
/// Parameter describes a single parameter
struct Parameter {
/// Parameter type
const sem::Type* const type;
/// Parameter usage
ParameterUsage const usage = ParameterUsage::kNone;
};
/// Hasher provides a hash function for the IntrinsicPrototype
struct Hasher {
/// @param i the IntrinsicPrototype to create a hash for
/// @return the hash value
inline std::size_t operator()(const IntrinsicPrototype& i) const {
size_t hash = utils::Hash(i.parameters.size());
for (auto& p : i.parameters) {
utils::HashCombine(&hash, p.type, p.usage);
}
return utils::Hash(hash, i.overload, i.return_type);
}
};
const OverloadInfo* overload = nullptr;
sem::Type const* return_type = nullptr;
std::vector<Parameter> parameters;
};
/// Equality operator for IntrinsicPrototype
bool operator==(const IntrinsicPrototype& a, const IntrinsicPrototype& b) {
if (a.overload != b.overload || a.return_type != b.return_type ||
a.parameters.size() != b.parameters.size()) {
return false;
}
for (size_t i = 0; i < a.parameters.size(); i++) {
auto& pa = a.parameters[i];
auto& pb = b.parameters[i];
if (pa.type != pb.type || pa.usage != pb.usage) {
return false;
}
}
return true;
}
/// Impl is the private implementation of the IntrinsicTable interface.
class Impl : public IntrinsicTable {
public:
explicit Impl(ProgramBuilder& builder);
Builtin Lookup(sem::BuiltinType builtin_type,
const std::vector<const sem::Type*>& args,
const Source& source) override;
UnaryOperator Lookup(ast::UnaryOp op, const sem::Type* arg, const Source& source) override;
BinaryOperator Lookup(ast::BinaryOp op,
const sem::Type* lhs,
const sem::Type* rhs,
const Source& source,
bool is_compound) override;
const sem::CallTarget* Lookup(CtorConvIntrinsic type,
const sem::Type* template_arg,
const std::vector<const sem::Type*>& args,
const Source& source) override;
private:
/// Candidate holds information about an overload evaluated for resolution.
struct Candidate {
/// The candidate overload
const OverloadInfo* overload;
/// The template types and numbers
TemplateState templates;
/// The parameter types for the candidate overload
std::vector<IntrinsicPrototype::Parameter> parameters;
/// The match-score of the candidate overload.
/// A score of zero indicates an exact match.
/// Non-zero scores are used for diagnostics when no overload matches.
/// Lower scores are displayed first (top-most).
size_t score;
};
/// A list of candidates
using Candidates = std::vector<Candidate>;
/// Callback function when no overloads match.
using OnNoMatch = std::function<void(Candidates)>;
/// Sorts the candidates based on their score, with the lowest (best-ranking) scores first.
static inline void SortCandidates(Candidates& candidates) {
std::stable_sort(candidates.begin(), candidates.end(),
[&](const Candidate& a, const Candidate& b) { return a.score < b.score; });
}
/// Attempts to find a single intrinsic overload that matches the provided argument types.
/// @param intrinsic the intrinsic being called
/// @param intrinsic_name the name of the intrinsic
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// defined as `f32`.
/// @param on_no_match an error callback when no intrinsic overloads matched the provided
/// arguments.
/// @returns the matched intrinsic. If no intrinsic could be matched then IntrinsicPrototype
/// will hold nullptrs for IntrinsicPrototype::overload and
/// IntrinsicPrototype::return_type.
IntrinsicPrototype MatchIntrinsic(const IntrinsicInfo& intrinsic,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates,
OnNoMatch on_no_match) const;
/// Evaluates the single overload for the provided argument types.
/// @param overload the overload being considered
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// template as `f32`.
/// @returns the evaluated Candidate information.
Candidate ScoreOverload(const OverloadInfo* overload,
const std::vector<const sem::Type*>& args,
TemplateState templates) const;
/// Performs overload resolution given the list of candidates, by ranking the conversions of
/// arguments to the each of the candidate's parameter types.
/// @param candidates the list of candidate overloads
/// @param intrinsic_name the name of the intrinsic
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// template as `f32`.
/// @see https://www.w3.org/TR/WGSL/#overload-resolution-section
/// @returns the resolved Candidate.
