blob: 65289a308907e0a6d06642bae77c0265a5525869 [file] [log] [blame]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/lang/spirv/writer/raise/builtin_polyfill.h"
#include <utility>
#include "spirv/unified1/spirv.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/ir/builder.h"
#include "src/tint/lang/core/ir/module.h"
#include "src/tint/lang/core/ir/validator.h"
#include "src/tint/lang/core/type/builtin_structs.h"
#include "src/tint/lang/core/type/depth_multisampled_texture.h"
#include "src/tint/lang/core/type/depth_texture.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/storage_texture.h"
#include "src/tint/lang/core/type/texture.h"
#include "src/tint/utils/ice/ice.h"
TINT_INSTANTIATE_TYPEINFO(tint::spirv::writer::raise::LiteralOperand);
TINT_INSTANTIATE_TYPEINFO(tint::spirv::writer::raise::SampledImage);
using namespace tint::core::number_suffixes; // NOLINT
using namespace tint::core::fluent_types; // NOLINT
namespace tint::spirv::writer::raise {
namespace {
/// PIMPL state for the transform.
struct State {
/// The IR module.
ir::Module* ir = nullptr;
/// The IR builder.
ir::Builder b{*ir};
/// The type manager.
core::type::Manager& ty{ir->Types()};
/// Process the module.
void Process() {
// Find the builtins that need replacing.
Vector<ir::CoreBuiltinCall*, 4> worklist;
for (auto* inst : ir->instructions.Objects()) {
if (!inst->Alive()) {
continue;
}
if (auto* builtin = inst->As<ir::CoreBuiltinCall>()) {
switch (builtin->Func()) {
case core::Function::kArrayLength:
case core::Function::kAtomicAdd:
case core::Function::kAtomicAnd:
case core::Function::kAtomicCompareExchangeWeak:
case core::Function::kAtomicExchange:
case core::Function::kAtomicLoad:
case core::Function::kAtomicMax:
case core::Function::kAtomicMin:
case core::Function::kAtomicOr:
case core::Function::kAtomicStore:
case core::Function::kAtomicSub:
case core::Function::kAtomicXor:
case core::Function::kDot:
case core::Function::kSelect:
case core::Function::kTextureDimensions:
case core::Function::kTextureGather:
case core::Function::kTextureGatherCompare:
case core::Function::kTextureLoad:
case core::Function::kTextureNumLayers:
case core::Function::kTextureSample:
case core::Function::kTextureSampleBias:
case core::Function::kTextureSampleCompare:
case core::Function::kTextureSampleCompareLevel:
case core::Function::kTextureSampleGrad:
case core::Function::kTextureSampleLevel:
case core::Function::kTextureStore:
worklist.Push(builtin);
break;
default:
break;
}
}
}
// Replace the builtins that we found.
for (auto* builtin : worklist) {
ir::Value* replacement = nullptr;
switch (builtin->Func()) {
case core::Function::kArrayLength:
replacement = ArrayLength(builtin);
break;
case core::Function::kAtomicAdd:
case core::Function::kAtomicAnd:
case core::Function::kAtomicCompareExchangeWeak:
case core::Function::kAtomicExchange:
case core::Function::kAtomicLoad:
case core::Function::kAtomicMax:
case core::Function::kAtomicMin:
case core::Function::kAtomicOr:
case core::Function::kAtomicStore:
case core::Function::kAtomicSub:
case core::Function::kAtomicXor:
replacement = Atomic(builtin);
break;
case core::Function::kDot:
replacement = Dot(builtin);
break;
case core::Function::kSelect:
replacement = Select(builtin);
break;
case core::Function::kTextureDimensions:
replacement = TextureDimensions(builtin);
break;
case core::Function::kTextureGather:
case core::Function::kTextureGatherCompare:
replacement = TextureGather(builtin);
break;
case core::Function::kTextureLoad:
replacement = TextureLoad(builtin);
break;
case core::Function::kTextureNumLayers:
replacement = TextureNumLayers(builtin);
break;
case core::Function::kTextureSample:
case core::Function::kTextureSampleBias:
case core::Function::kTextureSampleCompare:
case core::Function::kTextureSampleCompareLevel:
case core::Function::kTextureSampleGrad:
case core::Function::kTextureSampleLevel:
replacement = TextureSample(builtin);
break;
case core::Function::kTextureStore:
replacement = TextureStore(builtin);
break;
default:
break;
}
TINT_ASSERT_OR_RETURN(replacement);
// Replace the old builtin result with the new value.
