| // Copyright 2019 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <limits> |
| #include <string> |
| #include <vector> |
| |
| #include "dawn/common/Assert.h" |
| #include "dawn/common/Math.h" |
| #include "dawn/tests/DawnTest.h" |
| #include "dawn/utils/ComboRenderPipelineDescriptor.h" |
| #include "dawn/utils/WGPUHelpers.h" |
| |
| namespace dawn { |
| namespace { |
| |
| // Vertex format tests all work the same way: the test will render a triangle. |
| // Each test will set up a vertex buffer, and the vertex shader will check that |
| // the vertex content is the same as what we expected. On success it outputs green, |
| // otherwise red. |
| |
| constexpr uint32_t kRTSize = 1; |
| constexpr uint32_t kVertexNum = 3; |
| |
| std::vector<uint16_t> Float32ToFloat16(std::vector<float> data) { |
| std::vector<uint16_t> expectedData; |
| for (auto& element : data) { |
| expectedData.push_back(dawn::Float32ToFloat16(element)); |
| } |
| return expectedData; |
| } |
| |
| template <typename destType, typename srcType> |
| std::vector<destType> BitCast(std::vector<srcType> data) { |
| std::vector<destType> expectedData; |
| for (auto& element : data) { |
| expectedData.push_back(BitCast(element)); |
| } |
| return expectedData; |
| } |
| |
| class VertexFormatTest : public DawnTest { |
| protected: |
| void SetUp() override { |
| DawnTest::SetUp(); |
| renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize); |
| } |
| |
| utils::BasicRenderPass renderPass; |
| |
| bool IsNormalizedFormat(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Unorm8x2: |
| case wgpu::VertexFormat::Unorm8x4: |
| case wgpu::VertexFormat::Snorm8x2: |
| case wgpu::VertexFormat::Snorm8x4: |
| case wgpu::VertexFormat::Unorm16x2: |
| case wgpu::VertexFormat::Unorm16x4: |
| case wgpu::VertexFormat::Snorm16x2: |
| case wgpu::VertexFormat::Snorm16x4: |
| case wgpu::VertexFormat::Unorm10_10_10_2: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| uint32_t NormalizationFactor(wgpu::VertexFormat format, uint32_t component) { |
| switch (format) { |
| case wgpu::VertexFormat::Unorm8x2: |
| case wgpu::VertexFormat::Unorm8x4: |
| return 255; |
| case wgpu::VertexFormat::Snorm8x2: |
| case wgpu::VertexFormat::Snorm8x4: |
| return 127; |
| case wgpu::VertexFormat::Unorm16x2: |
| case wgpu::VertexFormat::Unorm16x4: |
| return 65535; |
| case wgpu::VertexFormat::Snorm16x2: |
| case wgpu::VertexFormat::Snorm16x4: |
| return 32767; |
| case wgpu::VertexFormat::Unorm10_10_10_2: |
| return (component == 3) ? 3 : 1023; |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| } |
| |
| bool IsUnsignedFormat(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Uint32: |
| case wgpu::VertexFormat::Uint8x2: |
| case wgpu::VertexFormat::Uint8x4: |
| case wgpu::VertexFormat::Uint16x2: |
| case wgpu::VertexFormat::Uint16x4: |
| case wgpu::VertexFormat::Uint32x2: |
| case wgpu::VertexFormat::Uint32x3: |
| case wgpu::VertexFormat::Uint32x4: |
| case wgpu::VertexFormat::Unorm8x2: |
| case wgpu::VertexFormat::Unorm8x4: |
| case wgpu::VertexFormat::Unorm16x2: |
| case wgpu::VertexFormat::Unorm16x4: |
| case wgpu::VertexFormat::Unorm10_10_10_2: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool IsFloatFormat(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Float16x2: |
| case wgpu::VertexFormat::Float16x4: |
| case wgpu::VertexFormat::Float32: |
| case wgpu::VertexFormat::Float32x2: |
| case wgpu::VertexFormat::Float32x3: |
| case wgpu::VertexFormat::Float32x4: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool IsHalfFormat(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Float16x2: |
| case wgpu::VertexFormat::Float16x4: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| uint32_t ByteSize(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Sint8x2: |
| case wgpu::VertexFormat::Snorm8x2: |
| case wgpu::VertexFormat::Uint8x2: |
| case wgpu::VertexFormat::Unorm8x2: |
| return 2; |
| case wgpu::VertexFormat::Float16x2: |
| case wgpu::VertexFormat::Float32: |