Candidate ResolveCandidate(Candidates&& candidates,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates) const;
/// Match constructs a new MatchState
/// @param templates the template state used for matcher evaluation
/// @param overload the overload being evaluated
/// @param matcher_indices pointer to a list of matcher indices
MatchState Match(TemplateState& templates,
const OverloadInfo* overload,
MatcherIndex const* matcher_indices) const;
// Prints the overload for emitting diagnostics
void PrintOverload(std::ostream& ss,
const OverloadInfo* overload,
const char* intrinsic_name) const;
// Prints the list of candidates for emitting diagnostics
void PrintCandidates(std::ostream& ss,
const Candidates& candidates,
const char* intrinsic_name) const;
/// Raises an error when no overload is a clear winner of overload resolution
void ErrAmbiguousOverload(const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates,
Candidates candidates) const;
ProgramBuilder& builder;
Matchers matchers;
std::unordered_map<IntrinsicPrototype, sem::Builtin*, IntrinsicPrototype::Hasher> builtins;
std::unordered_map<IntrinsicPrototype, sem::TypeConstructor*, IntrinsicPrototype::Hasher>
constructors;
std::unordered_map<IntrinsicPrototype, sem::TypeConversion*, IntrinsicPrototype::Hasher>
converters;
};
/// @return a string representing a call to a builtin with the given argument
/// types.
std::string CallSignature(ProgramBuilder& builder,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
const sem::Type* template_arg = nullptr) {
std::stringstream ss;
ss << intrinsic_name;
if (template_arg) {
ss << "<" << template_arg->FriendlyName(builder.Symbols()) << ">";
}
ss << "(";
{
bool first = true;
for (auto* arg : args) {
if (!first) {
ss << ", ";
}
first = false;
ss << arg->UnwrapRef()->FriendlyName(builder.Symbols());
}
}
ss << ")";
return ss.str();
}
std::string TemplateTypeMatcher::String(MatchState* state) const {
return state->overload->template_types[index_].name;
}
std::string TemplateNumberMatcher::String(MatchState* state) const {
return state->overload->template_numbers[index_].name;
}
Impl::Impl(ProgramBuilder& b) : builder(b) {}
Impl::Builtin Impl::Lookup(sem::BuiltinType builtin_type,
const std::vector<const sem::Type*>& args,
const Source& source) {
const char* intrinsic_name = sem::str(builtin_type);
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&](Candidates candidates) {
std::stringstream ss;
ss << "no matching call to " << CallSignature(builder, intrinsic_name, args) << std::endl;
if (!candidates.empty()) {
ss << std::endl
<< candidates.size() << " candidate function" << (candidates.size() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, candidates, intrinsic_name);
}
builder.Diagnostics().add_error(diag::System::Resolver, ss.str(), source);
};
// Resolve the intrinsic overload
auto match = MatchIntrinsic(kBuiltins[static_cast<size_t>(builtin_type)], intrinsic_name, args,
TemplateState{}, on_no_match);
if (!match.overload) {
return {};
}
// De-duplicate builtins that are identical.
auto* sem = utils::GetOrCreate(builtins, match, [&] {
std::vector<sem::Parameter*> params;
params.reserve(match.parameters.size());
for (auto& p : match.parameters) {
params.emplace_back(builder.create<sem::Parameter>(
nullptr, static_cast<uint32_t>(params.size()), p.type, ast::StorageClass::kNone,
ast::Access::kUndefined, p.usage));
}
sem::PipelineStageSet supported_stages;
if (match.overload->flags.Contains(OverloadFlag::kSupportsVertexPipeline)) {
supported_stages.Add(ast::PipelineStage::kVertex);
}
if (match.overload->flags.Contains(OverloadFlag::kSupportsFragmentPipeline)) {
supported_stages.Add(ast::PipelineStage::kFragment);
}
if (match.overload->flags.Contains(OverloadFlag::kSupportsComputePipeline)) {
supported_stages.Add(ast::PipelineStage::kCompute);
}
return builder.create<sem::Builtin>(
builtin_type, match.return_type, std::move(params), supported_stages,
match.overload->flags.Contains(OverloadFlag::kIsDeprecated));
});
return Builtin{sem, match.overload->const_eval_fn};
}
IntrinsicTable::UnaryOperator Impl::Lookup(ast::UnaryOp op,
const sem::Type* arg,
const Source& source) {
auto [intrinsic_index, intrinsic_name] = [&]() -> std::pair<size_t, const char*> {
switch (op) {
case ast::UnaryOp::kComplement:
return {kUnaryOperatorComplement, "operator ~ "};
case ast::UnaryOp::kNegation:
return {kUnaryOperatorMinus, "operator - "};
case ast::UnaryOp::kNot:
return {kUnaryOperatorNot, "operator ! "};
default:
return {0, "<unknown>"};
}
}();
