blob: ecee83b80370a1ec8f6771f1ab4d552e1a77cbb3 [file] [log] [blame] [edit]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/tint/ast/case_selector.h"
#include "src/tint/ast/int_literal_expression.h"
#include "src/tint/constant/scalar.h"
#include "src/tint/ir/block.h"
#include "src/tint/ir/if.h"
#include "src/tint/ir/loop.h"
#include "src/tint/ir/multi_in_block.h"
#include "src/tint/ir/program_test_helper.h"
#include "src/tint/ir/switch.h"
namespace tint::ir {
namespace {
/// Looks for the instruction with the given type T.
/// If no instruction is found, then nullptr is returned.
/// If multiple instructions are found with the type T, then an error is raised and the first is
/// returned.
template <typename T>
T* FindSingleInstruction(Module& mod) {
T* found = nullptr;
size_t count = 0;
for (auto* node : mod.instructions.Objects()) {
if (auto* as = node->As<T>()) {
count++;
if (!found) {
found = as;
}
}
}
if (count > 1) {
ADD_FAILURE() << "FindSingleInstruction() found " << count << " nodes of type "
<< utils::TypeInfo::Of<T>().name;
}
return found;
}
using namespace tint::number_suffixes; // NOLINT
using IR_FromProgramTest = ProgramTestHelper;
TEST_F(IR_FromProgramTest, Func) {
Func("f", utils::Empty, ty.void_(), utils::Empty);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
ASSERT_EQ(1u, m->functions.Length());
auto* f = m->functions[0];
ASSERT_NE(f->Block(), nullptr);
EXPECT_EQ(m->functions[0]->Stage(), Function::PipelineStage::kUndefined);
EXPECT_EQ(Disassemble(m.Get()), R"(%f = func():void -> %b1 {
%b1 = block {
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithParam) {
Func("f", utils::Vector{Param("a", ty.u32())}, ty.u32(), utils::Vector{Return("a")});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
ASSERT_EQ(1u, m->functions.Length());
auto* f = m->functions[0];
ASSERT_NE(f->Block(), nullptr);
EXPECT_EQ(m->functions[0]->Stage(), Function::PipelineStage::kUndefined);
EXPECT_EQ(Disassemble(m.Get()), R"(%f = func(%a:u32):u32 -> %b1 {
%b1 = block {
ret %a
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithMultipleParam) {
Func("f", utils::Vector{Param("a", ty.u32()), Param("b", ty.i32()), Param("c", ty.bool_())},
ty.void_(), utils::Empty);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
ASSERT_EQ(1u, m->functions.Length());
auto* f = m->functions[0];
ASSERT_NE(f->Block(), nullptr);
EXPECT_EQ(m->functions[0]->Stage(), Function::PipelineStage::kUndefined);
EXPECT_EQ(Disassemble(m.Get()), R"(%f = func(%a:u32, %b:i32, %c:bool):void -> %b1 {
%b1 = block {
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, EntryPoint) {
Func("f", utils::Empty, ty.void_(), utils::Empty,
utils::Vector{Stage(ast::PipelineStage::kFragment)});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(m->functions[0]->Stage(), Function::PipelineStage::kFragment);
}
TEST_F(IR_FromProgramTest, IfStatement) {
auto* ast_if = If(true, Block(), Else(Block()));
WrapInFunction(ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
if true [t: %b2, f: %b3] { # if_1
%b2 = block { # true
exit_if # if_1
}
%b3 = block { # false
exit_if # if_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, IfStatement_TrueReturns) {
auto* ast_if = If(true, Block(Return()));
WrapInFunction(ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
ret
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, IfStatement_FalseReturns) {
auto* ast_if = If(true, Block(), Else(Block(Return())));
WrapInFunction(ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
if true [t: %b2, f: %b3] { # if_1
%b2 = block { # true
exit_if # if_1
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, IfStatement_BothReturn) {
auto* ast_if = If(true, Block(Return()), Else(Block(Return())));
WrapInFunction(ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
if true [t: %b2, f: %b3] { # if_1
%b2 = block { # true
ret
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, IfStatement_JumpChainToMerge) {
auto* ast_loop = Loop(Block(Break()));
auto* ast_if = If(true, Block(ast_loop));
WrapInFunction(ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
loop [b: %b3, c: %b4] { # loop_1
%b3 = block { # body
exit_loop # loop_1
}
%b4 = block { # continuing
next_iteration %b3
}
}
exit_if # if_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithBreak) {
auto* ast_loop = Loop(Block(Break()));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
exit_loop # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithContinue) {
auto* ast_if = If(true, Block(Break()));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
if true [t: %b4] { # if_1
%b4 = block { # true
exit_loop # loop_1
}
}
continue %b3