| case wgpu::VertexFormat::Unorm10_10_10_2: |
| case wgpu::VertexFormat::Sint16x2: |
| case wgpu::VertexFormat::Sint32: |
| case wgpu::VertexFormat::Sint8x4: |
| case wgpu::VertexFormat::Snorm16x2: |
| case wgpu::VertexFormat::Snorm8x4: |
| case wgpu::VertexFormat::Uint16x2: |
| case wgpu::VertexFormat::Uint32: |
| case wgpu::VertexFormat::Uint8x4: |
| case wgpu::VertexFormat::Unorm16x2: |
| case wgpu::VertexFormat::Unorm8x4: |
| return 4; |
| case wgpu::VertexFormat::Float16x4: |
| case wgpu::VertexFormat::Float32x2: |
| case wgpu::VertexFormat::Sint16x4: |
| case wgpu::VertexFormat::Sint32x2: |
| case wgpu::VertexFormat::Snorm16x4: |
| case wgpu::VertexFormat::Uint16x4: |
| case wgpu::VertexFormat::Uint32x2: |
| case wgpu::VertexFormat::Unorm16x4: |
| return 8; |
| case wgpu::VertexFormat::Float32x3: |
| case wgpu::VertexFormat::Sint32x3: |
| case wgpu::VertexFormat::Uint32x3: |
| return 12; |
| case wgpu::VertexFormat::Float32x4: |
| case wgpu::VertexFormat::Sint32x4: |
| case wgpu::VertexFormat::Uint32x4: |
| return 16; |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| } |
| |
| uint32_t ComponentCount(wgpu::VertexFormat format) { |
| switch (format) { |
| case wgpu::VertexFormat::Float32: |
| case wgpu::VertexFormat::Uint32: |
| case wgpu::VertexFormat::Sint32: |
| return 1; |
| case wgpu::VertexFormat::Uint8x2: |
| case wgpu::VertexFormat::Sint8x2: |
| case wgpu::VertexFormat::Unorm8x2: |
| case wgpu::VertexFormat::Snorm8x2: |
| case wgpu::VertexFormat::Uint16x2: |
| case wgpu::VertexFormat::Sint16x2: |
| case wgpu::VertexFormat::Unorm16x2: |
| case wgpu::VertexFormat::Snorm16x2: |
| case wgpu::VertexFormat::Float16x2: |
| case wgpu::VertexFormat::Float32x2: |
| case wgpu::VertexFormat::Uint32x2: |
| case wgpu::VertexFormat::Sint32x2: |
| return 2; |
| case wgpu::VertexFormat::Float32x3: |
| case wgpu::VertexFormat::Uint32x3: |
| case wgpu::VertexFormat::Sint32x3: |
| return 3; |
| case wgpu::VertexFormat::Uint8x4: |
| case wgpu::VertexFormat::Sint8x4: |
| case wgpu::VertexFormat::Unorm8x4: |
| case wgpu::VertexFormat::Snorm8x4: |
| case wgpu::VertexFormat::Uint16x4: |
| case wgpu::VertexFormat::Sint16x4: |
| case wgpu::VertexFormat::Unorm16x4: |
| case wgpu::VertexFormat::Snorm16x4: |
| case wgpu::VertexFormat::Float16x4: |
| case wgpu::VertexFormat::Float32x4: |
| case wgpu::VertexFormat::Uint32x4: |
| case wgpu::VertexFormat::Sint32x4: |
| case wgpu::VertexFormat::Unorm10_10_10_2: |
| return 4; |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| } |
| |
| std::string ShaderTypeGenerator(bool isFloat, |
| bool isNormalized, |
| bool isUnsigned, |
| uint32_t componentCount) { |
| std::string base; |
| if (isFloat || isNormalized) { |
| base = "f32"; |
| } else if (isUnsigned) { |
| base = "u32"; |
| } else { |
| base = "i32"; |
| } |
| |
| if (componentCount == 1) { |
| return base; |
| } |
| |
| return "vec" + std::to_string(componentCount) + "<" + base + ">"; |
| } |
| |
| // The length of vertexData is fixed to 3, it aligns to triangle vertex number |
| template <typename T> |
| wgpu::RenderPipeline MakeTestPipeline(wgpu::VertexFormat format, std::vector<T>& expectedData) { |
| bool isFloat = IsFloatFormat(format); |
| bool isNormalized = IsNormalizedFormat(format); |
| bool isUnsigned = IsUnsignedFormat(format); |
| bool isInputTypeFloat = isFloat || isNormalized; |
| bool isHalf = IsHalfFormat(format); |
| const uint16_t kNegativeZeroInHalf = 0x8000; |
| |
| uint32_t componentCount = ComponentCount(format); |
| |
| std::string variableType = |
| ShaderTypeGenerator(isFloat, isNormalized, isUnsigned, componentCount); |
| std::string expectedDataType = ShaderTypeGenerator(isFloat, isNormalized, isUnsigned, 1); |
| |
| std::ostringstream vs; |
| vs << "struct VertexIn {\n"; |
| vs << " @location(0) test : " << variableType << ",\n"; |
| vs << " @builtin(vertex_index) VertexIndex : u32,\n"; |
| vs << "}\n"; |
| |
| // These functions map a 32-bit scalar value to its bits in u32, except |