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&, name = intrinsic_name](Candidates candidates) {
std::stringstream ss;
ss << "no matching overload for " << CallSignature(builder, name, {arg}) << std::endl;
if (!candidates.empty()) {
ss << std::endl
<< candidates.size() << " candidate operator" << (candidates.size() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, candidates, name);
}
builder.Diagnostics().add_error(diag::System::Resolver, ss.str(), source);
};
// Resolve the intrinsic overload
auto match = MatchIntrinsic(kUnaryOperators[intrinsic_index], intrinsic_name, {arg},
TemplateState{}, on_no_match);
if (!match.overload) {
return {};
}
return UnaryOperator{match.return_type, match.parameters[0].type};
}
IntrinsicTable::BinaryOperator Impl::Lookup(ast::BinaryOp op,
const sem::Type* lhs,
const sem::Type* rhs,
const Source& source,
bool is_compound) {
auto [intrinsic_index, intrinsic_name] = [&]() -> std::pair<size_t, const char*> {
switch (op) {
case ast::BinaryOp::kAnd:
return {kBinaryOperatorAnd, is_compound ? "operator &= " : "operator & "};
case ast::BinaryOp::kOr:
return {kBinaryOperatorOr, is_compound ? "operator |= " : "operator | "};
case ast::BinaryOp::kXor:
return {kBinaryOperatorXor, is_compound ? "operator ^= " : "operator ^ "};
case ast::BinaryOp::kLogicalAnd:
return {kBinaryOperatorLogicalAnd, "operator && "};
case ast::BinaryOp::kLogicalOr:
return {kBinaryOperatorLogicalOr, "operator || "};
case ast::BinaryOp::kEqual:
return {kBinaryOperatorEqual, "operator == "};
case ast::BinaryOp::kNotEqual:
return {kBinaryOperatorNotEqual, "operator != "};
case ast::BinaryOp::kLessThan:
return {kBinaryOperatorLessThan, "operator < "};
case ast::BinaryOp::kGreaterThan:
return {kBinaryOperatorGreaterThan, "operator > "};
case ast::BinaryOp::kLessThanEqual:
return {kBinaryOperatorLessThanEqual, "operator <= "};
case ast::BinaryOp::kGreaterThanEqual:
return {kBinaryOperatorGreaterThanEqual, "operator >= "};
case ast::BinaryOp::kShiftLeft:
return {kBinaryOperatorShiftLeft, is_compound ? "operator <<= " : "operator << "};
case ast::BinaryOp::kShiftRight:
return {kBinaryOperatorShiftRight, is_compound ? "operator >>= " : "operator >> "};
case ast::BinaryOp::kAdd:
return {kBinaryOperatorPlus, is_compound ? "operator += " : "operator + "};
case ast::BinaryOp::kSubtract:
return {kBinaryOperatorMinus, is_compound ? "operator -= " : "operator - "};
case ast::BinaryOp::kMultiply:
return {kBinaryOperatorStar, is_compound ? "operator *= " : "operator * "};
case ast::BinaryOp::kDivide:
return {kBinaryOperatorDivide, is_compound ? "operator /= " : "operator / "};
case ast::BinaryOp::kModulo:
return {kBinaryOperatorModulo, is_compound ? "operator %= " : "operator % "};
default:
return {0, "<unknown>"};
}
}();
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&, name = intrinsic_name](Candidates candidates) {
std::stringstream ss;
ss << "no matching overload for " << CallSignature(builder, name, {lhs, rhs}) << std::endl;
if (!candidates.empty()) {
ss << std::endl
<< candidates.size() << " candidate operator" << (candidates.size() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, candidates, name);
}
builder.Diagnostics().add_error(diag::System::Resolver, ss.str(), source);
};
// Resolve the intrinsic overload
auto match = MatchIntrinsic(kBinaryOperators[intrinsic_index], intrinsic_name, {lhs, rhs},
TemplateState{}, on_no_match);
if (!match.overload) {
return {};
}
return BinaryOperator{match.return_type, match.parameters[0].type, match.parameters[1].type};
}
const sem::CallTarget* Impl::Lookup(CtorConvIntrinsic type,
const sem::Type* template_arg,
const std::vector<const sem::Type*>& args,
const Source& source) {
auto name = str(type);
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&](Candidates candidates) {
std::stringstream ss;
ss << "no matching constructor for " << CallSignature(builder, name, args, template_arg)
<< std::endl;
Candidates ctor, conv;
for (auto candidate : candidates) {
if (candidate.overload->flags.Contains(OverloadFlag::kIsConstructor)) {
ctor.emplace_back(candidate);
} else {
conv.emplace_back(candidate);
}
}
if (!ctor.empty()) {
ss << std::endl
<< ctor.size() << " candidate constructor" << (ctor.size() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, ctor, name);
}
if (!conv.empty()) {
ss << std::endl
<< conv.size() << " candidate conversion" << (conv.size() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, conv, name);
}
builder.Diagnostics().add_error(diag::System::Resolver, ss.str(), source);
};
// If a template type was provided, then close the 0'th type with this.
