| // Copyright 2022 The Dawn & Tint Authors | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // 1. Redistributions of source code must retain the above copyright notice, this | 
 | //    list of conditions and the following disclaimer. | 
 | // | 
 | // 2. Redistributions in binary form must reproduce the above copyright notice, | 
 | //    this list of conditions and the following disclaimer in the documentation | 
 | //    and/or other materials provided with the distribution. | 
 | // | 
 | // 3. Neither the name of the copyright holder nor the names of its | 
 | //    contributors may be used to endorse or promote products derived from | 
 | //    this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 | // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | 
 | // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 | // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
 | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | 
 | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
 | // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #ifndef SRC_TINT_UTILS_CONTAINERS_HASHMAP_BASE_H_ | 
 | #define SRC_TINT_UTILS_CONTAINERS_HASHMAP_BASE_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <optional> | 
 | #include <tuple> | 
 | #include <utility> | 
 |  | 
 | #include "src/tint/utils/containers/vector.h" | 
 | #include "src/tint/utils/ice/ice.h" | 
 | #include "src/tint/utils/math/hash.h" | 
 | #include "src/tint/utils/math/math.h" | 
 | #include "src/tint/utils/memory/aligned_storage.h" | 
 | #include "src/tint/utils/traits/traits.h" | 
 |  | 
 | namespace tint { | 
 |  | 
 | /// HashmapKey wraps the comparator type for a Hashmap and Hashset. | 
 | /// HashmapKey acts like a read-only `T`, but can be reassigned so long as the value is equivalent. | 
 | /// @tparam T the key comparator type. | 
 | /// @tparam HASH the hash function for the key type. | 
 | /// @tparam EQUAL the equality function for the key type. | 
 | template <typename T, typename HASH = Hasher<T>, typename EQUAL = std::equal_to<T>> | 
 | class HashmapKey { | 
 |     T value_; | 
 |  | 
 |   public: | 
 |     /// Key is an alias to this templated class. | 
 |     using Key = HashmapKey<T, HASH, EQUAL>; | 
 |     /// Hash is an alias to the hash function for the key type. | 
 |     using Hash = HASH; | 
 |     /// Equal is an alias to the equality function for the key type. | 
 |     using Equal = EQUAL; | 
 |  | 
 |     /// KeyOf() returns @p key, so a HashmapKey can be used as the entry type for a Hashset. | 
 |     /// @param key the HashmapKey | 
 |     /// @return @p key | 
 |     static const Key& KeyOf(const Key& key) { return key; } | 
 |  | 
 |     /// Constructor using copied value. | 
 |     /// @param value the key value. | 
 |     HashmapKey(const T& value) : value_(value), hash(HASH{}(value_)) {}  // NOLINT | 
 |  | 
 |     /// Constructor using moved value. | 
 |     /// @param value the key value. | 
 |     HashmapKey(T&& value) : value_(std::forward<T>(value)), hash(HASH{}(value_)) {}  // NOLINT | 
 |  | 
 |     /// Constructor using pre-computed hash and copied value. | 
 |     /// @param hash_ the precomputed hash of @p value | 
 |     /// @param value the key value | 
 |     HashmapKey(HashCode hash_, const T& value) : value_(value), hash(hash_) {} | 
 |  | 
 |     /// Constructor using pre-computed hash and moved value. | 
 |     /// @param hash_ the precomputed hash of @p value | 
 |     /// @param value the key value | 
 |     HashmapKey(HashCode hash_, T&& value) : value_(std::forward<T>(value)), hash(hash_) {} | 
 |  | 
 |     /// Copy constructor | 
 |     HashmapKey(const HashmapKey&) = default; | 
 |  | 
 |     /// Move constructor | 
 |     HashmapKey(HashmapKey&&) = default; | 
 |  | 
 |     /// Destructor | 
 |     ~HashmapKey() = default; | 
 |  | 
 |     /// Copy-assignment operator. | 
 |     /// @note As a hashmap uses the HashmapKey for indexing, the new value *must* have the same hash | 
 |     /// value and be equal to this key. | 
 |     /// @param other the key to copy to this key. | 
 |     /// @return this HashmapKey. | 
 |     HashmapKey& operator=(const HashmapKey& other) { | 
