blob: dac691cbc84c2c146421c1e05451dd066fb689de [file] [log] [blame] [edit]
// Copyright 2017 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/native/d3d12/TextureCopySplitter.h"
#include "dawn/common/Assert.h"
#include "dawn/native/Format.h"
#include "dawn/native/d3d12/d3d12_platform.h"
namespace dawn::native::d3d12 {
namespace {
Origin3D ComputeTexelOffsets(const TexelBlockInfo& blockInfo,
uint32_t offset,
uint32_t bytesPerRow) {
DAWN_ASSERT(bytesPerRow != 0);
uint32_t byteOffsetX = offset % bytesPerRow;
uint32_t byteOffsetY = offset - byteOffsetX;
return {byteOffsetX / blockInfo.byteSize * blockInfo.width,
byteOffsetY / bytesPerRow * blockInfo.height, 0};
}
uint64_t OffsetToFirstCopiedTexel(const TexelBlockInfo& blockInfo,
uint32_t bytesPerRow,
uint64_t alignedOffset,
Origin3D bufferOffset) {
DAWN_ASSERT(bufferOffset.z == 0);
return alignedOffset + bufferOffset.x * blockInfo.byteSize / blockInfo.width +
bufferOffset.y * bytesPerRow / blockInfo.height;
}
uint64_t AlignDownForDataPlacement(uint32_t offset) {
return offset & ~static_cast<uint64_t>(D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT - 1);
}
} // namespace
TextureCopySubresource::CopyInfo* TextureCopySubresource::AddCopy() {
DAWN_ASSERT(this->count < kMaxTextureCopyRegions);
return &this->copies[this->count++];
}
TextureCopySubresource Compute2DTextureCopySubresource(Origin3D origin,
Extent3D copySize,
const TexelBlockInfo& blockInfo,
uint64_t offset,
uint32_t bytesPerRow) {
TextureCopySubresource copy;
DAWN_ASSERT(bytesPerRow % blockInfo.byteSize == 0);
// The copies must be 512-aligned. To do this, we calculate the first 512-aligned address
// preceding our data.
uint64_t alignedOffset = AlignDownForDataPlacement(offset);
// If the provided offset to the data was already 512-aligned, we can simply copy the data
// without further translation.
if (offset == alignedOffset) {
copy.count = 1;
copy.copies[0].alignedOffset = alignedOffset;
copy.copies[0].textureOffset = origin;
copy.copies[0].copySize = copySize;
copy.copies[0].bufferOffset = {0, 0, 0};
copy.copies[0].bufferSize = copySize;
return copy;
}
DAWN_ASSERT(alignedOffset < offset);
DAWN_ASSERT(offset - alignedOffset < D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
// We must reinterpret our aligned offset into X and Y offsets with respect to the row
// pitch.
//
// You can visualize the data in the buffer like this:
// |-----------------------++++++++++++++++++++++++++++++++|
// ^ 512-aligned address ^ Aligned offset ^ End of copy data
//
// Now when you consider the row pitch, you can visualize the data like this:
// |~~~~~~~~~~~~~~~~|
// |~~~~~+++++++++++|
// |++++++++++++++++|
// |+++++~~~~~~~~~~~|
// |<---row pitch-->|
//
// The X and Y offsets calculated in ComputeTexelOffsets can be visualized like this:
// |YYYYYYYYYYYYYYYY|
// |XXXXXX++++++++++|
// |++++++++++++++++|
// |++++++~~~~~~~~~~|
// |<---row pitch-->|
Origin3D texelOffset =
ComputeTexelOffsets(blockInfo, static_cast<uint32_t>(offset - alignedOffset), bytesPerRow);
DAWN_ASSERT(texelOffset.y <= blockInfo.height);
DAWN_ASSERT(texelOffset.z == 0);
uint32_t copyBytesPerRowPitch = copySize.width / blockInfo.width * blockInfo.byteSize;
uint32_t byteOffsetInRowPitch = texelOffset.x / blockInfo.width * blockInfo.byteSize;
if (copyBytesPerRowPitch + byteOffsetInRowPitch <= bytesPerRow) {
// The region's rows fit inside the bytes per row. In this case, extend the width of the
// PlacedFootprint and copy the buffer with an offset location
// |<------------- bytes per row ------------->|
//
// |-------------------------------------------|
// | |
// | +++++++++++++++++~~~~~~~~~|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++~~~~~~~~~|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++~~~~~~~~~|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++~~~~~~~~~|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++ |
// |-------------------------------------------|
// Copy 0:
// |----------------------------------|
// | |
// | +++++++++++++++++|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++|
// |~~~~~~~~~~~~~~~~~+++++++++++++++++|
// |----------------------------------|
copy.count = 1;
copy.copies[0].alignedOffset = alignedOffset;