if (auto name = ir->NameOf(builtin->Result())) {
ir->SetName(replacement, name);
}
builtin->Result()->ReplaceAllUsesWith(replacement);
builtin->Destroy();
}
}
/// Create a literal operand.
/// @param value the literal value
/// @returns the literal operand
LiteralOperand* Literal(u32 value) {
return ir->values.Create<LiteralOperand>(b.ConstantValue(value));
}
/// Handle an `arrayLength()` builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* ArrayLength(ir::CoreBuiltinCall* builtin) {
// Strip away any let instructions to get to the original struct member access instruction.
auto* ptr = builtin->Args()[0]->As<ir::InstructionResult>();
while (auto* let = tint::As<ir::Let>(ptr->Source())) {
ptr = let->Value()->As<ir::InstructionResult>();
}
TINT_ASSERT_OR_RETURN_VALUE(ptr, nullptr);
auto* access = ptr->Source()->As<ir::Access>();
TINT_ASSERT_OR_RETURN_VALUE(access, nullptr);
TINT_ASSERT_OR_RETURN_VALUE(access->Indices().Length() == 1u, nullptr);
TINT_ASSERT_OR_RETURN_VALUE(access->Object()->Type()->UnwrapPtr()->Is<core::type::Struct>(),
nullptr);
auto* const_idx = access->Indices()[0]->As<ir::Constant>();
// Replace the builtin call with a call to the spirv.array_length intrinsic.
auto* call =
b.Call(builtin->Result()->Type(), ir::IntrinsicCall::Kind::kSpirvArrayLength,
Vector{access->Object(), Literal(u32(const_idx->Value()->ValueAs<uint32_t>()))});
call->InsertBefore(builtin);
return call->Result();
}
/// Handle an atomic*() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* Atomic(ir::CoreBuiltinCall* builtin) {
auto* result_ty = builtin->Result()->Type();
auto* pointer = builtin->Args()[0];
auto* memory = [&]() -> ir::Value* {
switch (pointer->Type()->As<core::type::Pointer>()->AddressSpace()) {
case core::AddressSpace::kWorkgroup:
return b.Constant(u32(SpvScopeWorkgroup));
case core::AddressSpace::kStorage:
return b.Constant(u32(SpvScopeDevice));
default:
TINT_UNREACHABLE() << "unhandled atomic address space";
return nullptr;
}
}();
auto* memory_semantics = b.Constant(u32(SpvMemorySemanticsMaskNone));
// Helper to build the intrinsic call with the common operands.
auto build = [&](const core::type::Type* type, enum ir::IntrinsicCall::Kind intrinsic) {
return b.Call(type, intrinsic, pointer, memory, memory_semantics);
};
// Create the replacement call instruction.
ir::Call* call = nullptr;
switch (builtin->Func()) {
case core::Function::kAtomicAdd:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicIAdd);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicAnd:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicAnd);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicCompareExchangeWeak: {
auto* cmp = builtin->Args()[1];
auto* value = builtin->Args()[2];
auto* int_ty = value->Type();
call = build(int_ty, ir::IntrinsicCall::Kind::kSpirvAtomicCompareExchange);
call->AppendArg(memory_semantics);
call->AppendArg(value);
call->AppendArg(cmp);
call->InsertBefore(builtin);
// Compare the original value to the comparator to see if an exchange happened.