TemplateState templates;
if (template_arg) {
templates.Type(0, template_arg);
}
// Resolve the intrinsic overload
auto match = MatchIntrinsic(kConstructorsAndConverters[static_cast<size_t>(type)], name, args,
templates, on_no_match);
if (!match.overload) {
return {};
}
// Was this overload a constructor or conversion?
if (match.overload->flags.Contains(OverloadFlag::kIsConstructor)) {
sem::ParameterList params;
params.reserve(match.parameters.size());
for (auto& p : match.parameters) {
params.emplace_back(builder.create<sem::Parameter>(
nullptr, static_cast<uint32_t>(params.size()), p.type, ast::StorageClass::kNone,
ast::Access::kUndefined, p.usage));
}
return utils::GetOrCreate(constructors, match, [&]() {
return builder.create<sem::TypeConstructor>(match.return_type, std::move(params));
});
}
// Conversion.
return utils::GetOrCreate(converters, match, [&]() {
auto param = builder.create<sem::Parameter>(
nullptr, 0, match.parameters[0].type, ast::StorageClass::kNone, ast::Access::kUndefined,
match.parameters[0].usage);
return builder.create<sem::TypeConversion>(match.return_type, param);
});
}
IntrinsicPrototype Impl::MatchIntrinsic(const IntrinsicInfo& intrinsic,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates,
OnNoMatch on_no_match) const {
size_t num_matched = 0;
size_t match_idx = 0;
Candidates candidates;
candidates.reserve(intrinsic.num_overloads);
for (size_t overload_idx = 0; overload_idx < static_cast<size_t>(intrinsic.num_overloads);
overload_idx++) {
auto candidate = ScoreOverload(&intrinsic.overloads[overload_idx], args, templates);
if (candidate.score == 0) {
match_idx = overload_idx;
num_matched++;
}
candidates.emplace_back(std::move(candidate));
}
// How many candidates matched?
if (num_matched == 0) {
// Sort the candidates with the most promising first
SortCandidates(candidates);
on_no_match(std::move(candidates));
return {};
}
Candidate match;
if (num_matched == 1) {
match = std::move(candidates[match_idx]);
} else {
match = ResolveCandidate(std::move(candidates), intrinsic_name, args, std::move(templates));
if (!match.overload) {
// Ambiguous overload. ResolveCandidate() will have already raised an error diagnostic.
return {};
}
}
// Build the return type
const sem::Type* return_type = nullptr;
if (auto* indices = match.overload->return_matcher_indices) {
Any any;
return_type = Match(match.templates, match.overload, indices).Type(&any);
if (!return_type) {
TINT_ICE(Resolver, builder.Diagnostics()) << "MatchState.Match() returned null";
return {};
}
} else {
return_type = builder.create<sem::Void>();
}
return IntrinsicPrototype{match.overload, return_type, std::move(match.parameters)};
}
Impl::Candidate Impl::ScoreOverload(const OverloadInfo* overload,
const std::vector<const sem::Type*>& args,
TemplateState templates) const {
// Penalty weights for overload mismatching.
// This scoring is used to order the suggested overloads in diagnostic on overload mismatch, and
// has no impact for a correct program.
// The overloads with the lowest score will be displayed first (top-most).
constexpr int kMismatchedParamCountPenalty = 3;
constexpr int kMismatchedParamTypePenalty = 2;
constexpr int kMismatchedTemplateTypePenalty = 1;
constexpr int kMismatchedTemplateNumberPenalty = 1;
size_t num_parameters = static_cast<size_t>(overload->num_parameters);
size_t num_arguments = static_cast<size_t>(args.size());
size_t score = 0;
if (num_parameters != num_arguments) {
score += kMismatchedParamCountPenalty * (std::max(num_parameters, num_arguments) -
std::min(num_parameters, num_arguments));
}
// Invoke the matchers for each parameter <-> argument pair.
