blob: 37deeceb905c8a53305f549e7167f01756277116 [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// test-runner runs tint against a number of test shaders checking for expected behavior
package main
import (
"context"
"flag"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"regexp"
"runtime"
"sort"
"strings"
"time"
"unicode/utf8"
"dawn.googlesource.com/dawn/tools/src/fileutils"
"dawn.googlesource.com/dawn/tools/src/glob"
"github.com/fatih/color"
"github.com/sergi/go-diff/diffmatchpatch"
)
type outputFormat string
const (
testTimeout = 30 * time.Second
glsl = outputFormat("glsl")
hlsl = outputFormat("hlsl")
msl = outputFormat("msl")
spvasm = outputFormat("spvasm")
wgsl = outputFormat("wgsl")
)
// Directories we don't generate expected PASS result files for.
// These directories contain large corpora of tests for which the generated code
// is uninteresting.
var dirsWithNoPassExpectations = []string{
"/test/tint/benchmark/",
"/test/tint/unittest/",
"/test/tint/vk-gl-cts/",
}
func main() {
if err := run(); err != nil {
fmt.Println(err)
os.Exit(1)
}
}
func showUsage() {
fmt.Println(`
test-runner runs tint against a number of test shaders checking for expected behavior
usage:
test-runner [flags...] <executable> [<directory>]
<executable> the path to the tint executable
<directory> the root directory of the test files
optional flags:`)
flag.PrintDefaults()
fmt.Println(``)
os.Exit(1)
}
func run() error {
var formatList, filter, dxcPath, xcrunPath string
var maxFilenameColumnWidth int
numCPU := runtime.NumCPU()
fxc, fxcAndDxc, verbose, generateExpected, generateSkip := false, false, false, false, false
flag.StringVar(&formatList, "format", "all", "comma separated list of formats to emit. Possible values are: all, wgsl, spvasm, msl, hlsl, glsl")
flag.StringVar(&filter, "filter", "**.wgsl, **.spvasm, **.spv", "comma separated list of glob patterns for test files")
flag.StringVar(&dxcPath, "dxc", "", "path to DXC executable for validating HLSL output")
flag.StringVar(&xcrunPath, "xcrun", "", "path to xcrun executable for validating MSL output")
flag.BoolVar(&fxc, "fxc", false, "validate with FXC instead of DXC")
flag.BoolVar(&fxcAndDxc, "fxc-and-dxc", false, "validate with both FXC and DXC")
flag.BoolVar(&verbose, "verbose", false, "print all run tests, including rows that all pass")
flag.BoolVar(&generateExpected, "generate-expected", false, "create or update all expected outputs")
flag.BoolVar(&generateSkip, "generate-skip", false, "create or update all expected outputs that fail with SKIP")
flag.IntVar(&numCPU, "j", numCPU, "maximum number of concurrent threads to run tests")
flag.IntVar(&maxFilenameColumnWidth, "filename-column-width", 0, "maximum width of the filename column")
flag.Usage = showUsage
flag.Parse()
args := flag.Args()
if len(args) == 0 {
showUsage()
}
if fxcAndDxc {
fxc = true
}
// executable path is the first argument
exe, args := args[0], args[1:]
// (optional) target directory is the second argument
dir := "."
if len(args) > 0 {
dir, args = args[0], args[1:]
}
// Check the executable can be found and actually is executable
if !fileutils.IsExe(exe) {
return fmt.Errorf("'%s' not found or is not executable", exe)
}
exe, err := filepath.Abs(exe)
if err != nil {
return err
}
// Allow using '/' in the filter on Windows
filter = strings.ReplaceAll(filter, "/", string(filepath.Separator))
// Split the --filter flag up by ',', trimming any whitespace at the start and end
globIncludes := strings.Split(filter, ",")
for i, s := range globIncludes {
s = filepath.ToSlash(s) // Replace '\' with '/'
globIncludes[i] = `"` + strings.TrimSpace(s) + `"`
}
// Glob the files to test
files, err := glob.Scan(dir, glob.MustParseConfig(`{
"paths": [
{
"include": [ `+strings.Join(globIncludes, ",")+` ]
},
{
"exclude": [
"**.expected.wgsl",
"**.expected.spvasm",
"**.expected.msl",
"**.expected.hlsl",
"**.expected.glsl"
]
}
]
}`))
if err != nil {
return fmt.Errorf("Failed to glob files: %w", err)
}
// Ensure the files are sorted (globbing should do this, but why not)
sort.Strings(files)
// Parse --format into a list of outputFormat
formats := []outputFormat{}
if formatList == "all" {
formats = []outputFormat{wgsl, spvasm, msl, hlsl, glsl}
} else {
for _, f := range strings.Split(formatList, ",") {
switch strings.TrimSpace(f) {
case "wgsl":
formats = append(formats, wgsl)
case "spvasm":
formats = append(formats, spvasm)
case "msl":
formats = append(formats, msl)
case "hlsl":
formats = append(formats, hlsl)
case "glsl":
formats = append(formats, glsl)
default:
return fmt.Errorf("unknown format '%s'", f)
}
}
}
defaultMSLExe := "xcrun"
if runtime.GOOS == "windows" {
defaultMSLExe = "metal.exe"
}
// If explicit verification compilers have been specified, check they exist.