auto* original = call->Result();
auto* compare = b.Equal(ty.bool_(), original, cmp);
compare->InsertBefore(builtin);
// Construct the atomicCompareExchange result structure.
call = b.Construct(
core::type::CreateAtomicCompareExchangeResult(ty, ir->symbols, int_ty),
Vector{original, compare->Result()});
break;
}
case core::Function::kAtomicExchange:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicExchange);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicLoad:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicLoad);
break;
case core::Function::kAtomicOr:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicOr);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicMax:
if (result_ty->is_signed_integer_scalar()) {
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicSMax);
} else {
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicUMax);
}
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicMin:
if (result_ty->is_signed_integer_scalar()) {
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicSMin);
} else {
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicUMin);
}
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicStore:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicStore);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicSub:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicISub);
call->AppendArg(builtin->Args()[1]);
break;
case core::Function::kAtomicXor:
call = build(result_ty, ir::IntrinsicCall::Kind::kSpirvAtomicXor);
call->AppendArg(builtin->Args()[1]);
break;
default:
return nullptr;
}
call->InsertBefore(builtin);
return call->Result();
}
/// Handle a `dot()` builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* Dot(ir::CoreBuiltinCall* builtin) {
// OpDot only supports floating point operands, so we need to polyfill the integer case.
// TODO(crbug.com/tint/1267): If SPV_KHR_integer_dot_product is supported, use that instead.
if (builtin->Result()->Type()->is_integer_scalar()) {
ir::Instruction* sum = nullptr;
auto* v1 = builtin->Args()[0];
auto* v2 = builtin->Args()[1];
auto* vec = v1->Type()->As<core::type::Vector>();
auto* elty = vec->type();
for (uint32_t i = 0; i < vec->Width(); i++) {
b.InsertBefore(builtin, [&] {
auto* e1 = b.Access(elty, v1, u32(i));
auto* e2 = b.Access(elty, v2, u32(i));
auto* mul = b.Multiply(elty, e1, e2);
if (sum) {
sum = b.Add(elty, sum, mul);
} else {
sum = mul;
}
});
}
return sum->Result();
}
// Replace the builtin call with a call to the spirv.dot intrinsic.
auto args = Vector<ir::Value*, 4>(builtin->Args());
auto* call =
b.Call(builtin->Result()->Type(), ir::IntrinsicCall::Kind::kSpirvDot, std::move(args));
call->InsertBefore(builtin);
return call->Result();
}
/// Handle a `select()` builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* Select(ir::CoreBuiltinCall* builtin) {
// Argument order is different in SPIR-V: (condition, true_operand, false_operand).
Vector<ir::Value*, 4> args = {
builtin->Args()[2],
builtin->Args()[1],
builtin->Args()[0],
};
// If the condition is scalar and the objects are vectors, we need to splat the condition
// into a vector of the same size.
// TODO(jrprice): We don't need to do this if we're targeting SPIR-V 1.4 or newer.
auto* vec = builtin->Result()->Type()->As<core::type::Vector>();
if (vec && args[0]->Type()->Is<core::type::Scalar>()) {
Vector<ir::Value*, 4> elements;
elements.Resize(vec->Width(), args[0]);
auto* construct = b.Construct(ty.vec(ty.bool_(), vec->Width()), std::move(elements));
construct->InsertBefore(builtin);
args[0] = construct->Result();
}
// Replace the builtin call with a call to the spirv.select intrinsic.
auto* call = b.Call(builtin->Result()->Type(), ir::IntrinsicCall::Kind::kSpirvSelect,
std::move(args));
call->InsertBefore(builtin);
return call->Result();
}
/// ImageOperands represents the optional image operands for an image instruction.
struct ImageOperands {
/// Bias
ir::Value* bias = nullptr;
/// Lod
ir::Value* lod = nullptr;
/// Grad (dx)
ir::Value* ddx = nullptr;
/// Grad (dy)
ir::Value* ddy = nullptr;
/// ConstOffset
ir::Value* offset = nullptr;
/// Sample
ir::Value* sample = nullptr;
};
/// Append optional image operands to an image intrinsic argument list.