 |         TINT_ASSERT(*this == other); | 
 |         value_ = other.Value(); | 
 |         return *this; | 
 |     } | 
 |  | 
 |     /// Move-assignment operator. | 
 |     /// @note As a hashmap uses the HashmapKey for indexing, the new value *must* have the same hash | 
 |     /// value and be equal to this key. | 
 |     /// @param other the key to move to this key. | 
 |     /// @return this HashmapKey. | 
 |     HashmapKey& operator=(HashmapKey&& other) { | 
 |         TINT_ASSERT(*this == other); | 
 |         value_ = std::move(other.Value()); | 
 |         return *this; | 
 |     } | 
 |  | 
 |     /// Equality operator | 
 |     /// @param other the other key. | 
 |     /// @return true if the hash and value of @p other are equal to this key. | 
 |     bool operator==(const HashmapKey& other) const { | 
 |         return hash == other.hash && EQUAL{}(value_, other.Value()); | 
 |     } | 
 |  | 
 |     /// Equality operator | 
 |     /// @param other the other key. | 
 |     /// @return true if the hash of other and value of @p other are equal to this key. | 
 |     template <typename RHS> | 
 |     bool operator==(const RHS& other) const { | 
 |         return hash == HASH{}(other) && EQUAL{}(value_, other); | 
 |     } | 
 |  | 
 |     /// @returns the value of the key | 
 |     const T& Value() const { return value_; } | 
 |  | 
 |     /// @returns the value of the key | 
 |     operator const T&() const { return value_; } | 
 |  | 
 |     /// @returns the pointer to the value, or the value itself if T is a pointer. | 
 |     auto operator->() const { | 
 |         if constexpr (std::is_pointer_v<T>) { | 
 |             // operator-> is useless if the T is a pointer, so automatically unwrap a pointer. | 
 |             return value_; | 
 |         } else { | 
 |             return &value_; | 
 |         } | 
 |     } | 
 |  | 
 |     /// The hash of value | 
 |     const HashCode hash; | 
 | }; | 
 |  | 
 | /// Writes the HashmapKey to the stream. | 
 | /// @param out the stream to write to | 
 | /// @param key the HashmapKey to write | 
 | /// @returns out so calls can be chained | 
 | template <typename STREAM, typename T, typename = traits::EnableIfIsOStream<STREAM>> | 
 | auto& operator<<(STREAM& out, const HashmapKey<T>& key) { | 
 |     if constexpr (traits::HasOperatorShiftLeft<STREAM, T>) { | 
 |         return out << key.Value(); | 
 |     } else { | 
 |         return out << "<hashmap-key>"; | 
 |     } | 
 | } | 
 |  | 
 | /// HashmapBase is the base class for Hashmap and Hashset. | 
 | /// @tparam ENTRY is the single record in the map. The entry type must alias 'Key' to the HashmapKey | 
 | /// type, and implement the method `static HashmapKey<...> KeyOf(ENTRY)` to return the key for the | 
 | /// entry. | 
 | template <typename ENTRY, size_t N> | 
 | class HashmapBase { | 
 |   protected: | 
 |     struct Node; | 
 |     struct Slot; | 
 |  | 
 |   public: | 
 |     /// Entry is the type of a single record in the hashmap. | 
 |     using Entry = ENTRY; | 
 |     /// Key is the HashmapKey type used to find entries. | 
 |     using Key = typename Entry::Key; | 
 |     /// Hash is the | 
 |     using Hash = typename Key::Hash; | 
 |     /// Equal is the | 
 |     using Equal = typename Key::Equal; | 
 |  | 
 |     /// The minimum capacity of the map. | 
 |     static constexpr size_t kMinCapacity = std::max<size_t>(N, 8); | 
 |  | 
 |     /// The target number of slots, expressed as a fractional percentage of the map capacity. | 
 |     /// e.g. a kLoadFactor of 75, would mean a target slots count of (0.75 * capacity). | 
 |     static constexpr size_t kLoadFactor = 75; | 
 |  | 
 |     /// @param capacity the capacity of the map, as total number of entries. | 
 |     /// @returns the target slot vector size to hold @p capacity map entries. | 
 |     static constexpr size_t NumSlots(size_t capacity) { | 
 |         return (std::max<size_t>(capacity, kMinCapacity) * kLoadFactor) / 100; | 
 |     } | 
 |  | 
 |     /// Constructor. | 
 |     /// Constructs an empty map. | 
 |     HashmapBase() { | 
 |         slots_.Resize(slots_.Capacity()); | 
 |         for (auto& node : fixed_) { | 
 |             free_.Add(&node); | 