| // that the negative zero floating point value is remapped to u32(0), |
| // which is also the bit representation for +0.0. |
| // This is necessary because of the simple way we compute ULP. |
| // Negative zero *equals* zero, so treat it as having the same bit |
| // representation. |
| vs << R"( |
| fn rectify_u32(a: u32) -> u32 { return a; } |
| fn rectify_i32(a: i32) -> u32 { return bitcast<u32>(a); } |
| fn rectify_f32(a: f32) -> u32 { |
| const negative_zero_bits = 1u << 31u; |
| let b = bitcast<u32>(a); |
| return select(b, 0u, b == negative_zero_bits); |
| } |
| )"; |
| |
| // Because x86 CPU using "extended |
| // precision"(https://en.wikipedia.org/wiki/Extended_precision) during float |
| // math(https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf), |
| // move normalization and Float16ToFloat32 into shader to generate |
| // expected value. |
| vs << R"( |
| fn Float16ToFloat32(fp16 : u32) -> f32 { |
| let magic : u32 = (254u - 15u) << 23u; |
| let was_inf_nan : u32 = (127u + 16u) << 23u; |
| var fp32u : u32 = (fp16 & 0x7FFFu) << 13u; |
| let fp32 : f32 = bitcast<f32>(fp32u) * bitcast<f32>(magic); |
| fp32u = bitcast<u32>(fp32); |
| if (fp32 >= bitcast<f32>(was_inf_nan)) { |
| fp32u = fp32u | (255u << 23u); |
| } |
| fp32u = fp32u | ((fp16 & 0x8000u) << 16u); |
| return bitcast<f32>(fp32u); |
| } |
| |
| // NaN definition in IEEE 754-1985 is : |
| // - sign = either 0 or 1. |
| // - biased exponent = all 1 bits. |
| // - fraction = anything except all 0 bits (since all 0 bits represents infinity). |
| // https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers |
| fn isNaNCustom(val: f32) -> bool { |
| let floatToUint: u32 = bitcast<u32>(val); |
| return (floatToUint & 0x7fffffffu) > 0x7f800000u; |
| } |
| |
| struct VertexOut { |
| @location(0) color : vec4f, |
| @builtin(position) position : vec4f, |
| } |
| |
| @vertex |
| fn main(input : VertexIn) -> VertexOut { |
| var pos = array( |
| vec2f(-1.0, -1.0), |
| vec2f( 2.0, 0.0), |
| vec2f( 0.0, 2.0)); |
| var output : VertexOut; |
| output.position = vec4f(pos[input.VertexIndex], 0.0, 1.0); |
| )"; |
| |
| // Declare expected values. |
| vs << "var expected : array<array<" << expectedDataType << ", " |
| << std::to_string(componentCount) << ">, " << std::to_string(kVertexNum) << ">;\n"; |
| // Assign each elements in expected values |
| // e.g. expected[0][0] = u32(1u); |
| // expected[0][1] = u32(2u); |
| for (uint32_t i = 0; i < kVertexNum; ++i) { |
| for (uint32_t j = 0; j < componentCount; ++j) { |
| vs << " expected[" + std::to_string(i) + "][" + std::to_string(j) + "] = " |
| << expectedDataType << "("; |
| if (isInputTypeFloat && |
| std::isnan(static_cast<float>(expectedData[i * componentCount + j]))) { |
| // Set NaN. |
| vs << "0.0 / 0.0);\n"; |
| } else if (isNormalized) { |
| // Move normalize operation into shader because of CPU and GPU precision |
| // different on float math. |
| vs << "max(f32(" << std::to_string(expectedData[i * componentCount + j]) |
| << ") / " << std::to_string(NormalizationFactor(format, j)) << ", -1.0));\n"; |
| } else if (isHalf) { |
| // Because Vulkan and D3D12 handle -0.0f through bitcast have different |
| // result (Vulkan take -0.0f as -0.0 but D3D12 take -0.0f as 0), add workaround |
| // for -0.0f. |
| // TODO(dawn:1566) Since rectify_32 will be used, we might |
| // not need this. |
| if (static_cast<uint16_t>(expectedData[i * componentCount + j]) == |
| kNegativeZeroInHalf) { |
| vs << "-0.0);\n"; |
| } else { |
| vs << "Float16ToFloat32(u32(" |
| << std::to_string(expectedData[i * componentCount + j]) << ")));\n"; |
| } |
| } else if (isUnsigned) { |
| vs << std::to_string(expectedData[i * componentCount + j]) << "u);\n"; |
| } else { |
| vs << std::to_string(expectedData[i * componentCount + j]) << ");\n"; |
| } |
| } |
| } |
| |
| vs << " var success : bool = true;\n"; |
| // Perform the checks by successively ANDing a boolean |
| for (uint32_t component = 0; component < componentCount; ++component) { |