/// @param operands the operands
/// @param args the argument list
/// @param insertion_point the insertion point for new instructions
/// @param requires_float_lod true if the lod needs to be a floating point value
void AppendImageOperands(ImageOperands& operands,
Vector<ir::Value*, 8>& args,
ir::Instruction* insertion_point,
bool requires_float_lod) {
// Add a placeholder argument for the image operand mask, which we will fill in when we have
// processed the image operands.
uint32_t image_operand_mask = 0u;
size_t mask_idx = args.Length();
args.Push(nullptr);
// Add each of the optional image operands if used, updating the image operand mask.
if (operands.bias) {
image_operand_mask |= SpvImageOperandsBiasMask;
args.Push(operands.bias);
}
if (operands.lod) {
image_operand_mask |= SpvImageOperandsLodMask;
if (requires_float_lod && operands.lod->Type()->is_integer_scalar()) {
auto* convert = b.Convert(ty.f32(), operands.lod);
convert->InsertBefore(insertion_point);
operands.lod = convert->Result();
}
args.Push(operands.lod);
}
if (operands.ddx) {
image_operand_mask |= SpvImageOperandsGradMask;
args.Push(operands.ddx);
args.Push(operands.ddy);
}
if (operands.offset) {
image_operand_mask |= SpvImageOperandsConstOffsetMask;
args.Push(operands.offset);
}
if (operands.sample) {
image_operand_mask |= SpvImageOperandsSampleMask;
args.Push(operands.sample);
}
// Replace the image operand mask with the final mask value, as a literal operand.
args[mask_idx] = Literal(u32(image_operand_mask));
}
/// Append an array index to a coordinate vector.
/// @param coords the coordinate vector
/// @param array_idx the array index
/// @param insertion_point the insertion point for new instructions
/// @returns the modified coordinate vector
ir::Value* AppendArrayIndex(ir::Value* coords,
ir::Value* array_idx,
ir::Instruction* insertion_point) {
auto* vec = coords->Type()->As<core::type::Vector>();
auto* element_ty = vec->type();
// Convert the index to match the coordinate type if needed.
if (array_idx->Type() != element_ty) {
auto* array_idx_converted = b.Convert(element_ty, array_idx);
array_idx_converted->InsertBefore(insertion_point);
array_idx = array_idx_converted->Result();
}
// Construct a new coordinate vector.
auto num_coords = vec->Width();
auto* coord_ty = ty.vec(element_ty, num_coords + 1);
auto* construct = b.Construct(coord_ty, Vector{coords, array_idx});
construct->InsertBefore(insertion_point);
return construct->Result();
}
/// Handle a textureSample*() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureSample(ir::CoreBuiltinCall* builtin) {
// Helper to get the next argument from the call, or nullptr if there are no more arguments.
uint32_t arg_idx = 0;
auto next_arg = [&]() {
return arg_idx < builtin->Args().Length() ? builtin->Args()[arg_idx++] : nullptr;
};
auto* texture = next_arg();
auto* sampler = next_arg();
auto* coords = next_arg();
auto* texture_ty = texture->Type()->As<core::type::Texture>();
// Use OpSampledImage to create an OpTypeSampledImage object.
auto* sampled_image =
b.Call(ty.Get<SampledImage>(texture_ty), ir::IntrinsicCall::Kind::kSpirvSampledImage,
Vector{texture, sampler});
sampled_image->InsertBefore(builtin);
// Append the array index to the coordinates if provided.
auto* array_idx = IsTextureArray(texture_ty->dim()) ? next_arg() : nullptr;
if (array_idx) {
coords = AppendArrayIndex(coords, array_idx, builtin);
}
// Determine which SPIR-V intrinsic to use and which optional image operands are needed.