 |         } | 
 |     } | 
 |  | 
 |     /// Copy constructor. | 
 |     /// Constructs a map with a copy of @p other. | 
 |     /// @param other the map to copy. | 
 |     HashmapBase(const HashmapBase& other) : HashmapBase() { | 
 |         if (&other != this) { | 
 |             Copy(other); | 
 |         } | 
 |     } | 
 |  | 
 |     /// Move constructor. | 
 |     /// Constructs a map with the moved entries of @p other. | 
 |     /// @param other the map to move. | 
 |     HashmapBase(HashmapBase&& other) : HashmapBase() { | 
 |         if (&other != this) { | 
 |             Move(std::move(other)); | 
 |         } | 
 |     } | 
 |  | 
 |     /// Destructor. | 
 |     ~HashmapBase() { | 
 |         // Call the destructor on all entries in the map. | 
 |         for (size_t slot_idx = 0; slot_idx < slots_.Length(); slot_idx++) { | 
 |             auto* node = slots_[slot_idx].nodes; | 
 |             while (node) { | 
 |                 auto next = node->next; | 
 |                 node->Destroy(); | 
 |                 node = next; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Assignment operator. | 
 |     /// Clears this map, and populates this map with a copy of @p other. | 
 |     /// @param other the map to copy. | 
 |     /// @returns this HashmapBase | 
 |     HashmapBase& operator=(const HashmapBase& other) { | 
 |         if (&other != this) { | 
 |             Clear(); | 
 |             Copy(other); | 
 |         } | 
 |         return *this; | 
 |     } | 
 |  | 
 |     /// Move-assignment operator. | 
 |     /// Clears this map, and populates this map with the moved entries of @p other. | 
 |     /// @param other the map to move. | 
 |     /// @returns this HashmapBase | 
 |     HashmapBase& operator=(HashmapBase&& other) { | 
 |         if (&other != this) { | 
 |             Clear(); | 
 |             Move(std::move(other)); | 
 |         } | 
 |         return *this; | 
 |     } | 
 |  | 
 |     /// @returns the number of entries in the map. | 
 |     size_t Count() const { return count_; } | 
 |  | 
 |     /// @returns true if the map holds no entries. | 
 |     bool IsEmpty() const { return count_ == 0; } | 
 |  | 
 |     /// Removes all the entries from the map. | 
 |     /// @note the map's capacity is not reduced, as it is assumed that a reused map will likely fill | 
 |     /// to a similar size as before. | 
 |     void Clear() { | 
 |         for (size_t slot_idx = 0; slot_idx < slots_.Length(); slot_idx++) { | 
 |             auto* node = slots_[slot_idx].nodes; | 
 |             while (node) { | 
 |                 auto next = node->next; | 
 |                 node->Destroy(); | 
 |                 free_.Add(node); | 
 |                 node = next; | 
 |             } | 
 |             slots_[slot_idx].nodes = nullptr; | 
 |         } | 
 |     } | 
 |  | 
 |     /// Ensures that the map can hold @p n entries without heap reallocation or rehashing. | 
 |     /// @param n the number of entries to ensure can fit in the map without reallocation or | 
 |     /// rehashing. | 
 |     void Reserve(size_t n) { | 
 |         if (n > capacity_) { | 
 |             size_t count = n - capacity_; | 
 |             free_.Allocate(count); | 
 |             capacity_ += count; | 
 |         } | 
 |     } | 
 |  | 
 |     /// Looks up an entry with the given key. | 
 |     /// @param key the entry's key to search for. | 
 |     /// @returns a pointer to the matching entry, or null if no entry was found. | 
 |     /// @note The returned pointer is guaranteed to be valid until the owning entry is removed, | 
 |     /// the map is cleared, or the map is destructed. | 
 |     template <typename K> | 
 |     Entry* GetEntry(K&& key) { | 
 |         HashCode hash = Hash{}(key); | 
 |         auto& slot = slots_[hash % slots_.Length()]; | 
 |         return slot.Find(hash, key); | 
 |     } | 
 |  | 
 |     /// Looks up an entry with the given key. | 
 |     /// @param key the entry's key to search for. | 
 |     /// @returns a pointer to the matching entry, or null if no entry was found. | 
 |     /// @note The returned pointer is guaranteed to be valid until the owning entry is removed, | 