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithContinuing_BreakIf) {
auto* ast_break_if = BreakIf(true);
auto* ast_loop = Loop(Block(), Block(ast_break_if));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
continue %b3
}
%b3 = block { # continuing
break_if true %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_Continuing_Body_Scope) {
auto* a = Decl(Let("a", Expr(true)));
auto* ast_break_if = BreakIf("a");
auto* ast_loop = Loop(Block(a), Block(ast_break_if));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
continue %b3
}
%b3 = block { # continuing
break_if true %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithReturn) {
auto* ast_if = If(true, Block(Return()));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
if true [t: %b4] { # if_1
%b4 = block { # true
ret
}
}
continue %b3
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithOnlyReturn) {
auto* ast_loop = Loop(Block(Return(), Continue()));
WrapInFunction(ast_loop, If(true, Block(Return())));
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
ret
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithOnlyReturn_ContinuingBreakIf) {
// Note, even though there is code in the loop merge (specifically, the
// `ast_if` below), it doesn't get emitted as there is no way to reach the
// loop merge due to the loop itself doing a `return`. This is why the
// loop merge gets marked as Dead and the `ast_if` doesn't appear.
//
// Similar, the continuing block goes away as there is no way to get there, so it's treated
// as dead code and dropped.
auto* ast_break_if = BreakIf(true);
auto* ast_loop = Loop(Block(Return()), Block(ast_break_if));
auto* ast_if = If(true, Block(Return()));
WrapInFunction(Block(ast_loop, ast_if));
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
ret
}
%b3 = block { # continuing
break_if true %b2
}
}
if true [t: %b4] { # if_1
%b4 = block { # true
ret
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_WithIf_BothBranchesBreak) {
auto* ast_if = If(true, Block(Break()), Else(Block(Break())));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
if true [t: %b4, f: %b5] { # if_1
%b4 = block { # true
exit_loop # loop_1
}
%b5 = block { # false
exit_loop # loop_1
}
}
continue %b3
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Loop_Nested) {
auto* ast_if_a = If(true, Block(Break()));
auto* ast_if_b = If(true, Block(Continue()));
auto* ast_if_c = BreakIf(true);
auto* ast_if_d = If(true, Block(Break()));
auto* ast_loop_d = Loop(Block(), Block(ast_if_c));
auto* ast_loop_c = Loop(Block(Break()));
auto* ast_loop_b = Loop(Block(ast_if_a, ast_if_b), Block(ast_loop_c, ast_loop_d));
auto* ast_loop_a = Loop(Block(ast_loop_b, ast_if_d));
WrapInFunction(ast_loop_a);
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
loop [b: %b4, c: %b5] { # loop_2
%b4 = block { # body
if true [t: %b6] { # if_1
%b6 = block { # true
exit_loop # loop_2
}
}
if true [t: %b7] { # if_2
%b7 = block { # true
continue %b5
}
}
continue %b5
}
%b5 = block { # continuing
loop [b: %b8, c: %b9] { # loop_3
%b8 = block { # body
exit_loop # loop_3
}
%b9 = block { # continuing
next_iteration %b8
}
}
loop [b: %b10, c: %b11] { # loop_4
%b10 = block { # body
continue %b11
}
%b11 = block { # continuing
break_if true %b10
}
}
next_iteration %b4
}
}
if true [t: %b12] { # if_3
%b12 = block { # true
exit_loop # loop_1
}
}
continue %b3
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, While) {
auto* ast_while = While(false, Block());
WrapInFunction(ast_while);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
if false [t: %b4, f: %b5] { # if_1
%b4 = block { # true
exit_if # if_1
}
%b5 = block { # false
exit_loop # loop_1
}
}
continue %b3
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, While_Return) {
auto* ast_while = While(true, Block(Return()));
WrapInFunction(ast_while);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
if true [t: %b4, f: %b5] { # if_1
%b4 = block { # true
exit_if # if_1
}
%b5 = block { # false
exit_loop # loop_1
}
}
ret
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, For) {
auto* ast_for = For(Decl(Var("i", ty.i32())), LessThan("i", 10_a), Increment("i"), Block());
WrapInFunction(ast_for);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(2u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(1u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [i: %b2, b: %b3, c: %b4] { # loop_1
%b2 = block { # initializer
%i:ptr<function, i32, read_write> = var
next_iteration %b3
}
%b3 = block { # body
%3:i32 = load %i
%4:bool = lt %3, 10i
if %4 [t: %b5, f: %b6] { # if_1
%b5 = block { # true
exit_if # if_1
}
%b6 = block { # false
exit_loop # loop_1
}
}
continue %b4
}
%b4 = block { # continuing