enum ir::IntrinsicCall::Kind intrinsic;
ir::Value* depth = nullptr;
ImageOperands operands;
switch (builtin->Func()) {
case core::Function::kTextureSample:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleImplicitLod;
operands.offset = next_arg();
break;
case core::Function::kTextureSampleBias:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleImplicitLod;
operands.bias = next_arg();
operands.offset = next_arg();
break;
case core::Function::kTextureSampleCompare:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleDrefImplicitLod;
depth = next_arg();
operands.offset = next_arg();
break;
case core::Function::kTextureSampleCompareLevel:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleDrefExplicitLod;
depth = next_arg();
operands.lod = b.Constant(0_f);
operands.offset = next_arg();
break;
case core::Function::kTextureSampleGrad:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleExplicitLod;
operands.ddx = next_arg();
operands.ddy = next_arg();
operands.offset = next_arg();
break;
case core::Function::kTextureSampleLevel:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageSampleExplicitLod;
operands.lod = next_arg();
operands.offset = next_arg();
break;
default:
return nullptr;
}
// Start building the argument list for the intrinsic.
// The first two operands are always the sampled image and then the coordinates, followed by
// the depth reference if used.
Vector<ir::Value*, 8> intrinsic_args;
intrinsic_args.Push(sampled_image->Result());
intrinsic_args.Push(coords);
if (depth) {
intrinsic_args.Push(depth);
}
// Add the optional image operands, if any.
AppendImageOperands(operands, intrinsic_args, builtin, /* requires_float_lod */ true);
// Call the intrinsic.
// If this is a depth comparison, the result is always f32, otherwise vec4f.
auto* result_ty = depth ? static_cast<const core::type::Type*>(ty.f32()) : ty.vec4<f32>();
auto* texture_call = b.Call(result_ty, intrinsic, std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
auto* result = texture_call->Result();
// If this is not a depth comparison but we are sampling a depth texture, extract the first
// component to get the scalar f32 that SPIR-V expects.
if (!depth &&
texture_ty->IsAnyOf<core::type::DepthTexture, core::type::DepthMultisampledTexture>()) {
auto* extract = b.Access(ty.f32(), result, 0_u);
extract->InsertBefore(builtin);
result = extract->Result();
}
return result;
}
/// Handle a textureGather*() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureGather(ir::CoreBuiltinCall* builtin) {
// Helper to get the next argument from the call, or nullptr if there are no more arguments.
uint32_t arg_idx = 0;
auto next_arg = [&]() {
return arg_idx < builtin->Args().Length() ? builtin->Args()[arg_idx++] : nullptr;
};
auto* component = next_arg();
if (!component->Type()->is_integer_scalar()) {
// The first argument wasn't the component, so it must be the texture instead.
// Use constant zero for the component.
component = b.Constant(0_u);
arg_idx--;
}
auto* texture = next_arg();
auto* sampler = next_arg();
auto* coords = next_arg();
auto* texture_ty = texture->Type()->As<core::type::Texture>();
// Use OpSampledImage to create an OpTypeSampledImage object.
auto* sampled_image =
b.Call(ty.Get<SampledImage>(texture_ty), ir::IntrinsicCall::Kind::kSpirvSampledImage,
Vector{texture, sampler});
sampled_image->InsertBefore(builtin);
// Append the array index to the coordinates if provided.
auto* array_idx = IsTextureArray(texture_ty->dim()) ? next_arg() : nullptr;
if (array_idx) {
coords = AppendArrayIndex(coords, array_idx, builtin);
}
// Determine which SPIR-V intrinsic to use and which optional image operands are needed.
enum ir::IntrinsicCall::Kind intrinsic;
ir::Value* depth = nullptr;
ImageOperands operands;
switch (builtin->Func()) {
case core::Function::kTextureGather:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageGather;
operands.offset = next_arg();
break;
case core::Function::kTextureGatherCompare:
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageDrefGather;
depth = next_arg();
operands.offset = next_arg();
break;
default:
return nullptr;
}
// Start building the argument list for the intrinsic.
// The first two operands are always the sampled image and then the coordinates, followed by
// either the depth reference or the component.