 |     /// the map is cleared, or the map is destructed. | 
 |     template <typename K> | 
 |     const Entry* GetEntry(K&& key) const { | 
 |         HashCode hash = Hash{}(key); | 
 |         auto& slot = slots_[hash % slots_.Length()]; | 
 |         return slot.Find(hash, key); | 
 |     } | 
 |  | 
 |     /// @returns true if the map contains an entry with a key that matches @p key. | 
 |     /// @param key the key to look for. | 
 |     template <typename K = Key> | 
 |     bool Contains(K&& key) const { | 
 |         return GetEntry(key) != nullptr; | 
 |     } | 
 |  | 
 |     /// Removes an entry from the map that has a key which matches @p key. | 
 |     /// @returns true if the entry was found and removed, otherwise false. | 
 |     /// @param key the key to look for. | 
 |     template <typename K = Key> | 
 |     bool Remove(K&& key) { | 
 |         HashCode hash = Hash{}(key); | 
 |         auto& slot = slots_[hash % slots_.Length()]; | 
 |         Node** edge = &slot.nodes; | 
 |         for (auto* node = *edge; node; node = node->next) { | 
 |             if (node->Equals(hash, key)) { | 
 |                 *edge = node->next; | 
 |                 node->Destroy(); | 
 |                 free_.Add(node); | 
 |                 count_--; | 
 |                 return true; | 
 |             } | 
 |             edge = &node->next; | 
 |         } | 
 |         return false; | 
 |     } | 
 |  | 
 |     /// Iterator for entries in the map. | 
 |     template <bool IS_CONST> | 
 |     class IteratorT { | 
 |       private: | 
 |         using MAP = std::conditional_t<IS_CONST, const HashmapBase, HashmapBase>; | 
 |         using NODE = std::conditional_t<IS_CONST, const Node, Node>; | 
 |  | 
 |       public: | 
 |         /// @returns the entry pointed to by this iterator | 
 |         auto& operator->() { return node_->Entry(); } | 
 |  | 
 |         /// @returns a reference to the entry at the iterator | 
 |         auto& operator*() { return node_->Entry(); } | 
 |  | 
 |         /// Increments the iterator | 
 |         /// @returns this iterator | 
 |         IteratorT& operator++() { | 
 |             node_ = node_->next; | 
 |             SkipEmptySlots(); | 
 |             return *this; | 
 |         } | 
 |  | 
 |         /// Equality operator | 
 |         /// @param other the other iterator to compare this iterator to | 
 |         /// @returns true if this iterator is equal to other | 
 |         bool operator==(const IteratorT& other) const { return node_ == other.node_; } | 
 |  | 
 |         /// Inequality operator | 
 |         /// @param other the other iterator to compare this iterator to | 
 |         /// @returns true if this iterator is not equal to other | 
 |         bool operator!=(const IteratorT& other) const { return node_ != other.node_; } | 
 |  | 
 |       private: | 
 |         /// Friend class | 
 |         friend class HashmapBase; | 
 |  | 
 |         IteratorT(MAP& map, size_t slot, NODE* node) : map_(map), slot_(slot), node_(node) { | 
 |             SkipEmptySlots(); | 
 |         } | 
 |  | 
 |         void SkipEmptySlots() { | 
 |             while (!node_ && slot_ + 1 < map_.slots_.Length()) { | 
 |                 node_ = map_.slots_[++slot_].nodes; | 
 |             } | 
 |         } | 
 |  | 
 |         MAP& map_; | 
 |         size_t slot_ = 0; | 
 |         NODE* node_ = nullptr; | 
 |     }; | 
 |  | 
 |     /// An immutable key and mutable value iterator | 
 |     using Iterator = IteratorT</*IS_CONST*/ false>; | 
 |  | 
 |     /// An immutable key and value iterator | 
 |     using ConstIterator = IteratorT</*IS_CONST*/ true>; | 
 |  | 
 |     /// @returns an immutable iterator to the start of the map. | 
 |     ConstIterator begin() const { return ConstIterator{*this, 0, slots_.Front().nodes}; } | 
 |  | 
 |     /// @returns an immutable iterator to the end of the map. | 
 |     ConstIterator end() const { return ConstIterator{*this, slots_.Length(), nullptr}; } | 
 |  | 
 |     /// @returns an iterator to the start of the map. | 
 |     Iterator begin() { return Iterator{*this, 0, slots_.Front().nodes}; } | 
 |  | 
 |     /// @returns an iterator to the end of the map. | 