copy.copies[0].textureOffset = origin;
copy.copies[0].copySize = copySize;
copy.copies[0].bufferOffset = texelOffset;
copy.copies[0].bufferSize.width = copySize.width + texelOffset.x;
copy.copies[0].bufferSize.height = copySize.height + texelOffset.y;
copy.copies[0].bufferSize.depthOrArrayLayers = copySize.depthOrArrayLayers;
return copy;
}
// The region's rows straddle the bytes per row. Split the copy into two copies
// |<------------- bytes per row ------------->|
//
// |-------------------------------------------|
// | |
// | ++++++++|
// |+++++++++~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |+++++++++~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |+++++++++~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |+++++++++~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |+++++++++ |
// |-------------------------------------------|
// Copy 0:
// |-------------------------------------------|
// | |
// | ++++++++|
// |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~++++++++|
// |-------------------------------------------|
// Copy 1:
// |---------|
// | |
// | |
// |+++++++++|
// |+++++++++|
// |+++++++++|
// |+++++++++|
// |+++++++++|
// |---------|
copy.count = 2;
copy.copies[0].alignedOffset = alignedOffset;
copy.copies[0].textureOffset = origin;
DAWN_ASSERT(bytesPerRow > byteOffsetInRowPitch);
uint32_t texelsPerRow = bytesPerRow / blockInfo.byteSize * blockInfo.width;
copy.copies[0].copySize.width = texelsPerRow - texelOffset.x;
copy.copies[0].copySize.height = copySize.height;
copy.copies[0].copySize.depthOrArrayLayers = copySize.depthOrArrayLayers;
copy.copies[0].bufferOffset = texelOffset;
copy.copies[0].bufferSize.width = texelsPerRow;
copy.copies[0].bufferSize.height = copySize.height + texelOffset.y;
copy.copies[0].bufferSize.depthOrArrayLayers = copySize.depthOrArrayLayers;
uint64_t offsetForCopy1 =
offset + copy.copies[0].copySize.width / blockInfo.width * blockInfo.byteSize;
uint64_t alignedOffsetForCopy1 = AlignDownForDataPlacement(offsetForCopy1);
Origin3D texelOffsetForCopy1 = ComputeTexelOffsets(
blockInfo, static_cast<uint32_t>(offsetForCopy1 - alignedOffsetForCopy1), bytesPerRow);
DAWN_ASSERT(texelOffsetForCopy1.y <= blockInfo.height);
DAWN_ASSERT(texelOffsetForCopy1.z == 0);
copy.copies[1].alignedOffset = alignedOffsetForCopy1;
copy.copies[1].textureOffset.x = origin.x + copy.copies[0].copySize.width;
copy.copies[1].textureOffset.y = origin.y;
copy.copies[1].textureOffset.z = origin.z;
DAWN_ASSERT(copySize.width > copy.copies[0].copySize.width);
copy.copies[1].copySize.width = copySize.width - copy.copies[0].copySize.width;
copy.copies[1].copySize.height = copySize.height;
copy.copies[1].copySize.depthOrArrayLayers = copySize.depthOrArrayLayers;
copy.copies[1].bufferOffset = texelOffsetForCopy1;
copy.copies[1].bufferSize.width = copy.copies[1].copySize.width + texelOffsetForCopy1.x;
copy.copies[1].bufferSize.height = copySize.height + texelOffsetForCopy1.y;
copy.copies[1].bufferSize.depthOrArrayLayers = copySize.depthOrArrayLayers;
return copy;
}
TextureCopySplits Compute2DTextureCopySplits(Origin3D origin,
Extent3D copySize,
const TexelBlockInfo& blockInfo,
uint64_t offset,
uint32_t bytesPerRow,
uint32_t rowsPerImage) {
TextureCopySplits copies;
const uint64_t bytesPerLayer = bytesPerRow * rowsPerImage;
// The function Compute2DTextureCopySubresource() decides how to split the copy based on:
// - the alignment of the buffer offset with D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT (512)
// - the alignment of the buffer offset with D3D12_TEXTURE_DATA_PITCH_ALIGNMENT (256)
// Each layer of a 2D array might need to be split, but because of the WebGPU
// constraint that "bytesPerRow" must be a multiple of 256, all odd (resp. all even) layers
// will be at an offset multiple of 512 of each other, which means they will all result in
// the same 2D split. Thus we can just compute the copy splits for the first and second
// layers, and reuse them for the remaining layers by adding the related offset of each
// layer. Moreover, if "rowsPerImage" is even, both the first and second copy layers can
// share the same copy split, so in this situation we just need to compute copy split once
// and reuse it for all the layers.