Vector<ir::Value*, 8> intrinsic_args;
intrinsic_args.Push(sampled_image->Result());
intrinsic_args.Push(coords);
if (depth) {
intrinsic_args.Push(depth);
} else {
intrinsic_args.Push(component);
}
// Add the optional image operands, if any.
AppendImageOperands(operands, intrinsic_args, builtin, /* requires_float_lod */ true);
// Call the intrinsic.
auto* result_ty = builtin->Result()->Type();
auto* texture_call = b.Call(result_ty, intrinsic, std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
return texture_call->Result();
}
/// Handle a textureLoad() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureLoad(ir::CoreBuiltinCall* builtin) {
// Helper to get the next argument from the call, or nullptr if there are no more arguments.
uint32_t arg_idx = 0;
auto next_arg = [&]() {
return arg_idx < builtin->Args().Length() ? builtin->Args()[arg_idx++] : nullptr;
};
auto* texture = next_arg();
auto* coords = next_arg();
auto* texture_ty = texture->Type()->As<core::type::Texture>();
// Append the array index to the coordinates if provided.
auto* array_idx = IsTextureArray(texture_ty->dim()) ? next_arg() : nullptr;
if (array_idx) {
coords = AppendArrayIndex(coords, array_idx, builtin);
}
// Start building the argument list for the intrinsic.
// The first two operands are always the texture and then the coordinates.
Vector<ir::Value*, 8> intrinsic_args;
intrinsic_args.Push(texture);
intrinsic_args.Push(coords);
// Add the optional image operands, if any.
ImageOperands operands;
if (texture_ty->IsAnyOf<core::type::MultisampledTexture,
core::type::DepthMultisampledTexture>()) {
operands.sample = next_arg();
} else {
operands.lod = next_arg();
}
AppendImageOperands(operands, intrinsic_args, builtin, /* requires_float_lod */ false);
// Call the intrinsic.
// The result is always a vec4 in SPIR-V.
auto* result_ty = builtin->Result()->Type();
bool expects_scalar_result = result_ty->Is<core::type::Scalar>();
if (expects_scalar_result) {
result_ty = ty.vec4(result_ty);
}
auto* texture_call =
b.Call(result_ty, ir::IntrinsicCall::Kind::kSpirvImageFetch, std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
auto* result = texture_call->Result();
// If we are expecting a scalar result, extract the first component.
if (expects_scalar_result) {
auto* extract = b.Access(ty.f32(), result, 0_u);
extract->InsertBefore(builtin);
result = extract->Result();
}
return result;
}
/// Handle a textureStore() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureStore(ir::CoreBuiltinCall* builtin) {
// Helper to get the next argument from the call, or nullptr if there are no more arguments.
uint32_t arg_idx = 0;
auto next_arg = [&]() {
return arg_idx < builtin->Args().Length() ? builtin->Args()[arg_idx++] : nullptr;
};
auto* texture = next_arg();
auto* coords = next_arg();
auto* texture_ty = texture->Type()->As<core::type::Texture>();
// Append the array index to the coordinates if provided.
auto* array_idx = IsTextureArray(texture_ty->dim()) ? next_arg() : nullptr;
if (array_idx) {
coords = AppendArrayIndex(coords, array_idx, builtin);
}
auto* texel = next_arg();
// Start building the argument list for the intrinsic.
// The first two operands are always the texture and then the coordinates.
