blob: a67843b4a2fdef44d99e3a2429979216a11721f2 [file] [log] [blame] [edit]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/const_eval_test.h"
namespace tint::resolver {
namespace {
using namespace tint::builtin::fluent_types; // NOLINT
using namespace tint::number_suffixes; // NOLINT
TEST_F(ResolverConstEvalTest, Vec3_Index) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), 2_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 3_i);
}
TEST_F(ResolverConstEvalTest, Vec3_Index_OOB_High) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), Expr(Source{{12, 34}}, 3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 3 out of bounds [0..2]");
}
TEST_F(ResolverConstEvalTest, Vec3_Index_OOB_Low) {
auto* expr = IndexAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), Expr(Source{{12, 34}}, -3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -3 out of bounds [0..2]");
}
namespace Swizzle {
struct Case {
Value input;
const char* swizzle;
Value expected;
};
static Case C(Value input, const char* swizzle, Value expected) {
return Case{std::move(input), swizzle, std::move(expected)};
}
static std::ostream& operator<<(std::ostream& o, const Case& c) {
return o << "input: " << c.input << ", swizzle: " << c.swizzle << ", expected: " << c.expected;
}
using ResolverConstEvalSwizzleTest = ResolverTestWithParam<Case>;
TEST_P(ResolverConstEvalSwizzleTest, Test) {
Enable(builtin::Extension::kF16);
auto& param = GetParam();
auto* expr = MemberAccessor(param.input.Expr(*this), param.swizzle);
auto* a = Const("a", expr);
WrapInFunction(a);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
CheckConstant(sem->ConstantValue(), param.expected);
}
template <typename T>
std::vector<Case> SwizzleCases() {
return {
C(Vec(T(0), T(1), T(2)), "xyz", Vec(T(0), T(1), T(2))),
C(Vec(T(0), T(1), T(2)), "xzy", Vec(T(0), T(2), T(1))),
C(Vec(T(0), T(1), T(2)), "yxz", Vec(T(1), T(0), T(2))),
C(Vec(T(0), T(1), T(2)), "yzx", Vec(T(1), T(2), T(0))),
C(Vec(T(0), T(1), T(2)), "zxy", Vec(T(2), T(0), T(1))),
C(Vec(T(0), T(1), T(2)), "zyx", Vec(T(2), T(1), T(0))),
C(Vec(T(0), T(1), T(2)), "xy", Vec(T(0), T(1))),
C(Vec(T(0), T(1), T(2)), "xz", Vec(T(0), T(2))),
C(Vec(T(0), T(1), T(2)), "yx", Vec(T(1), T(0))),
C(Vec(T(0), T(1), T(2)), "yz", Vec(T(1), T(2))),
C(Vec(T(0), T(1), T(2)), "zx", Vec(T(2), T(0))),
C(Vec(T(0), T(1), T(2)), "zy", Vec(T(2), T(1))),
C(Vec(T(0), T(1), T(2)), "xxxx", Vec(T(0), T(0), T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yyyy", Vec(T(1), T(1), T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zzzz", Vec(T(2), T(2), T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "xxx", Vec(T(0), T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yyy", Vec(T(1), T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zzz", Vec(T(2), T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "xx", Vec(T(0), T(0))),
C(Vec(T(0), T(1), T(2)), "yy", Vec(T(1), T(1))),
C(Vec(T(0), T(1), T(2)), "zz", Vec(T(2), T(2))),
C(Vec(T(0), T(1), T(2)), "x", Val(T(0))),
C(Vec(T(0), T(1), T(2)), "y", Val(T(1))),
C(Vec(T(0), T(1), T(2)), "z", Val(T(2))),
};
}
INSTANTIATE_TEST_SUITE_P(Swizzle,
ResolverConstEvalSwizzleTest,
testing::ValuesIn(Concat(SwizzleCases<AInt>(), //
SwizzleCases<AFloat>(), //
SwizzleCases<f32>(), //
SwizzleCases<f16>(), //
SwizzleCases<i32>(), //
SwizzleCases<u32>(), //
SwizzleCases<bool>() //
)));
} // namespace Swizzle
TEST_F(ResolverConstEvalTest, Vec3_Swizzle_Scalar) {
auto* expr = MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "y");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 2_i);
}
TEST_F(ResolverConstEvalTest, Vec3_Swizzle_Vector) {
auto* expr = MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "zx");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_EQ(vec->Width(), 2u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 3._a);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 1._a);
}
TEST_F(ResolverConstEvalTest, Vec3_Swizzle_Chain) {
auto* expr = // (1, 2, 3) -> (2, 3, 1) -> (3, 2) -> 2
MemberAccessor(MemberAccessor(MemberAccessor(Call<vec3<i32>>(1_i, 2_i, 3_i), "gbr"), "yx"),
"y");
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
ASSERT_TRUE(sem->Type()->Is<type::I32>());
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->AllZero());
EXPECT_EQ(sem->ConstantValue()->ValueAs<i32>(), 2_i);
}
TEST_F(ResolverConstEvalTest, Mat3x2_Index) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
2_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_EQ(vec->Width(), 2u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 5._a);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 6._a);
}
TEST_F(ResolverConstEvalTest, Mat3x2_Index_OOB_High) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
Expr(Source{{12, 34}}, 3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 3 out of bounds [0..2]");
}
TEST_F(ResolverConstEvalTest, Mat3x2_Index_OOB_Low) {
auto* expr =
IndexAccessor(Call<mat3x2<f32>>(Call<vec2<f32>>(1._a, 2._a), Call<vec2<f32>>(3._a, 4._a),
Call<vec2<f32>>(5._a, 6._a)),