// Otherwise, look on PATH for them, but don't error if they cannot be found.
for _, tool := range []struct {
name string
lang string
path *string
}{
{"dxc", "hlsl", &dxcPath},
{defaultMSLExe, "msl", &xcrunPath},
} {
if *tool.path == "" {
p, err := exec.LookPath(tool.name)
if err == nil && fileutils.IsExe(p) {
*tool.path = p
}
} else if !fileutils.IsExe(*tool.path) {
return fmt.Errorf("%v not found at '%v'", tool.name, *tool.path)
}
color.Set(color.FgCyan)
fmt.Printf("%-4s", tool.lang)
color.Unset()
fmt.Printf(" validation ")
if *tool.path != "" || (fxc && tool.lang == "hlsl") {
color.Set(color.FgGreen)
tool_path := *tool.path
if fxc && tool.lang == "hlsl" {
if fxcAndDxc {
tool_path += " AND Tint will use FXC dll in PATH"
} else {
tool_path = "Tint will use FXC dll in PATH"
}
}
fmt.Printf("ENABLED (" + tool_path + ")")
} else {
color.Set(color.FgRed)
fmt.Printf("DISABLED")
}
color.Unset()
fmt.Println()
}
fmt.Println()
// Build the list of results.
// These hold the chans used to report the job results.
results := make([]map[outputFormat]chan status, len(files))
for i := range files {
fileResults := map[outputFormat]chan status{}
for _, format := range formats {
fileResults[format] = make(chan status, 1)
}
results[i] = fileResults
}
pendingJobs := make(chan job, 256)
// Spawn numCPU job runners...
for cpu := 0; cpu < numCPU; cpu++ {
go func() {
for job := range pendingJobs {
job.run(dir, exe, fxc, fxcAndDxc, dxcPath, xcrunPath, generateExpected, generateSkip)
}
}()
}
// Issue the jobs...
go func() {
for i, file := range files { // For each test file...
file := filepath.Join(dir, file)
flags := parseFlags(file)
for _, format := range formats { // For each output format...
pendingJobs <- job{
file: file,
flags: flags,
format: format,
result: results[i][format],
}
}
}
close(pendingJobs)
}()
type failure struct {
file string
format outputFormat
err error
}
type stats struct {
numTests, numPass, numSkip, numFail int
timeTaken time.Duration
}
// Statistics per output format
statsByFmt := map[outputFormat]*stats{}
for _, format := range formats {
statsByFmt[format] = &stats{}
}
// Print the table of file x format and gather per-format stats
failures := []failure{}
filenameColumnWidth := maxStringLen(files)
if maxFilenameColumnWidth > 0 {
filenameColumnWidth = maxFilenameColumnWidth
}
red := color.New(color.FgRed)
green := color.New(color.FgGreen)
yellow := color.New(color.FgYellow)
cyan := color.New(color.FgCyan)
printFormatsHeader := func() {
fmt.Printf(strings.Repeat(" ", filenameColumnWidth))
fmt.Printf(" ┃ ")
for _, format := range formats {
cyan.Printf(alignCenter(format, formatWidth(format)))
fmt.Printf(" │ ")
}
fmt.Println()
}
printHorizontalLine := func() {
fmt.Printf(strings.Repeat("━", filenameColumnWidth))
fmt.Printf("━╋━")
for _, format := range formats {
fmt.Printf(strings.Repeat("━", formatWidth(format)))
fmt.Printf("━┿━")
}
fmt.Println()
}
fmt.Println()
printFormatsHeader()
printHorizontalLine()
for i, file := range files {
results := results[i]
row := &strings.Builder{}
rowAllPassed := true
filenameLength := utf8.RuneCountInString(file)
shortFile := file
if filenameLength > filenameColumnWidth {
shortFile = "..." + file[filenameLength-filenameColumnWidth+3:]
}
fmt.Fprintf(row, alignRight(shortFile, filenameColumnWidth))
fmt.Fprintf(row, " ┃ ")
for _, format := range formats {
columnWidth := formatWidth(format)
result := <-results[format]
stats := statsByFmt[format]
stats.numTests++
stats.timeTaken += result.timeTaken
if err := result.err; err != nil {
failures = append(failures, failure{
file: file, format: format, err: err,
})
}
switch result.code {
case pass:
green.Fprintf(row, alignCenter("PASS", columnWidth))