// If any arguments cannot be matched, then `score` will be increased.
// If the overload has any template types or numbers then these will be set based on the
// argument types. Template types may be refined by constraining with later argument types. For
// example calling `F<T>(T, T)` with the argument types (abstract-int, i32) will first set T to
// abstract-int when matching the first argument, and then constrained down to i32 when matching
// the second argument.
// Note that inferred template types are not tested against their matchers at this point.
auto num_params = std::min(num_parameters, num_arguments);
for (size_t p = 0; p < num_params; p++) {
auto& parameter = overload->parameters[p];
auto* indices = parameter.matcher_indices;
if (!Match(templates, overload, indices).Type(args[p]->UnwrapRef())) {
score += kMismatchedParamTypePenalty;
}
}
if (score == 0) {
// Check all constrained template types matched their constraint matchers.
// If the template type *does not* match any of the types in the constraint matcher, then
// `score` is incremented. If the template type *does* match a type, then the template type
// is replaced with the first matching type. The order of types in the template matcher is
// important here, which can be controlled with the [[precedence(N)]] decorations on the
// types in intrinsics.def.
for (size_t ot = 0; ot < overload->num_template_types; ot++) {
auto* matcher_index = &overload->template_types[ot].matcher_index;
if (*matcher_index != kNoMatcher) {
if (auto* template_type = templates.Type(ot)) {
if (auto* ty = Match(templates, overload, matcher_index).Type(template_type)) {
// Template type matched one of the types in the template type's matcher.
// Replace the template type with this type.
templates.SetType(ot, ty);
continue;
}
}
score += kMismatchedTemplateTypePenalty;
}
}
}
if (score == 0) {
// Check all constrained open numbers matched.
// Unlike template types, numbers are not constrained, so we're just checking that the
// inferred number matches the constraints on the overload. Increments `score` if the
// template numbers do not match their constraint matchers.
for (size_t on = 0; on < overload->num_template_numbers; on++) {
auto* matcher_index = &overload->template_numbers[on].matcher_index;
if (*matcher_index != kNoMatcher) {
auto template_num = templates.Num(on);
if (!template_num.IsValid() ||
!Match(templates, overload, matcher_index).Num(template_num).IsValid()) {
score += kMismatchedTemplateNumberPenalty;
}
}
}
}
// Now that all the template types have been finalized, we can construct the parameters.
std::vector<IntrinsicPrototype::Parameter> parameters;
if (score == 0) {
parameters.reserve(num_params);
for (size_t p = 0; p < num_params; p++) {
auto& parameter = overload->parameters[p];
auto* indices = parameter.matcher_indices;
auto* ty = Match(templates, overload, indices).Type(args[p]->UnwrapRef());
parameters.emplace_back(IntrinsicPrototype::Parameter{ty, parameter.usage});
}
}
return Candidate{overload, templates, parameters, score};
}
Impl::Candidate Impl::ResolveCandidate(Impl::Candidates&& candidates,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates) const {
std::vector<uint32_t> best_ranks(args.size(), 0xffffffff);
size_t num_matched = 0;
Candidate* best = nullptr;
for (auto& candidate : candidates) {
if (candidate.score > 0) {
continue; // Candidate has already been ruled out.
}
bool some_won = false; // An argument ranked less than the 'best' overload's argument
bool some_lost = false; // An argument ranked more than the 'best' overload's argument
for (size_t i = 0; i < args.size(); i++) {
auto rank = sem::Type::ConversionRank(args[i], candidate.parameters[i].type);
if (best_ranks[i] > rank) {
best_ranks[i] = rank;
some_won = true;
} else if (best_ranks[i] < rank) {
some_lost = true;
}
}
// If no arguments of this candidate ranked worse than the previous best candidate, then
// this candidate becomes the new best candidate.
// If no arguments of this candidate ranked better than the previous best candidate, then
// this candidate is removed from the list of matches.
// If neither of the above apply, then we have two candidates with no clear winner, which
// results in an ambiguous overload error. In this situation the loop ends with
// `num_matched > 1`.
if (some_won) {
// One or more arguments of this candidate ranked better than the previous best
// candidate's argument(s).
num_matched++;
if (!some_lost) {
// All arguments were at as-good or better than the previous best.
if (best) {
// Mark the previous best candidate as no longer being in the running, by
// setting its score to a non-zero value. We pick 1 as this is the closest to 0
// (match) as we can get.
best->score = 1;
num_matched--;
}
// This candidate is the new best.
best = &candidate;
}
} else {
// No arguments ranked better than the current best.