%5:i32 = load %i
%6:i32 = add %5, 1i
store %i, %6
next_iteration %b3
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, For_Init_NoCondOrContinuing) {
auto* ast_for = For(Decl(Var("i", ty.i32())), nullptr, nullptr, Block(Break()));
WrapInFunction(ast_for);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(1u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [i: %b2, b: %b3] { # loop_1
%b2 = block { # initializer
%i:ptr<function, i32, read_write> = var
next_iteration %b3
}
%b3 = block { # body
exit_loop # loop_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, For_NoInitCondOrContinuing) {
auto* ast_for = For(nullptr, nullptr, nullptr, Block(Break()));
WrapInFunction(ast_for);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* loop = FindSingleInstruction<ir::Loop>(m);
ASSERT_EQ(1u, m.functions.Length());
EXPECT_EQ(0u, loop->Body()->InboundSiblingBranches().Length());
EXPECT_EQ(0u, loop->Continuing()->InboundSiblingBranches().Length());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
loop [b: %b2] { # loop_1
%b2 = block { # body
exit_loop # loop_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Switch) {
auto* ast_switch = Switch(
1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)}, Block()),
Case(utils::Vector{CaseSelector(1_i)}, Block()), DefaultCase(Block())});
WrapInFunction(ast_switch);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* swtch = FindSingleInstruction<ir::Switch>(m);
ASSERT_EQ(1u, m.functions.Length());
auto cases = swtch->Cases();
ASSERT_EQ(3u, cases.Length());
ASSERT_EQ(1u, cases[0].selectors.Length());
ASSERT_TRUE(cases[0].selectors[0].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
cases[0].selectors[0].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, cases[1].selectors.Length());
ASSERT_TRUE(cases[1].selectors[0].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(1_i,
cases[1].selectors[0].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, cases[2].selectors.Length());
EXPECT_TRUE(cases[2].selectors[0].IsDefault());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
switch 1i [c: (0i, %b2), c: (1i, %b3), c: (default, %b4)] { # switch_1
%b2 = block { # case
exit_switch # switch_1
}
%b3 = block { # case
exit_switch # switch_1
}
%b4 = block { # case
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Switch_MultiSelector) {
auto* ast_switch = Switch(
1_i,
utils::Vector{Case(
utils::Vector{CaseSelector(0_i), CaseSelector(1_i), DefaultCaseSelector()}, Block())});
WrapInFunction(ast_switch);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* swtch = FindSingleInstruction<ir::Switch>(m);
ASSERT_EQ(1u, m.functions.Length());
auto cases = swtch->Cases();
ASSERT_EQ(1u, cases.Length());
ASSERT_EQ(3u, cases[0].selectors.Length());
ASSERT_TRUE(cases[0].selectors[0].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
cases[0].selectors[0].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_TRUE(cases[0].selectors[1].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(1_i,
cases[0].selectors[1].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
EXPECT_TRUE(cases[0].selectors[2].IsDefault());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
switch 1i [c: (0i 1i default, %b2)] { # switch_1
%b2 = block { # case
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Switch_OnlyDefault) {
auto* ast_switch = Switch(1_i, utils::Vector{DefaultCase(Block())});
WrapInFunction(ast_switch);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* swtch = FindSingleInstruction<ir::Switch>(m);
ASSERT_EQ(1u, m.functions.Length());
auto cases = swtch->Cases();
ASSERT_EQ(1u, cases.Length());
ASSERT_EQ(1u, cases[0].selectors.Length());
EXPECT_TRUE(cases[0].selectors[0].IsDefault());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
switch 1i [c: (default, %b2)] { # switch_1
%b2 = block { # case
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Switch_WithBreak) {
auto* ast_switch = Switch(1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)},
Block(Break(), If(true, Block(Return())))),
DefaultCase(Block())});
WrapInFunction(ast_switch);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* swtch = FindSingleInstruction<ir::Switch>(m);
ASSERT_EQ(1u, m.functions.Length());
auto cases = swtch->Cases();
ASSERT_EQ(2u, cases.Length());
ASSERT_EQ(1u, cases[0].selectors.Length());
ASSERT_TRUE(cases[0].selectors[0].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
cases[0].selectors[0].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, cases[1].selectors.Length());
EXPECT_TRUE(cases[1].selectors[0].IsDefault());
// This is 1 because the if is dead-code eliminated and the return doesn't happen.