stats.numPass++
case fail:
red.Fprintf(row, alignCenter("FAIL", columnWidth))
rowAllPassed = false
stats.numFail++
case skip:
yellow.Fprintf(row, alignCenter("SKIP", columnWidth))
rowAllPassed = false
stats.numSkip++
default:
fmt.Fprintf(row, alignCenter(result.code, columnWidth))
rowAllPassed = false
}
fmt.Fprintf(row, " │ ")
}
if verbose || !rowAllPassed {
fmt.Fprintln(color.Output, row)
}
}
printHorizontalLine()
printFormatsHeader()
printHorizontalLine()
printStat := func(col *color.Color, name string, num func(*stats) int) {
row := &strings.Builder{}
anyNonZero := false
for _, format := range formats {
columnWidth := formatWidth(format)
count := num(statsByFmt[format])
if count > 0 {
col.Fprintf(row, alignLeft(count, columnWidth))
anyNonZero = true
} else {
fmt.Fprintf(row, alignLeft(count, columnWidth))
}
fmt.Fprintf(row, " │ ")
}
if !anyNonZero {
return
}
col.Printf(alignRight(name, filenameColumnWidth))
fmt.Printf(" ┃ ")
fmt.Fprintln(color.Output, row)
col.Printf(strings.Repeat(" ", filenameColumnWidth))
fmt.Printf(" ┃ ")
for _, format := range formats {
columnWidth := formatWidth(format)
stats := statsByFmt[format]
count := num(stats)
percent := percentage(count, stats.numTests)
if count > 0 {
col.Print(alignRight(percent, columnWidth))
} else {
fmt.Print(alignRight(percent, columnWidth))
}
fmt.Printf(" │ ")
}
fmt.Println()
}
printStat(green, "PASS", func(s *stats) int { return s.numPass })
printStat(yellow, "SKIP", func(s *stats) int { return s.numSkip })
printStat(red, "FAIL", func(s *stats) int { return s.numFail })
cyan.Printf(alignRight("TIME", filenameColumnWidth))
fmt.Printf(" ┃ ")
for _, format := range formats {
timeTaken := printDuration(statsByFmt[format].timeTaken)
cyan.Printf(alignLeft(timeTaken, formatWidth(format)))
fmt.Printf(" │ ")
}
fmt.Println()
for _, f := range failures {
color.Set(color.FgBlue)
fmt.Printf("%s ", f.file)
color.Set(color.FgCyan)
fmt.Printf("%s ", f.format)
color.Set(color.FgRed)
fmt.Println("FAIL")
color.Unset()
fmt.Println(indent(f.err.Error(), 4))
}
if len(failures) > 0 {
fmt.Println()
}
allStats := stats{}
for _, format := range formats {
stats := statsByFmt[format]
allStats.numTests += stats.numTests
allStats.numPass += stats.numPass
allStats.numSkip += stats.numSkip
allStats.numFail += stats.numFail
}
fmt.Printf("%d tests run", allStats.numTests)
if allStats.numPass > 0 {
fmt.Printf(", ")
color.Set(color.FgGreen)
fmt.Printf("%d tests pass", allStats.numPass)
color.Unset()
} else {
fmt.Printf(", %d tests pass", allStats.numPass)
}
if allStats.numSkip > 0 {
fmt.Printf(", ")
color.Set(color.FgYellow)
fmt.Printf("%d tests skipped", allStats.numSkip)
color.Unset()
} else {
fmt.Printf(", %d tests skipped", allStats.numSkip)
}
if allStats.numFail > 0 {
fmt.Printf(", ")
color.Set(color.FgRed)
fmt.Printf("%d tests failed", allStats.numFail)
color.Unset()
} else {
fmt.Printf(", %d tests failed", allStats.numFail)
}
fmt.Println()
fmt.Println()
if allStats.numFail > 0 {
os.Exit(1)
}
return nil
}
// Structures to hold the results of the tests
type statusCode string
const (
fail statusCode = "FAIL"
pass statusCode = "PASS"
skip statusCode = "SKIP"
)
type status struct {
code statusCode
err error
timeTaken time.Duration
}
type job struct {
file string
flags []string
format outputFormat
result chan status
}
func (j job) run(wd, exe string, fxc, fxcAndDxc bool, dxcPath, xcrunPath string, generateExpected, generateSkip bool) {
j.result <- func() status {
// expectedFilePath is the path to the expected output file for the given test
expectedFilePath := j.file + ".expected." + string(j.format)
// Is there an expected output file? If so, load it.
