blob: a89c1f2c9325c72dad57b90e9008e2a965e98595 [file] [log] [blame] [edit]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <utility>
#include "gmock/gmock.h"
#include "src/tint/ir/builder.h"
#include "src/tint/ir/ir_test_helper.h"
#include "src/tint/ir/validate.h"
#include "src/tint/type/matrix.h"
#include "src/tint/type/pointer.h"
#include "src/tint/type/struct.h"
namespace tint::ir {
namespace {
using namespace tint::number_suffixes; // NOLINT
using IR_ValidateTest = IRTestHelper;
TEST_F(IR_ValidateTest, RootBlock_Var) {
mod.root_block = b.RootBlock();
mod.root_block->Append(
b.Var(ty.pointer(ty.i32(), builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite)));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidateTest, RootBlock_NonVar) {
auto* l = b.Loop();
l->Body()->Append(b.Continue(l));
mod.root_block = b.RootBlock();
mod.root_block->Append(l);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:3 error: root block: invalid instruction: tint::ir::Loop
loop [b: %b2]
^^^^^^^^^^^^^
:2:1 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
# Root block
%b1 = block {
loop [b: %b2]
# Body block
%b2 = block {
continue %b3
}
}
)");
}
TEST_F(IR_ValidateTest, Function) {
auto* f = b.Function("my_func", ty.void_());
mod.functions.Push(f);
f->SetParams({b.FunctionParam(ty.i32()), b.FunctionParam(ty.f32())});
f->StartTarget()->SetInstructions({b.Return(f)});
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidateTest, Block_NoBranchAtEnd) {
auto* f = b.Function("my_func", ty.void_());
mod.functions.Push(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:2:3 error: block: does not end in a branch
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
}
}
)");
}
TEST_F(IR_ValidateTest, Valid_Access_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.f32(), obj, 1_u, 0_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidateTest, Valid_Access_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(
ty.pointer(ty.mat3x2<f32>(), builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite));
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.ptr<private_, f32>(), obj, 1_u, 0_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidateTest, Access_NegativeIndex) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.vec3<f32>());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.f32(), obj, -1_i));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:25 error: access: constant index must be positive, got -1
%3:f32 = access %2, -1i
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:vec3<f32>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, -1i
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_OOB_Index_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.f32(), obj, 1_u, 3_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:29 error: access: index out of bounds for type vec2<f32>
%3:f32 = access %2, 1u, 3u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
:3:29 note: acceptable range: [0..1]
%3:f32 = access %2, 1u, 3u
^^
note: # Disassembly
%my_func = func(%2:mat3x2<f32>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u, 3u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_OOB_Index_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(
ty.pointer(ty.mat3x2<f32>(), builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite));
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.ptr<private_, f32>(), obj, 1_u, 3_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:55 error: access: index out of bounds for type ptr<vec2<f32>>
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
:3:55 note: acceptable range: [0..1]
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
^^
note: # Disassembly
%my_func = func(%2:ptr<private, mat3x2<f32>, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_StaticallyUnindexableType_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.f32());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.f32(), obj, 1_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:25 error: access: type f32 cannot be indexed
%3:f32 = access %2, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:f32):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_StaticallyUnindexableType_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, f32>());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.ptr<private_, f32>(), obj, 1_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:51 error: access: type ptr<f32> cannot be indexed
%3:ptr<private, f32, read_write> = access %2, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, f32, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, f32, read_write> = access %2, 1u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_DynamicallyUnindexableType_Value) {
utils::Vector members{
ty.Get<type::StructMember>(mod.symbols.New(), ty.i32(), 0u, 0u, 4u, 4u,
type::StructMemberAttributes{}),
ty.Get<type::StructMember>(mod.symbols.New(), ty.i32(), 1u, 4u, 4u, 4u,
type::StructMemberAttributes{}),
};
auto* str_ty = ty.Get<type::Struct>(mod.symbols.New(), std::move(members), 4u, 8u, 8u);
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(str_ty);
auto* idx = b.FunctionParam(ty.i32());
f->SetParams({obj, idx});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.i32(), obj, idx));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:25 error: access: type tint_symbol_2 cannot be dynamically indexed
%4:i32 = access %2, %3
^^
:7:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
tint_symbol_2 = struct @align(4) {
tint_symbol:i32 @offset(0)
tint_symbol_1:i32 @offset(4)
}
%my_func = func(%2:tint_symbol_2, %3:i32):void -> %b1 {
%b1 = block {
%4:i32 = access %2, %3
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_DynamicallyUnindexableType_Ptr) {
utils::Vector members{
ty.Get<type::StructMember>(mod.symbols.New(), ty.i32(), 0u, 0u, 4u, 4u,
type::StructMemberAttributes{}),
ty.Get<type::StructMember>(mod.symbols.New(), ty.i32(), 1u, 4u, 4u, 4u,
type::StructMemberAttributes{}),
};
auto* str_ty = ty.Get<type::Struct>(mod.symbols.New(), std::move(members), 4u, 8u, 8u);
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(
ty.pointer(str_ty, builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite));
auto* idx = b.FunctionParam(ty.i32());
f->SetParams({obj, idx});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.i32(), obj, idx));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:25 error: access: type ptr<tint_symbol_2> cannot be dynamically indexed
%4:i32 = access %2, %3
^^
:7:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
tint_symbol_2 = struct @align(4) {
tint_symbol:i32 @offset(0)
tint_symbol_1:i32 @offset(4)
}
%my_func = func(%2:ptr<private, tint_symbol_2, read_write>, %3:i32):void -> %b1 {
%b1 = block {
%4:i32 = access %2, %3
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_Incorrect_Type_Value_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.i32(), obj, 1_u, 1_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:14 error: access: result of access chain is type f32 but instruction type is i32
%3:i32 = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:mat3x2<f32>):void -> %b1 {
%b1 = block {
%3:i32 = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_Incorrect_Type_Ptr_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(
ty.pointer(ty.mat3x2<f32>(), builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite));
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.ptr<private_, i32>(), obj, 1_u, 1_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:3:40 error: access: result of access chain is type ptr<f32> but instruction type is ptr<i32>
%3:ptr<private, i32, read_write> = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, mat3x2<f32>, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, i32, read_write> = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Access_Incorrect_Type_Ptr_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(
ty.pointer(ty.mat3x2<f32>(), builtin::AddressSpace::kPrivate, builtin::Access::kReadWrite));
f->SetParams({obj});
mod.functions.Push(f);
f->StartTarget()->Append(b.Access(ty.f32(), obj, 1_u, 1_u));
f->StartTarget()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:3:14 error: access: result of access chain is type ptr<f32> but instruction type is f32
%3:f32 = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, mat3x2<f32>, read_write>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidateTest, Block_BranchInMiddle) {
auto* f = b.Function("my_func", ty.void_());
mod.functions.Push(f);
f->StartTarget()->SetInstructions({b.Return(f), b.Return(f)});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: block: branch which isn't the final instruction
ret
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
ret
ret
}
}
)");
}
TEST_F(IR_ValidateTest, If_ConditionIsBool) {
auto* f = b.Function("my_func", ty.void_());
mod.functions.Push(f);
auto* if_ = b.If(1_i);
if_->True()->Append(b.Return(f));
if_->False()->Append(b.Return(f));
f->StartTarget()->Append(if_);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:8 error: if: condition must be a `bool` type
if 1i [t: %b2, f: %b3]
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if 1i [t: %b2, f: %b3]
# True block
%b2 = block {
ret
}
# False block
%b3 = block {
ret
}
}
}
)");
}
} // namespace
} // namespace tint::ir