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
switch 1i [c: (0i, %b2), c: (default, %b3)] { # switch_1
%b2 = block { # case
exit_switch # switch_1
}
%b3 = block { # case
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Switch_AllReturn) {
auto* ast_switch =
Switch(1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)}, Block(Return())),
DefaultCase(Block(Return()))});
auto* ast_if = If(true, Block(Return()));
WrapInFunction(ast_switch, ast_if);
auto res = Build();
ASSERT_TRUE(res) << (!res ? res.Failure() : "");
auto m = res.Move();
auto* swtch = FindSingleInstruction<ir::Switch>(m);
ASSERT_EQ(1u, m.functions.Length());
auto cases = swtch->Cases();
ASSERT_EQ(2u, cases.Length());
ASSERT_EQ(1u, cases[0].selectors.Length());
ASSERT_TRUE(cases[0].selectors[0].val->Value()->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
cases[0].selectors[0].val->Value()->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, cases[1].selectors.Length());
EXPECT_TRUE(cases[1].selectors[0].IsDefault());
EXPECT_EQ(Disassemble(m),
R"(%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b1 {
%b1 = block {
switch 1i [c: (0i, %b2), c: (default, %b3)] { # switch_1
%b2 = block { # case
ret
}
%b3 = block { # case
ret
}
}
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Emit_Phony) {
Func("b", utils::Empty, ty.i32(), Return(1_i));
WrapInFunction(Ignore(Call("b")));
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()),
R"(%b = func():i32 -> %b1 {
%b1 = block {
ret 1i
}
}
%test_function = @compute @workgroup_size(1, 1, 1) func():void -> %b2 {
%b2 = block {
%3:i32 = call %b
ret
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithParam_WithAttribute_Invariant) {
Func(
"f",
utils::Vector{Param("a", ty.vec4<f32>(),
utils::Vector{Invariant(), Builtin(builtin::BuiltinValue::kPosition)})},
ty.vec4<f32>(), utils::Vector{Return("a")},
utils::Vector{Stage(ast::PipelineStage::kFragment)}, utils::Vector{Location(1_i)});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(
Disassemble(m.Get()),
R"(%f = @fragment func(%a:vec4<f32> [@invariant, @position]):vec4<f32> [@location(1)] -> %b1 {
%b1 = block {
ret %a
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithParam_WithAttribute_Location) {
Func("f", utils::Vector{Param("a", ty.f32(), utils::Vector{Location(2_i)})}, ty.f32(),
utils::Vector{Return("a")}, utils::Vector{Stage(ast::PipelineStage::kFragment)},
utils::Vector{Location(1_i)});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(Disassemble(m.Get()),
R"(%f = @fragment func(%a:f32 [@location(2)]):f32 [@location(1)] -> %b1 {
%b1 = block {
ret %a
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithParam_WithAttribute_Location_WithInterpolation_LinearCentroid) {
Func("f",
utils::Vector{Param(
"a", ty.f32(),
utils::Vector{Location(2_i), Interpolate(builtin::InterpolationType::kLinear,
builtin::InterpolationSampling::kCentroid)})},
ty.f32(), utils::Vector{Return("a")}, utils::Vector{Stage(ast::PipelineStage::kFragment)},
utils::Vector{Location(1_i)});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(
Disassemble(m.Get()),
R"(%f = @fragment func(%a:f32 [@location(2), @interpolate(linear, centroid)]):f32 [@location(1)] -> %b1 {
%b1 = block {
ret %a
}
}
)");
}
TEST_F(IR_FromProgramTest, Func_WithParam_WithAttribute_Location_WithInterpolation_Flat) {
Func("f",
utils::Vector{
Param("a", ty.f32(),
utils::Vector{Location(2_i), Interpolate(builtin::InterpolationType::kFlat)})},
ty.f32(), utils::Vector{Return("a")}, utils::Vector{Stage(ast::PipelineStage::kFragment)},
utils::Vector{Location(1_i)});
auto m = Build();
ASSERT_TRUE(m) << (!m ? m.Failure() : "");
EXPECT_EQ(
Disassemble(m.Get()),
R"(%f = @fragment func(%a:f32 [@location(2), @interpolate(flat)]):f32 [@location(1)] -> %b1 {
%b1 = block {
ret %a
}
}
)");
}
} // namespace
} // namespace tint::ir