 |     Iterator end() { return Iterator{*this, slots_.Length(), nullptr}; } | 
 |  | 
 |     /// STL-friendly alias to Entry. Used by gmock. | 
 |     using value_type = const Entry&; | 
 |  | 
 |   protected: | 
 |     /// Node holds an Entry in a linked list. | 
 |     struct Node { | 
 |         /// Destructs the entry. | 
 |         void Destroy() { Entry().~ENTRY(); } | 
 |  | 
 |         /// @returns the storage reinterpreted as an `Entry&` | 
 |         ENTRY& Entry() { return storage.Get(); } | 
 |  | 
 |         /// @returns the storage reinterpreted as a `const Entry&` | 
 |         const ENTRY& Entry() const { return storage.Get(); } | 
 |  | 
 |         /// @returns a reference to the Entry's HashmapKey | 
 |         const HashmapBase::Key& Key() const { return HashmapBase::Entry::KeyOf(Entry()); } | 
 |  | 
 |         /// @param hash the hash value to compare against the Entry's key hash value | 
 |         /// @param value the value to compare against the Entry's key | 
 |         /// @returns true if the Entry's hash is equal to @p hash, and the Entry's key is equal to | 
 |         /// @p value. | 
 |         template <typename T> | 
 |         bool Equals(HashCode hash, T&& value) const { | 
 |             auto& key = Key(); | 
 |             return key.hash == hash && HashmapBase::Equal{}(key.Value(), value); | 
 |         } | 
 |  | 
 |         /// storage is a buffer that has the same size and alignment as Entry. | 
 |         /// The storage holds a constructed Entry when linked in the slots, and is destructed when | 
 |         /// removed from slots. | 
 |         AlignedStorage<ENTRY> storage; | 
 |  | 
 |         /// next is the next Node in the slot, or in the free list. | 
 |         Node* next; | 
 |     }; | 
 |  | 
 |     /// Copies the hashmap @p other into this empty hashmap. | 
 |     /// @note This hashmap must be empty before calling | 
 |     /// @param other the hashmap to copy | 
 |     void Copy(const HashmapBase& other) { | 
 |         Reserve(other.capacity_); | 
 |         slots_.Resize(other.slots_.Length()); | 
 |         for (size_t slot_idx = 0; slot_idx < slots_.Length(); slot_idx++) { | 
 |             for (auto* o = other.slots_[slot_idx].nodes; o; o = o->next) { | 
 |                 auto* node = free_.Take(); | 
 |                 new (&node->Entry()) Entry{o->Entry()}; | 
 |                 slots_[slot_idx].Add(node); | 
 |             } | 
 |         } | 
 |         count_ = other.count_; | 
 |     } | 
 |  | 
 |     /// Moves the the hashmap @p other into this empty hashmap. | 
 |     /// @note This hashmap must be empty before calling | 
 |     /// @param other the hashmap to move | 
 |     void Move(HashmapBase&& other) { | 
 |         Reserve(other.capacity_); | 
 |         slots_.Resize(other.slots_.Length()); | 
 |         for (size_t slot_idx = 0; slot_idx < slots_.Length(); slot_idx++) { | 
 |             for (auto* o = other.slots_[slot_idx].nodes; o; o = o->next) { | 
 |                 auto* node = free_.Take(); | 
 |                 new (&node->Entry()) Entry{std::move(o->Entry())}; | 
 |                 slots_[slot_idx].Add(node); | 
 |             } | 
 |         } | 
 |         count_ = other.count_; | 
 |         other.Clear(); | 
 |     } | 
 |  | 
 |     /// EditIndex is the structure returned by EditAt(), used to simplify entry replacement and | 
 |     /// insertion. | 
 |     struct EditIndex { | 
 |         /// The HashmapBase that created this EditIndex | 
 |         HashmapBase& map; | 
 |         /// The slot that will hold the edit. | 
 |         Slot& slot; | 
 |         /// The hash of the key, passed to EditAt(). | 
 |         HashCode hash; | 
 |         /// The resolved node entry, or nullptr if EditAt() did not resolve to an existing entry. | 
 |         Entry* entry = nullptr; | 
 |  | 
 |         /// Replace will replace the entry with a new Entry built from @p key and @p values. | 
 |         /// @note #entry must not be null before calling. | 
 |         /// @note the new key must have equality to the old key. | 
 |         /// @param key the key value (inner value of a HashmapKey). | 