| std::string suffix = componentCount == 1 ? "" : "[" + std::to_string(component) + "]"; |
| std::string testVal = "testVal" + std::to_string(component); |
| std::string expectedVal = "expectedVal" + std::to_string(component); |
| vs << " var " << testVal << " : " << expectedDataType << ";\n"; |
| vs << " var " << expectedVal << " : " << expectedDataType << ";\n"; |
| vs << " " << testVal << " = input.test" << suffix << ";\n"; |
| vs << " " << expectedVal << " = expected[input.VertexIndex]" |
| << "[" << component << "];\n"; |
| if (!isInputTypeFloat) { // Integer / unsigned integer need to match exactly. |
| vs << " success = success && (" << testVal << " == " << expectedVal << ");\n"; |
| } else { |
| vs << " success = success && (isNaNCustom(" << expectedVal << ") == isNaNCustom(" |
| << testVal << "));\n"; |
| vs << " if (!isNaNCustom(" << expectedVal << ")) {\n"; |
| // TODO(shaobo.yan@intel.com) : a difference of 8 ULPs is allowed in this test |
| // because it is required on MacbookPro 11.5,AMD Radeon HD 8870M(on macOS 10.13.6), |
| // but that it might be possible to tighten. |
| vs << " let testValFloatToUint : u32 = rectify_" << expectedDataType << "(" |
| << testVal << ");\n"; |
| vs << " let expectedValFloatToUint : u32 = rectify_" << expectedDataType |
| << "(" << expectedVal << ");\n"; |
| vs << " success = success && max(testValFloatToUint, " |
| "expectedValFloatToUint)"; |
| vs << " - min(testValFloatToUint, expectedValFloatToUint) < 8u;\n"; |
| vs << " }\n"; |
| } |
| } |
| vs << R"( |
| if (success) { |
| output.color = vec4f(0.0, 1.0, 0.0, 1.0); |
| } else { |
| output.color = vec4f(1.0, 0.0, 0.0, 1.0); |
| } |
| return output; |
| })"; |
| |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vs.str().c_str()); |
| wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( |
| @fragment |
| fn main(@location(0) color : vec4f) -> @location(0) vec4f { |
| return color; |
| })"); |
| |
| uint32_t strideBytes = Align(ByteSize(format), 4); |
| |
| utils::ComboRenderPipelineDescriptor descriptor; |
| descriptor.vertex.module = vsModule; |
| descriptor.cFragment.module = fsModule; |
| descriptor.vertex.bufferCount = 1; |
| descriptor.cBuffers[0].arrayStride = strideBytes; |
| descriptor.cBuffers[0].attributeCount = 1; |
| descriptor.cAttributes[0].format = format; |
| descriptor.cTargets[0].format = renderPass.colorFormat; |
| |
| return device.CreateRenderPipeline(&descriptor); |
| } |
| |
| template <typename VertexType, typename ExpectedType> |
| void DoVertexFormatTest(wgpu::VertexFormat format, |
| std::vector<VertexType> vertex, |
| std::vector<ExpectedType> expectedData) { |
| wgpu::RenderPipeline pipeline = MakeTestPipeline(format, expectedData); |
| wgpu::Buffer vertexBuffer = utils::CreateBufferFromData( |
| device, vertex.data(), vertex.size() * sizeof(VertexType), wgpu::BufferUsage::Vertex); |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| { |
| wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass.SetPipeline(pipeline); |
| pass.SetVertexBuffer(0, vertexBuffer); |
| pass.Draw(3); |
| pass.End(); |
| } |
| |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kGreen, renderPass.color, 0, 0); |
| } |
| }; |
| |
| TEST_P(VertexFormatTest, Uint8x2) { |
| std::vector<uint8_t> vertexData = { |
| std::numeric_limits<uint8_t>::max(), |
| 0, |
| 0, // padding two bytes for stride |
| 0, |
| std::numeric_limits<uint8_t>::min(), |
| 2, |
| 0, |
| 0, // padding two bytes for stride |
| 200, |
| 201, |
| 0, |
| 0 // padding two bytes for buffer copy |
| }; |
| |
| std::vector<uint8_t> expectedData = { |
| std::numeric_limits<uint8_t>::max(), 0, std::numeric_limits<uint8_t>::min(), 2, 200, 201, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint8x2, vertexData, expectedData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint8x4) { |
| std::vector<uint8_t> vertexData = { |
| std::numeric_limits<uint8_t>::max(), |
| 0, |
| 1, |
| 2, |
| std::numeric_limits<uint8_t>::min(), |
| 2, |
| 3, |