// Change the score of this candidate to a non-zero value, so that it's not considered a
// match.
candidate.score = 1;
}
}
if (num_matched > 1) {
// Re-sort the candidates with the most promising first
SortCandidates(candidates);
// Raise an error
ErrAmbiguousOverload(intrinsic_name, args, templates, candidates);
return {};
}
return std::move(*best);
}
MatchState Impl::Match(TemplateState& templates,
const OverloadInfo* overload,
MatcherIndex const* matcher_indices) const {
return MatchState(builder, templates, matchers, overload, matcher_indices);
}
void Impl::PrintOverload(std::ostream& ss,
const OverloadInfo* overload,
const char* intrinsic_name) const {
TemplateState templates;
ss << intrinsic_name << "(";
for (size_t p = 0; p < overload->num_parameters; p++) {
auto& parameter = overload->parameters[p];
if (p > 0) {
ss << ", ";
}
if (parameter.usage != ParameterUsage::kNone) {
ss << sem::str(parameter.usage) << ": ";
}
auto* indices = parameter.matcher_indices;
ss << Match(templates, overload, indices).TypeName();
}
ss << ")";
if (overload->return_matcher_indices) {
ss << " -> ";
auto* indices = overload->return_matcher_indices;
ss << Match(templates, overload, indices).TypeName();
}
bool first = true;
auto separator = [&] {
ss << (first ? " where: " : ", ");
first = false;
};
for (size_t i = 0; i < overload->num_template_types; i++) {
auto& template_type = overload->template_types[i];
if (template_type.matcher_index != kNoMatcher) {
separator();
ss << template_type.name;
auto* index = &template_type.matcher_index;
ss << " is " << Match(templates, overload, index).TypeName();
}
}
for (size_t i = 0; i < overload->num_template_numbers; i++) {
auto& template_number = overload->template_numbers[i];
if (template_number.matcher_index != kNoMatcher) {
separator();
ss << template_number.name;
auto* index = &template_number.matcher_index;
ss << " is " << Match(templates, overload, index).NumName();
}
}
}
void Impl::PrintCandidates(std::ostream& ss,
const Candidates& candidates,
const char* intrinsic_name) const {
for (auto& candidate : candidates) {
ss << " ";
PrintOverload(ss, candidate.overload, intrinsic_name);
ss << std::endl;
}
}
const sem::Type* MatchState::Type(const sem::Type* ty) {
MatcherIndex matcher_index = *matcher_indices_++;
auto* matcher = matchers.type[matcher_index];
return matcher->Match(*this, ty);
}
Number MatchState::Num(Number number) {
MatcherIndex matcher_index = *matcher_indices_++;
auto* matcher = matchers.number[matcher_index];
return matcher->Match(*this, number);
}
std::string MatchState::TypeName() {
MatcherIndex matcher_index = *matcher_indices_++;
auto* matcher = matchers.type[matcher_index];
return matcher->String(this);
}
std::string MatchState::NumName() {
MatcherIndex matcher_index = *matcher_indices_++;
auto* matcher = matchers.number[matcher_index];
return matcher->String(this);
}
void Impl::ErrAmbiguousOverload(const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates,
Candidates candidates) const {
std::stringstream ss;
ss << "ambiguous overload while attempting to match " << intrinsic_name;
for (size_t i = 0; i < std::numeric_limits<size_t>::max(); i++) {
if (auto* ty = templates.Type(i)) {
ss << ((i == 0) ? "<" : ", ") << ty->FriendlyName(builder.Symbols());
} else {
if (i > 0) {
ss << ">";
}
break;
}
}
ss << "(";
bool first = true;
for (auto* arg : args) {
if (!first) {
ss << ", ";
}
first = false;
ss << arg->FriendlyName(builder.Symbols());
}
ss << "):\n";
for (auto& candidate : candidates) {
if (candidate.score == 0) {
ss << " ";
PrintOverload(ss, candidate.overload, intrinsic_name);
ss << std::endl;
}
}
TINT_ICE(Resolver, builder.Diagnostics()) << ss.str();
}
} // namespace
std::unique_ptr<IntrinsicTable> IntrinsicTable::Create(ProgramBuilder& builder) {
return std::make_unique<Impl>(builder);
}
IntrinsicTable::~IntrinsicTable() = default;
} // namespace tint::resolver
/// TypeInfo for the Any type declared in the anonymous namespace above
TINT_INSTANTIATE_TYPEINFO(tint::resolver::Any);