 |         /// @param values optional additional values to pass to the Entry constructor. | 
 |         template <typename K, typename... V> | 
 |         void Replace(K&& key, V&&... values) { | 
 |             *entry = Entry{Key{hash, std::forward<K>(key)}, std::forward<V>(values)...}; | 
 |         } | 
 |  | 
 |         /// Insert will create a new entry using @p key and @p values and insert it into the slot. | 
 |         /// The created entry will be assigned to #entry before returning. | 
 |         /// @note #entry must be null before calling. | 
 |         /// @note the key must not already exist in the map. | 
 |         /// @param key the key value (inner value of a HashmapKey). | 
 |         /// @param values optional additional values to pass to the Entry constructor. | 
 |         template <typename K, typename... V> | 
 |         void Insert(K&& key, V&&... values) { | 
 |             auto* node = map.free_.Take(); | 
 |             slot.Add(node); | 
 |             map.count_++; | 
 |             entry = &node->Entry(); | 
 |             new (entry) Entry{Key{hash, std::forward<K>(key)}, std::forward<V>(values)...}; | 
 |         } | 
 |     }; | 
 |  | 
 |     /// EditAt is a helper for map entry replacement and entry insertion. | 
 |     /// Before indexing, EditAt will ensure there's at least one free node available, potentially | 
 |     /// allocating and rehashing if there's no free nodes available. | 
 |     /// @param key the key used to compute the hash, look up the slot and search for the existing | 
 |     /// node. | 
 |     /// @returns a EditIndex used to modify or insert a new entry into the map with the given key. | 
 |     template <typename K> | 
 |     EditIndex EditAt(K&& key) { | 
 |         if (!free_.nodes_) { | 
 |             free_.Allocate(capacity_); | 
 |             capacity_ += capacity_; | 
 |             Rehash(); | 
 |         } | 
 |         HashCode hash = Hash{}(key); | 
 |         auto& slot = slots_[hash % slots_.Length()]; | 
 |         auto* entry = slot.Find(hash, key); | 
 |         return {*this, slot, hash, entry}; | 
 |     } | 
 |  | 
 |     /// Rehash resizes the slots vector proportionally to the map capacity, and then reinserts the | 
 |     /// nodes so they're linked in the correct slots linked lists. | 
 |     void Rehash() { | 
 |         size_t num_slots = NumSlots(capacity_); | 
 |         decltype(slots_) old_slots; | 
 |         std::swap(slots_, old_slots); | 
 |         slots_.Resize(num_slots); | 
 |         for (size_t old_slot_idx = 0; old_slot_idx < old_slots.Length(); old_slot_idx++) { | 
 |             auto* node = old_slots[old_slot_idx].nodes; | 
 |             while (node) { | 
 |                 auto next = node->next; | 
 |                 size_t new_slot_idx = node->Key().hash % num_slots; | 
 |                 slots_[new_slot_idx].Add(node); | 
 |                 node = next; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Slot holds a linked list of nodes. Nodes are assigned to the slot list by calculating the | 
 |     /// modulo of the entry's hash with the slot_ vector length. | 
 |     struct Slot { | 
 |         /// The linked list of nodes in this slot. | 
 |         Node* nodes = nullptr; | 
 |  | 
 |         /// Add adds the node @p node to this slot. | 
 |         /// @note The node must be unlinked from any existing list before calling. | 
 |         /// @param node the node to add. | 
 |         void Add(Node* node) { | 
 |             node->next = nodes; | 
 |             nodes = node; | 
 |         } | 
 |  | 
 |         /// @returns the node in the slot with the given hash and key. | 
 |         /// @param hash the key hash to search for. | 
 |         /// @param key the key value to search for. | 
 |         template <typename K> | 
 |         const Entry* Find(HashCode hash, K&& key) const { | 
 |             for (auto* node = nodes; node; node = node->next) { | 
 |                 if (node->Equals(hash, key)) { | 
 |                     return &node->Entry(); | 
 |                 } | 
 |             } | 
 |             return nullptr; | 
 |         } | 
 |  | 
 |         /// @returns the node in the slot with the given hash and key. | 