Vector<ir::Value*, 8> intrinsic_args;
intrinsic_args.Push(texture);
intrinsic_args.Push(coords);
intrinsic_args.Push(texel);
ImageOperands operands;
AppendImageOperands(operands, intrinsic_args, builtin, /* requires_float_lod */ false);
// Call the intrinsic.
auto* texture_call = b.Call(ty.void_(), ir::IntrinsicCall::Kind::kSpirvImageWrite,
std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
return texture_call->Result();
}
/// Handle a textureDimensions() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureDimensions(ir::CoreBuiltinCall* builtin) {
// Helper to get the next argument from the call, or nullptr if there are no more arguments.
uint32_t arg_idx = 0;
auto next_arg = [&]() {
return arg_idx < builtin->Args().Length() ? builtin->Args()[arg_idx++] : nullptr;
};
auto* texture = next_arg();
auto* texture_ty = texture->Type()->As<core::type::Texture>();
Vector<ir::Value*, 8> intrinsic_args;
intrinsic_args.Push(texture);
// Determine which SPIR-V intrinsic to use, and add the Lod argument if needed.
enum ir::IntrinsicCall::Kind intrinsic;
if (texture_ty
->IsAnyOf<core::type::MultisampledTexture, core::type::DepthMultisampledTexture,
core::type::StorageTexture>()) {
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageQuerySize;
} else {
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageQuerySizeLod;
if (auto* lod = next_arg()) {
intrinsic_args.Push(lod);
} else {
// Lod wasn't explicit, so assume 0.
intrinsic_args.Push(b.Constant(0_u));
}
}
// Add an extra component to the result vector for arrayed textures.
auto* result_ty = builtin->Result()->Type();
if (core::type::IsTextureArray(texture_ty->dim())) {
auto* vec = result_ty->As<core::type::Vector>();
result_ty = ty.vec(vec->type(), vec->Width() + 1);
}
// Call the intrinsic.
auto* texture_call = b.Call(result_ty, intrinsic, std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
auto* result = texture_call->Result();
// Swizzle the first two components from the result for arrayed textures.
if (core::type::IsTextureArray(texture_ty->dim())) {
auto* swizzle = b.Swizzle(builtin->Result()->Type(), result, {0, 1});
swizzle->InsertBefore(builtin);
result = swizzle->Result();
}
return result;
}
/// Handle a textureNumLayers() builtin.
/// @param builtin the builtin call instruction
/// @returns the replacement value
ir::Value* TextureNumLayers(ir::CoreBuiltinCall* builtin) {
auto* texture = builtin->Args()[0];
auto* texture_ty = texture->Type()->As<core::type::Texture>();
Vector<ir::Value*, 2> intrinsic_args;
intrinsic_args.Push(texture);
// Determine which SPIR-V intrinsic to use, and add the Lod argument if needed.
enum ir::IntrinsicCall::Kind intrinsic;
if (texture_ty
->IsAnyOf<core::type::MultisampledTexture, core::type::DepthMultisampledTexture,
core::type::StorageTexture>()) {
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageQuerySize;
} else {
intrinsic = ir::IntrinsicCall::Kind::kSpirvImageQuerySizeLod;
intrinsic_args.Push(b.Constant(0_u));
}
// Call the intrinsic.
auto* texture_call = b.Call(ty.vec3<u32>(), intrinsic, std::move(intrinsic_args));
texture_call->InsertBefore(builtin);
// Extract the third component to get the number of array layers.
auto* extract = b.Access(ty.u32(), texture_call->Result(), 2_u);
extract->InsertBefore(builtin);
return extract->Result();
}
};
} // namespace
Result<SuccessType, std::string> BuiltinPolyfill(ir::Module* ir) {
auto result = ValidateAndDumpIfNeeded(*ir, "BuiltinPolyfill transform");
if (!result) {
return result;
}
State{ir}.Process();
return Success;
}
LiteralOperand::LiteralOperand(const core::constant::Value* value) : Base(value) {}
LiteralOperand::~LiteralOperand() = default;
SampledImage::SampledImage(const core::type::Type* image)
: Base(static_cast<size_t>(Hash(tint::TypeInfo::Of<SampledImage>().full_hashcode, image)),
core::type::Flags{}),
image_(image) {}
SampledImage* SampledImage::Clone(core::type::CloneContext& ctx) const {
auto* image = image_->Clone(ctx);
return ctx.dst.mgr->Get<SampledImage>(image);
}
} // namespace tint::spirv::writer::raise