Expr(Source{{12, 34}}, -3_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -3 out of bounds [0..2]");
}
TEST_F(ResolverConstEvalTest, Array_vec3_f32_Index) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
1_i);
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(expr);
ASSERT_NE(sem, nullptr);
auto* vec = sem->Type()->As<type::Vector>();
ASSERT_NE(vec, nullptr);
EXPECT_TRUE(vec->type()->Is<type::F32>());
EXPECT_EQ(vec->Width(), 3u);
EXPECT_TYPE(sem->ConstantValue()->Type(), sem->Type());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(0)->ValueAs<f32>(), 4_f);
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(1)->ValueAs<f32>(), 5_f);
EXPECT_FALSE(sem->ConstantValue()->Index(2)->AnyZero());
EXPECT_FALSE(sem->ConstantValue()->Index(2)->AllZero());
EXPECT_EQ(sem->ConstantValue()->Index(2)->ValueAs<f32>(), 6_f);
}
TEST_F(ResolverConstEvalTest, Array_vec3_f32_Index_OOB_High) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
Expr(Source{{12, 34}}, 2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index 2 out of bounds [0..1]");
}
TEST_F(ResolverConstEvalTest, Array_vec3_f32_Index_OOB_Low) {
auto* expr = IndexAccessor(Call<array<vec3<f32>, 2>>( //
Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)),
Expr(Source{{12, 34}}, -2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -2 out of bounds [0..1]");
}
TEST_F(ResolverConstEvalTest, RuntimeArray_vec3_f32_Index_OOB_Low) {
auto* sb = GlobalVar("sb", ty.array<vec3<f32>>(), Group(0_a), Binding(0_a),
builtin::AddressSpace::kStorage);
auto* expr = IndexAccessor(sb, Expr(Source{{12, 34}}, -2_i));
WrapInFunction(expr);
EXPECT_FALSE(r()->Resolve()) << r()->error();
EXPECT_EQ(r()->error(), "12:34 error: index -2 out of bounds");
}
TEST_F(ResolverConstEvalTest, ChainedIndex) {
auto* arr_expr = Call<array<mat2x3<f32>, 2>>( //
Call<mat2x3<f32>>(Call<vec3<f32>>(1_f, 2_f, 3_f), //
Call<vec3<f32>>(4_f, 5_f, 6_f)), //
Call<mat2x3<f32>>(Call<vec3<f32>>(7_f, 0_f, 9_f), //
Call<vec3<f32>>(10_f, 11_f, 12_f)));
auto* mat_expr = IndexAccessor(arr_expr, 1_i); // arr[1]
auto* vec_expr = IndexAccessor(mat_expr, 0_i); // arr[1][0]
auto* f32_expr = IndexAccessor(vec_expr, 2_i); // arr[1][0][2]
WrapInFunction(f32_expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
{
auto* mat = Sem().Get(mat_expr);
EXPECT_NE(mat, nullptr);
auto* ty = mat->Type()->As<type::Matrix>();
ASSERT_NE(mat->Type(), nullptr);
EXPECT_TRUE(ty->ColumnType()->Is<type::Vector>());
EXPECT_EQ(ty->columns(), 2u);
EXPECT_EQ(ty->rows(), 3u);
EXPECT_EQ(mat->ConstantValue()->Type(), mat->Type());
EXPECT_TRUE(mat->ConstantValue()->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->AllZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(0)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(0)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(0)->ValueAs<f32>(), 7_f);
EXPECT_TRUE(mat->ConstantValue()->Index(0)->Index(1)->AnyZero());
EXPECT_TRUE(mat->ConstantValue()->Index(0)->Index(1)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(1)->ValueAs<f32>(), 0_f);
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(2)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(0)->Index(2)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(0)->Index(2)->ValueAs<f32>(), 9_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(0)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(0)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(0)->ValueAs<f32>(), 10_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(1)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(1)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(1)->ValueAs<f32>(), 11_f);
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(2)->AnyZero());
EXPECT_FALSE(mat->ConstantValue()->Index(1)->Index(2)->AllZero());
EXPECT_EQ(mat->ConstantValue()->Index(1)->Index(2)->ValueAs<f32>(), 12_f);
}
{
auto* vec = Sem().Get(vec_expr);
EXPECT_NE(vec, nullptr);
auto* ty = vec->Type()->As<type::Vector>();
ASSERT_NE(vec->Type(), nullptr);
EXPECT_TRUE(ty->type()->Is<type::F32>());
EXPECT_EQ(ty->Width(), 3u);
EXPECT_EQ(vec->ConstantValue()->Type(), vec->Type());
EXPECT_TRUE(vec->ConstantValue()->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->AllZero());
EXPECT_FALSE(vec->ConstantValue()->Index(0)->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->Index(0)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(0)->ValueAs<f32>(), 7_f);
EXPECT_TRUE(vec->ConstantValue()->Index(1)->AnyZero());
EXPECT_TRUE(vec->ConstantValue()->Index(1)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(1)->ValueAs<f32>(), 0_f);
EXPECT_FALSE(vec->ConstantValue()->Index(2)->AnyZero());
EXPECT_FALSE(vec->ConstantValue()->Index(2)->AllZero());
EXPECT_EQ(vec->ConstantValue()->Index(2)->ValueAs<f32>(), 9_f);
}
{
auto* f = Sem().Get(f32_expr);
EXPECT_NE(f, nullptr);
EXPECT_TRUE(f->Type()->Is<type::F32>());
EXPECT_EQ(f->ConstantValue()->Type(), f->Type());
EXPECT_FALSE(f->ConstantValue()->AnyZero());
EXPECT_FALSE(f->ConstantValue()->AllZero());
EXPECT_EQ(f->ConstantValue()->ValueAs<f32>(), 9_f);
}
}
} // namespace
} // namespace tint::resolver