Extent3D copyOneLayerSize = copySize;
Origin3D copyFirstLayerOrigin = origin;
copyOneLayerSize.depthOrArrayLayers = 1;
copyFirstLayerOrigin.z = 0;
copies.copySubresources[0] = Compute2DTextureCopySubresource(
copyFirstLayerOrigin, copyOneLayerSize, blockInfo, offset, bytesPerRow);
// When the copy only refers one texture 2D array layer,
// copies.copySubresources[1] will never be used so we can safely early return here.
if (copySize.depthOrArrayLayers == 1) {
return copies;
}
if (bytesPerLayer % D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT == 0) {
copies.copySubresources[1] = copies.copySubresources[0];
copies.copySubresources[1].copies[0].alignedOffset += bytesPerLayer;
copies.copySubresources[1].copies[1].alignedOffset += bytesPerLayer;
} else {
const uint64_t bufferOffsetNextLayer = offset + bytesPerLayer;
copies.copySubresources[1] = Compute2DTextureCopySubresource(
copyFirstLayerOrigin, copyOneLayerSize, blockInfo, bufferOffsetNextLayer, bytesPerRow);
}
return copies;
}
void Recompute3DTextureCopyRegionWithEmptyFirstRowAndEvenCopyHeight(Origin3D origin,
Extent3D copySize,
const TexelBlockInfo& blockInfo,
uint32_t bytesPerRow,
uint32_t rowsPerImage,
TextureCopySubresource& copy,
uint32_t i) {
// Let's assign data and show why copy region generated by ComputeTextureCopySubresource
// is incorrect if there is an empty row at the beginning of the copy block.
// Assuming that bytesPerRow is 256 and we are doing a B2T copy, and copy size is {width: 2,
// height: 4, depthOrArrayLayers: 3}. Then the data layout in buffer is demonstrated
// as below:
//
// |<----- bytes per row ------>|
//
// |----------------------------|
// row (N - 1) | |
// row N | ++~~~~~~~~~|
// row (N + 1) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 2) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 3) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 4) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 5) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 6) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 7) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 8) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 9) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 10) |~~~~~~~~~~~~~~~~~++~~~~~~~~~|
// row (N + 11) |~~~~~~~~~~~~~~~~~++ |
// |----------------------------|
// The copy we mean to do is the following:
//
// - image 0: row N to row (N + 3),
// - image 1: row (N + 4) to row (N + 7),
// - image 2: row (N + 8) to row (N + 11).
//
// Note that alignedOffset is at the beginning of row (N - 1), while buffer offset makes
// the copy start at row N. Row (N - 1) is the empty row between alignedOffset and offset.
//
// The 2D copy region of image 0 we received from Compute2DTextureCopySubresource() is
// the following:
//
// |-------------------|
// row (N - 1) | |
// row N | ++|
// row (N + 1) |~~~~~~~~~~~~~~~~~++|
// row (N + 2) |~~~~~~~~~~~~~~~~~++|
// row (N + 3) |~~~~~~~~~~~~~~~~~++|
// |-------------------|
//
// However, if we simply expand the copy region of image 0 to all depth ranges of a 3D
// texture, we will copy 5 rows every time, and every first row of each slice will be
// skipped. As a result, the copied data will be:
//
// - image 0: row N to row (N + 3), which is correct. Row (N - 1) is skipped.
// - image 1: row (N + 5) to row (N + 8) because row (N + 4) is skipped. It is incorrect.
//
// Likewise, all other image followed will be incorrect because we wrongly keep skipping
// one row for each depth slice.
//
// Solution: split the copy region to two copies: copy 3 (rowsPerImage - 1) rows in and
// expand to all depth slices in the first copy. 3 rows + one skipped rows = 4 rows, which
// equals to rowsPerImage. Then copy the last row in the second copy. However, the copy
// block of the last row of the last image may out-of-bound (see the details below), so
// we need an extra copy for the very last row.
// Copy 0: copy 3 rows, not 4 rows.
// _____________________
// / /|
// / / |
// |-------------------| |
// row (N - 1) | | |
// row N | ++| |
// row (N + 1) |~~~~~~~~~~~~~~~~~++| /
// row (N + 2) |~~~~~~~~~~~~~~~~~++|/
// |-------------------|
// Copy 1: move down two rows and copy the last row on image 0, and expand to
// copySize.depthOrArrayLayers - 1 depth slices. Note that if we expand it to all depth
// slices, the last copy block will be row (N + 9) to row (N + 12). Row (N + 11) might
// be the last row of the entire buffer. Then row (N + 12) will be out-of-bound.