| 4, |
| 200, |
| 201, |
| 202, |
| 203, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint8x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint8x2) { |
| std::vector<int8_t> vertexData = { |
| std::numeric_limits<int8_t>::max(), |
| 0, |
| 0, // padding two bytes for stride |
| 0, |
| std::numeric_limits<int8_t>::min(), |
| -2, |
| 0, // padding two bytes for stride |
| 0, |
| 120, |
| -121, |
| 0, |
| 0 // padding two bytes for buffer copy |
| }; |
| |
| std::vector<int8_t> expectedData = { |
| std::numeric_limits<int8_t>::max(), 0, std::numeric_limits<int8_t>::min(), -2, 120, -121, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint8x2, vertexData, expectedData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint8x4) { |
| std::vector<int8_t> vertexData = { |
| std::numeric_limits<int8_t>::max(), |
| 0, |
| -1, |
| 2, |
| std::numeric_limits<int8_t>::min(), |
| -2, |
| 3, |
| 4, |
| 120, |
| -121, |
| 122, |
| -123, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint8x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Unorm8x2) { |
| std::vector<uint8_t> vertexData = { |
| std::numeric_limits<uint8_t>::max(), |
| std::numeric_limits<uint8_t>::min(), |
| 0, // padding two bytes for stride |
| 0, |
| std::numeric_limits<uint8_t>::max() / 2u, |
| std::numeric_limits<uint8_t>::min() / 2u, |
| 0, // padding two bytes for stride |
| 0, |
| 200, |
| 201, |
| 0, |
| 0 // padding two bytes for buffer copy |
| }; |
| |
| std::vector<uint8_t> expectedData = {std::numeric_limits<uint8_t>::max(), |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max() / 2u, |
| std::numeric_limits<uint8_t>::min() / 2u, |
| 200, |
| 201}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Unorm8x2, vertexData, expectedData); |
| } |
| |
| TEST_P(VertexFormatTest, Unorm8x4) { |
| std::vector<uint8_t> vertexData = {std::numeric_limits<uint8_t>::max(), |
| std::numeric_limits<uint8_t>::min(), |
| 0, |
| 0, |
| std::numeric_limits<uint8_t>::max() / 2u, |
| std::numeric_limits<uint8_t>::min() / 2u, |
| 0, |
| 0, |
| 200, |
| 201, |
| 202, |
| 203}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Unorm8x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Snorm8x2) { |
| std::vector<int8_t> vertexData = { |
| std::numeric_limits<int8_t>::max(), |
| std::numeric_limits<int8_t>::min(), |
| 0, // padding two bytes for stride |
| 0, |
| std::numeric_limits<int8_t>::max() / 2, |
| std::numeric_limits<int8_t>::min() / 2, |
| 0, // padding two bytes for stride |
| 0, |
| 120, |
| -121, |
| 0, |
| 0 // padding two bytes for buffer copy |
| }; |
| |
| std::vector<int8_t> expectedData = { |
| std::numeric_limits<int8_t>::max(), |
| std::numeric_limits<int8_t>::min(), |
| std::numeric_limits<int8_t>::max() / 2, |
| std::numeric_limits<int8_t>::min() / 2, |
| 120, |
| -121, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Snorm8x2, vertexData, expectedData); |
| } |
| |
| TEST_P(VertexFormatTest, Snorm8x4) { |
| std::vector<int8_t> vertexData = {std::numeric_limits<int8_t>::max(), |
| std::numeric_limits<int8_t>::min(), |
| 0, |
| 0, |
| std::numeric_limits<int8_t>::max() / 2, |
| std::numeric_limits<int8_t>::min() / 2, |
| -2, |
| 2, |
| 120, |
| -120, |
| 102, |
| -123}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Snorm8x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint16x2) { |
| std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(), |
| 0, |
| std::numeric_limits<uint16_t>::min(), |
| 2, |
| 65432, |
| 4890}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint16x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint16x4) { |
| std::vector<uint16_t> vertexData = { |
| std::numeric_limits<uint16_t>::max(), |
| std::numeric_limits<uint8_t>::max(), |
| 1, |
| 2, |
| std::numeric_limits<uint16_t>::min(), |
| 2, |
| 3, |
| 4, |
| 65520, |
| 65521, |
| 3435, |
| 3467, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint16x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint16x2) { |