expected, expectedFileExists := "", false
if content, err := ioutil.ReadFile(expectedFilePath); err == nil {
expected = string(content)
expectedFileExists = true
}
skipped := false
if strings.HasPrefix(expected, "SKIP") { // Special SKIP token
skipped = true
}
expected = strings.ReplaceAll(expected, "\r\n", "\n")
file, err := filepath.Rel(wd, j.file)
if err != nil {
file = j.file
}
// Make relative paths use forward slash separators (on Windows) so that paths in tint
// output match expected output that contain errors
file = strings.ReplaceAll(file, `\`, `/`)
args := []string{
file,
"--format", string(j.format),
}
// Can we validate?
validate := false
switch j.format {
case wgsl:
validate = true
case spvasm, glsl:
args = append(args, "--validate") // spirv-val and glslang are statically linked, always available
validate = true
case hlsl:
// Handled below
case msl:
if xcrunPath != "" {
args = append(args, "--xcrun", xcrunPath)
validate = true
}
}
// Invoke the compiler...
ok := false
var out string
start := time.Now()
if j.format == hlsl {
// If fxcAndDxc is set, run FXC first as it's more likely to fail, then DXC iff FXC succeeded.
if fxc || fxcAndDxc {
validate = true
args_fxc := append(args, "--fxc")
args_fxc = append(args_fxc, j.flags...)
ok, out = invoke(wd, exe, args_fxc...)
}
if dxcPath != "" && (!fxc || (fxcAndDxc && ok)) {
validate = true
args_dxc := append(args, "--dxc", dxcPath)
args_dxc = append(args_dxc, j.flags...)
ok, out = invoke(wd, exe, args_dxc...)
}
// If we didn't run either fxc or dxc validation, run as usual
if !validate {
args = append(args, j.flags...)
ok, out = invoke(wd, exe, args...)
}
} else {
args = append(args, j.flags...)
ok, out = invoke(wd, exe, args...)
}
timeTaken := time.Since(start)
out = strings.ReplaceAll(out, "\r\n", "\n")
matched := expected == "" || expected == out
canEmitPassExpectationFile := true
for _, noPass := range dirsWithNoPassExpectations {
if strings.Contains(j.file, filepath.FromSlash(noPass)) {
canEmitPassExpectationFile = false
break
}
}
saveExpectedFile := func(path string, content string) error {
return ioutil.WriteFile(path, []byte(content), 0666)
}
if ok && generateExpected && (validate || !skipped) {
// User requested to update PASS expectations, and test passed.
if canEmitPassExpectationFile {
saveExpectedFile(expectedFilePath, out)
} else if expectedFileExists {
// Test lives in a directory where we do not want to save PASS
// files, and there already exists an expectation file. Test has
// likely started passing. Delete the old expectation.