// _____________________
// / /|
// / / |
// |-------------------| |
// row (N + 1) | | |
// row (N + 2) | | |
// row (N + 3) | ++| /
// row (N + 4) |~~~~~~~~~~~~~~~~~~~|/
// |-------------------|
//
// copy 2: copy the last row of the last image.
// |-------------------|
// row (N + 11)| ++|
// |-------------------|
// Copy 0: copy copySize.height - 1 rows
TextureCopySubresource::CopyInfo& copy0 = copy.copies[i];
copy0.copySize.height = copySize.height - blockInfo.height;
copy0.bufferSize.height = rowsPerImage * blockInfo.height; // rowsPerImageInTexels
// Copy 1: move down 2 rows and copy the last row on image 0, and expand to all depth slices
// but the last one.
TextureCopySubresource::CopyInfo* copy1 = copy.AddCopy();
*copy1 = copy0;
copy1->alignedOffset += 2 * bytesPerRow;
copy1->textureOffset.y += copySize.height - blockInfo.height;
// Offset two rows from the copy height for the bufferOffset (See the figure above):
// - one for the row we advanced in the buffer: row (N + 4).
// - one for the last row we want to copy: row (N + 3) itself.
copy1->bufferOffset.y = copySize.height - 2 * blockInfo.height;
copy1->copySize.height = blockInfo.height;
copy1->copySize.depthOrArrayLayers--;
copy1->bufferSize.depthOrArrayLayers--;
// Copy 2: copy the last row of the last image.
uint64_t offsetForCopy0 =
OffsetToFirstCopiedTexel(blockInfo, bytesPerRow, copy0.alignedOffset, copy0.bufferOffset);
uint64_t offsetForLastRowOfLastImage =
offsetForCopy0 +
bytesPerRow * (copy0.copySize.height + rowsPerImage * (copySize.depthOrArrayLayers - 1));
uint64_t alignedOffsetForLastRowOfLastImage =
AlignDownForDataPlacement(offsetForLastRowOfLastImage);
Origin3D texelOffsetForLastRowOfLastImage = ComputeTexelOffsets(
blockInfo,
static_cast<uint32_t>(offsetForLastRowOfLastImage - alignedOffsetForLastRowOfLastImage),
bytesPerRow);
TextureCopySubresource::CopyInfo* copy2 = copy.AddCopy();
copy2->alignedOffset = alignedOffsetForLastRowOfLastImage;
copy2->textureOffset = copy1->textureOffset;
copy2->textureOffset.z = origin.z + copySize.depthOrArrayLayers - 1;
copy2->copySize = copy1->copySize;
copy2->copySize.depthOrArrayLayers = 1;
copy2->bufferOffset = texelOffsetForLastRowOfLastImage;
copy2->bufferSize.width = copy1->bufferSize.width;
DAWN_ASSERT(copy2->copySize.height == 1);
copy2->bufferSize.height = copy2->bufferOffset.y + copy2->copySize.height;
copy2->bufferSize.depthOrArrayLayers = 1;
}
void Recompute3DTextureCopyRegionWithEmptyFirstRowAndOddCopyHeight(Extent3D copySize,
uint32_t bytesPerRow,
TextureCopySubresource& copy,
uint32_t i) {
// Read the comments of Recompute3DTextureCopyRegionWithEmptyFirstRowAndEvenCopyHeight() for
// the reason why it is incorrect if we simply extend the copy region to all depth slices
// when there is an empty first row at the copy region.
//
// If the copy height is odd, we can use two copies to make it correct:
// - copy 0: only copy the first depth slice. Keep other arguments the same.
// - copy 1: copy all rest depth slices because it will start without an empty row if
// copy height is odd. Odd height + one (empty row) is even. An even row number times
// bytesPerRow (256) will be aligned to D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT (512)
// Copy 0: copy the first depth slice (image 0)
TextureCopySubresource::CopyInfo& copy0 = copy.copies[i];
copy0.copySize.depthOrArrayLayers = 1;
copy0.bufferSize.depthOrArrayLayers = 1;
// Copy 1: copy the rest depth slices in one shot
TextureCopySubresource::CopyInfo* copy1 = copy.AddCopy();
*copy1 = copy0;
DAWN_ASSERT(copySize.height % 2 == 1);
copy1->alignedOffset += (copySize.height + 1) * bytesPerRow;
DAWN_ASSERT(copy1->alignedOffset % D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT == 0);
// textureOffset.z should add one because the first slice has already been copied in copy0.