| std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(), |
| 0, |
| std::numeric_limits<int16_t>::min(), |
| -2, |
| 3876, |
| -3948}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint16x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint16x4) { |
| std::vector<int16_t> vertexData = { |
| std::numeric_limits<int16_t>::max(), |
| 0, |
| -1, |
| 2, |
| std::numeric_limits<int16_t>::min(), |
| -2, |
| 3, |
| 4, |
| 24567, |
| -23545, |
| 4350, |
| -2987, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint16x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Unorm16x2) { |
| std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(), |
| std::numeric_limits<uint16_t>::min(), |
| std::numeric_limits<uint16_t>::max() / 2u, |
| std::numeric_limits<uint16_t>::min() / 2u, |
| 3456, |
| 6543}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Unorm16x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Unorm16x4) { |
| std::vector<uint16_t> vertexData = {std::numeric_limits<uint16_t>::max(), |
| std::numeric_limits<uint16_t>::min(), |
| 0, |
| 0, |
| std::numeric_limits<uint16_t>::max() / 2u, |
| std::numeric_limits<uint16_t>::min() / 2u, |
| 0, |
| 0, |
| 2987, |
| 3055, |
| 2987, |
| 2987}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Unorm16x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Snorm16x2) { |
| std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(), |
| std::numeric_limits<int16_t>::min(), |
| std::numeric_limits<int16_t>::max() / 2, |
| std::numeric_limits<int16_t>::min() / 2, |
| 4987, |
| -6789}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Snorm16x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Snorm16x4) { |
| std::vector<int16_t> vertexData = {std::numeric_limits<int16_t>::max(), |
| std::numeric_limits<int16_t>::min(), |
| 0, |
| 0, |
| std::numeric_limits<int16_t>::max() / 2, |
| std::numeric_limits<int16_t>::min() / 2, |
| -2, |
| 2, |
| 2890, |
| -29011, |
| 20432, |
| -2083}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Snorm16x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float16x2) { |
| // Fails on NVIDIA's Vulkan drivers on CQ but passes locally. |
| // TODO(dawn:1566) Might pass when using rectify_f32? |
| DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia()); |
| |
| std::vector<uint16_t> vertexData = |
| Float32ToFloat16(std::vector<float>({14.8f, -0.0f, 22.5f, 1.3f, +0.0f, -24.8f})); |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float16x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float16x4) { |
| // Fails on NVIDIA's Vulkan drivers on CQ but passes locally. |
| // TODO(dawn:1566) Might pass when using rectify_f32? |
| DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia()); |
| |
| std::vector<uint16_t> vertexData = Float32ToFloat16(std::vector<float>( |
| {+0.0f, -16.8f, 18.2f, -0.0f, 12.5f, 1.3f, 14.8f, -12.4f, 22.5f, -48.8f, 47.4f, -24.8f})); |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float16x4, vertexData, vertexData); |
| } |
| TEST_P(VertexFormatTest, Float32_Zeros) { |
| std::vector<float> vertexData = {1.3f, +0.0f, -0.0f}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float32, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float32_Plain) { |
| std::vector<float> vertexData = {+1.0f, -1.0f, 18.23f}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float32, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float32x2) { |
| // Fails on NVIDIA's Vulkan drivers on CQ but passes locally. |
| // TODO(dawn:1566) This might pass now that we use rectify_f32? |
| DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia()); |
| |
| std::vector<float> vertexData = {18.23f, -0.0f, +0.0f, +1.0f, 1.3f, -1.0f}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float32x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float32x3) { |
| // Fails on NVIDIA's Vulkan drivers on CQ but passes locally. |
| // TODO(dawn:1566) This might pass now that we use rectify_f32? |
| DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia()); |