os.Remove(expectedFilePath)
}
matched = true // test passed and matched expectations
}
switch {
case ok && matched:
// Test passed
return status{code: pass, timeTaken: timeTaken}
// --- Below this point the test has failed ---
case skipped:
if generateSkip {
saveExpectedFile(expectedFilePath, "SKIP: FAILED\n\n"+out)
}
return status{code: skip, timeTaken: timeTaken}
case !ok:
// Compiler returned non-zero exit code
if generateSkip {
saveExpectedFile(expectedFilePath, "SKIP: FAILED\n\n"+out)
}
err := fmt.Errorf("%s", out)
return status{code: fail, err: err, timeTaken: timeTaken}
default:
// Compiler returned zero exit code, or output was not as expected
if generateSkip {
saveExpectedFile(expectedFilePath, "SKIP: FAILED\n\n"+out)
}
// Expected output did not match
dmp := diffmatchpatch.New()
diff := dmp.DiffPrettyText(dmp.DiffMain(expected, out, true))
err := fmt.Errorf(`Output was not as expected
--------------------------------------------------------------------------------
-- Expected: --
--------------------------------------------------------------------------------
%s
--------------------------------------------------------------------------------
-- Got: --
--------------------------------------------------------------------------------
%s
--------------------------------------------------------------------------------
-- Diff: --
--------------------------------------------------------------------------------
%s`,
expected, out, diff)
return status{code: fail, err: err, timeTaken: timeTaken}
}
}()
}
// indent returns the string 's' indented with 'n' whitespace characters
func indent(s string, n int) string {
tab := strings.Repeat(" ", n)
return tab + strings.ReplaceAll(s, "\n", "\n"+tab)
}
// alignLeft returns the string of 'val' padded so that it is aligned left in
// a column of the given width
func alignLeft(val interface{}, width int) string {
s := fmt.Sprint(val)
padding := width - utf8.RuneCountInString(s)
if padding < 0 {
return s
}
return s + strings.Repeat(" ", padding)
}
// alignCenter returns the string of 'val' padded so that it is centered in a
// column of the given width.
func alignCenter(val interface{}, width int) string {
s := fmt.Sprint(val)
padding := width - utf8.RuneCountInString(s)
if padding < 0 {
return s
}
return strings.Repeat(" ", padding/2) + s + strings.Repeat(" ", (padding+1)/2)
}
// alignRight returns the string of 'val' padded so that it is aligned right in
// a column of the given width
func alignRight(val interface{}, width int) string {
s := fmt.Sprint(val)
padding := width - utf8.RuneCountInString(s)
if padding < 0 {
return s
}
return strings.Repeat(" ", padding) + s
}
// maxStringLen returns the maximum number of runes found in all the strings in
// 'l'
func maxStringLen(l []string) int {
max := 0
for _, s := range l {
if c := utf8.RuneCountInString(s); c > max {
max = c
}
}
return max
}
// formatWidth returns the width in runes for the outputFormat column 'b'
func formatWidth(b outputFormat) int {
const min = 6
c := utf8.RuneCountInString(string(b))
if c < min {
return min
}
return c
}
// percentage returns the percentage of n out of total as a string
func percentage(n, total int) string {
if total == 0 {
return "-"
}
f := float64(n) / float64(total)
return fmt.Sprintf("%.1f%c", f*100.0, '%')
}
// invoke runs the executable 'exe' with the provided arguments.
func invoke(wd, exe string, args ...string) (ok bool, output string) {
ctx, cancel := context.WithTimeout(context.Background(), testTimeout)
defer cancel()
cmd := exec.CommandContext(ctx, exe, args...)
cmd.Dir = wd
out, err := cmd.CombinedOutput()
str := string(out)
if err != nil {
if ctx.Err() == context.DeadlineExceeded {
return false, fmt.Sprintf("test timed out after %v", testTimeout)
}
if str != "" {
return false, str
}
return false, err.Error()
}
return true, str
}
var reFlags = regexp.MustCompile(` *\/\/ *flags:(.*)\n`)
// parseFlags looks for a `// flags:` header at the start of the file with the
// given path, returning each of the space delimited tokens that follow for the
// line
func parseFlags(path string) []string {
content, err := ioutil.ReadFile(path)
if err != nil {
return nil
}
header := strings.SplitN(string(content), "\n", 1)[0]
m := reFlags.FindStringSubmatch(header)
if len(m) != 2 {
return nil
}
return strings.Split(m[1], " ")
}
func printDuration(d time.Duration) string {
sec := int(d.Seconds())
min := int(sec) / 60
hour := min / 60
min -= hour * 60
sec -= min * 60
sb := &strings.Builder{}
if hour > 0 {
fmt.Fprintf(sb, "%dh", hour)
}
if min > 0 {
fmt.Fprintf(sb, "%dm", min)
}
if sec > 0 {
fmt.Fprintf(sb, "%ds", sec)
}
return sb.String()
}