copy1->textureOffset.z++;
// bufferOffset.y should be 0 because we skipped the first depth slice and there is no empty
// row in this copy region.
copy1->bufferOffset.y = 0;
copy1->copySize.height = copySize.height;
copy1->copySize.depthOrArrayLayers = copySize.depthOrArrayLayers - 1;
copy1->bufferSize.height = copySize.height;
copy1->bufferSize.depthOrArrayLayers = copySize.depthOrArrayLayers - 1;
}
TextureCopySubresource Compute3DTextureCopySplits(Origin3D origin,
Extent3D copySize,
const TexelBlockInfo& blockInfo,
uint64_t offset,
uint32_t bytesPerRow,
uint32_t rowsPerImage) {
// To compute the copy region(s) for 3D textures, we call Compute2DTextureCopySubresource
// and get copy region(s) for the first slice of the copy, then extend to all depth slices
// and become a 3D copy. However, this doesn't work as easily as that due to some corner
// cases.
//
// For example, if bufferSize.height is greater than rowsPerImage in the generated copy
// region and we simply extend the 2D copy region to all copied depth slices, copied data
// will be incorrectly offset for each depth slice except the first one.
//
// For these special cases, we need to recompute the copy regions for 3D textures via
// split the incorrect copy region to a couple more copy regions.
// Call Compute2DTextureCopySubresource and get copy regions. This function has already
// forwarded "copySize.depthOrArrayLayers" to all depth slices.
TextureCopySubresource copySubresource =
Compute2DTextureCopySubresource(origin, copySize, blockInfo, offset, bytesPerRow);
DAWN_ASSERT(copySubresource.count <= 2);
// If copySize.depth is 1, we can return copySubresource. Because we don't need to extend
// the copy region(s) to other depth slice(s).
if (copySize.depthOrArrayLayers == 1) {
return copySubresource;
}
uint32_t rowsPerImageInTexels = rowsPerImage * blockInfo.height;
// The copy region(s) generated by Compute2DTextureCopySubresource might be incorrect.
// However, we may append a couple more copy regions in the for loop below. We don't need
// to revise these new added copy regions.
uint32_t originalCopyCount = copySubresource.count;
for (uint32_t i = 0; i < originalCopyCount; ++i) {
// There can be one empty row at most in a copy region.
DAWN_ASSERT(copySubresource.copies[i].bufferSize.height <=
rowsPerImageInTexels + blockInfo.height);
Extent3D& bufferSize = copySubresource.copies[i].bufferSize;
if (bufferSize.height == rowsPerImageInTexels) {
// If the copy region's bufferSize.height equals to rowsPerImageInTexels, we can use
// this copy region without any modification.
continue;
}
if (bufferSize.height < rowsPerImageInTexels) {
// If we are copying multiple depth slices, we should skip rowsPerImageInTexels rows
// for each slice even though we only copy partial rows in each slice sometimes.
bufferSize.height = rowsPerImageInTexels;
} else {
// bufferSize.height > rowsPerImageInTexels. There is an empty row in this copy
// region due to alignment adjustment.
// bytesPerRow is definitely 256, and it is definitely a full copy on height.
// Otherwise, bufferSize.height wount be greater than rowsPerImageInTexels and
// there won't be an empty row at the beginning of this copy region.
DAWN_ASSERT(bytesPerRow == D3D12_TEXTURE_DATA_PITCH_ALIGNMENT);
DAWN_ASSERT(copySize.height == rowsPerImageInTexels);
if (copySize.height % 2 == 0) {
// If copySize.height is even and there is an empty row at the beginning of the
// first slice of the copy region, the offset of all depth slices will never be
// aligned to D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT (512) and there is always
// an empty row at each depth slice. We need a totally different approach to
// split the copy region.
Recompute3DTextureCopyRegionWithEmptyFirstRowAndEvenCopyHeight(
origin, copySize, blockInfo, bytesPerRow, rowsPerImage, copySubresource, i);
} else {
// If copySize.height is odd and there is an empty row at the beginning of the
// first slice of the copy region, we can split the copy region into two copies:
// copy0 to copy the first slice, copy1 to copy the rest slices because the
// offset of slice 1 is aligned to D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT (512)
// without an empty row. This is an easier case relative to cases with even copy
// height.
Recompute3DTextureCopyRegionWithEmptyFirstRowAndOddCopyHeight(copySize, bytesPerRow,
copySubresource, i);
}
}
}
return copySubresource;
}
} // namespace dawn::native::d3d12