| |
| std::vector<float> vertexData = { |
| +0.0f, -1.0f, -0.0f, 1.0f, 1.3f, 99.45f, 23.6f, -81.2f, 55.0f, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float32x3, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Float32x4) { |
| std::vector<float> vertexData = { |
| 19.2f, -19.3f, +0.0f, 1.0f, -0.0f, 1.0f, 1.3f, -1.0f, 13.078f, 21.1965f, -1.1f, -1.2f, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Float32x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint32) { |
| std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), |
| std::numeric_limits<uint16_t>::max(), |
| std::numeric_limits<uint8_t>::max()}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint32, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint32x2) { |
| std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32, |
| std::numeric_limits<uint16_t>::max(), 64, |
| std::numeric_limits<uint8_t>::max(), 128}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint32x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint32x3) { |
| std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32, 64, |
| std::numeric_limits<uint16_t>::max(), 164, 128, |
| std::numeric_limits<uint8_t>::max(), 1283, 256}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint32x3, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Uint32x4) { |
| std::vector<uint32_t> vertexData = {std::numeric_limits<uint32_t>::max(), 32, 64, 5460, |
| std::numeric_limits<uint16_t>::max(), 164, 128, 0, |
| std::numeric_limits<uint8_t>::max(), 1283, 256, 4567}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Uint32x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint32) { |
| std::vector<int32_t> vertexData = {std::numeric_limits<int32_t>::max(), |
| std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int8_t>::max()}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint32, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint32x2) { |
| std::vector<int32_t> vertexData = { |
| std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(), |
| std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(), |
| std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min()}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint32x2, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint32x3) { |
| std::vector<int32_t> vertexData = { |
| std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(), 64, |
| std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(), 128, |
| std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min(), 256}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint32x3, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Sint32x4) { |
| std::vector<int32_t> vertexData = { |
| std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::min(), 64, -5460, |
| std::numeric_limits<int16_t>::max(), std::numeric_limits<int16_t>::min(), -128, 0, |
| std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::min(), 256, -4567}; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Sint32x4, vertexData, vertexData); |
| } |
| |
| TEST_P(VertexFormatTest, Unorm10_10_10_2) { |
| auto MakeRGB10A2 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t a) -> uint32_t { |
| DAWN_ASSERT((r & 0x3FF) == r); |
| DAWN_ASSERT((g & 0x3FF) == g); |
| DAWN_ASSERT((b & 0x3FF) == b); |
| DAWN_ASSERT((a & 0x3) == a); |
| return r | g << 10 | b << 20 | a << 30; |
| }; |
| |
| std::vector<uint32_t> vertexData = { |
| MakeRGB10A2(0, 0, 0, 0), |
| MakeRGB10A2(1023, 1023, 1023, 3), |
| MakeRGB10A2(243, 567, 765, 2), |
| }; |
| |
| std::vector<uint32_t> expectedData = { |
| 0, 0, 0, 0, // |
| 1023, 1023, 1023, 3, // |
| 243, 567, 765, 2, |
| }; |
| |
| DoVertexFormatTest(wgpu::VertexFormat::Unorm10_10_10_2, vertexData, expectedData); |
| } |
| |
| DAWN_INSTANTIATE_TEST(VertexFormatTest, |
| D3D11Backend(), |
| D3D12Backend(), |
| MetalBackend(), |
| OpenGLBackend(), |
| OpenGLESBackend(), |
| VulkanBackend()); |
| |
| } // anonymous namespace |
| } // namespace dawn |