 |         /// @param hash the key hash to search for. | 
 |         /// @param key the key value to search for. | 
 |         template <typename K> | 
 |         Entry* Find(HashCode hash, K&& key) { | 
 |             for (auto* node = nodes; node; node = node->next) { | 
 |                 if (node->Equals(hash, key)) { | 
 |                     return &node->Entry(); | 
 |                 } | 
 |             } | 
 |             return nullptr; | 
 |         } | 
 |     }; | 
 |  | 
 |     /// Free holds a linked list of nodes which are currently not used by entries in the map, and a | 
 |     /// linked list of node allocations. | 
 |     struct FreeNodes { | 
 |         /// Allocation is the header of a block of memory that holds Nodes. | 
 |         struct Allocation { | 
 |             /// The linked list of allocations. | 
 |             Allocation* next = nullptr; | 
 |             // Node[] array follows this structure. | 
 |         }; | 
 |  | 
 |         /// The linked list of free nodes. | 
 |         Node* nodes_ = nullptr; | 
 |  | 
 |         /// The linked list of allocations. | 
 |         Allocation* allocations_ = nullptr; | 
 |  | 
 |         /// Destructor. | 
 |         /// Frees all the allocations made. | 
 |         ~FreeNodes() { | 
 |             auto* allocation = allocations_; | 
 |             while (allocation) { | 
 |                 auto* next = allocation->next; | 
 |                 free(allocation); | 
 |                 allocation = next; | 
 |             } | 
 |         } | 
 |  | 
 |         /// @returns the next free node in the list | 
 |         Node* Take() { | 
 |             auto* node = nodes_; | 
 |             nodes_ = node->next; | 
 |             node->next = nullptr; | 
 |             return node; | 
 |         } | 
 |  | 
 |         /// Add adds the node @p node to the list of free nodes. | 
 |         /// @note The node must be unlinked from any existing list before calling. | 
 |         /// @param node the node to add. | 
 |         void Add(Node* node) { | 
 |             node->next = nodes_; | 
 |             nodes_ = node; | 
 |         } | 
 |  | 
 |         /// Allocate allocates an additional @p count nodes and adds them to the free node list. | 
 |         /// @param count the number of new nodes to allocate. | 
 |         /// @note callers must remember to increment HashmapBase::capacity_ by the same amount. | 
 |         void Allocate(size_t count) { | 
 |             static_assert(std::is_trivial_v<Node>, | 
 |                           "Node is not trivial, and will require construction / destruction"); | 
 |             constexpr size_t kAllocationSize = RoundUp(alignof(Node), sizeof(Allocation)); | 
 |             auto* memory = | 
 |                 reinterpret_cast<std::byte*>(malloc(kAllocationSize + sizeof(Node) * count)); | 
 |             if (TINT_UNLIKELY(!memory)) { | 
 |                 TINT_ICE() << "out of memory"; | 
 |                 return; | 
 |             } | 
 |             auto* nodes_allocation = Bitcast<Allocation*>(memory); | 
 |             nodes_allocation->next = allocations_; | 
 |             allocations_ = nodes_allocation; | 
 |  | 
 |             auto* nodes = Bitcast<Node*>(memory + kAllocationSize); | 
 |             for (size_t i = 0; i < count; i++) { | 
 |                 Add(&nodes[i]); | 
 |             } | 
 |         } | 
 |     }; | 
 |  | 
 |     /// The fixed-size array of nodes, used for the first kMinCapacity entries of the map, before | 
 |     /// allocating from the heap. | 
 |     std::array<Node, kMinCapacity> fixed_; | 
 |     /// The vector of slots. Each slot holds a linked list of nodes which hold entries in the map. | 
 |     Vector<Slot, NumSlots(N)> slots_; | 
 |     /// The linked list of free nodes, and node allocations from the heap. | 
 |     FreeNodes free_; | 
 |     /// The total number of nodes, including free nodes (kMinCapacity + heap-allocated) | 
 |     size_t capacity_ = kMinCapacity; | 
 |     /// The total number of nodes that currently hold map entries. | 
 |     size_t count_ = 0; | 
 | }; | 
 |  | 
 | }  // namespace tint | 
 |  | 
 | #endif  // SRC_TINT_UTILS_CONTAINERS_HASHMAP_BASE_H_ |