blob: e02d9e31cf100765adfdb590a4b9a553c14a81df [file] [log] [blame] [edit]
// Copyright 2021 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <utility>
#include "dawn/common/Math.h"
#include "dawn/native/Adapter.h"
#include "dawn/native/vulkan/DeviceVk.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/tests/white_box/VulkanImageWrappingTests.h"
#include "dawn/tests/white_box/VulkanImageWrappingTests_DmaBuf.h"
#include "dawn/tests/white_box/VulkanImageWrappingTests_OpaqueFD.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
#include "partition_alloc/pointers/raw_ptr.h"
namespace dawn::native::vulkan {
void VulkanImageWrappingTestBackend::SetParam(
const VulkanImageWrappingTestBackend::TestParams& params) {
mParams = params;
}
const VulkanImageWrappingTestBackend::TestParams& VulkanImageWrappingTestBackend::GetParam() const {
return mParams;
}
namespace {
using ExternalTexture = VulkanImageWrappingTestBackend::ExternalTexture;
using ExternalSemaphore = VulkanImageWrappingTestBackend::ExternalSemaphore;
using UseDedicatedAllocation = bool;
using DetectDedicatedAllocation = bool;
constexpr int kTestTexturesCount = 2;
DAWN_TEST_PARAM_STRUCT(ImageWrappingParams,
ExternalImageType,
UseDedicatedAllocation,
DetectDedicatedAllocation);
class VulkanImageWrappingTestBase : public DawnTestWithParams<ImageWrappingParams> {
protected:
std::vector<wgpu::FeatureName> GetRequiredFeatures() override {
return {wgpu::FeatureName::DawnInternalUsages};
}
public:
void SetUp() override {
DawnTestWithParams::SetUp();
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
// TODO(dawn:1552): Nvidia doesn't seem to correctly reflect whether an import requires a
// dedicated allocation.
DAWN_SUPPRESS_TEST_IF(IsLinux() && IsNvidia() && GetParam().mUseDedicatedAllocation &&
GetParam().mDetectDedicatedAllocation);
switch (GetParam().mExternalImageType) {
case ExternalImageType::OpaqueFD:
mBackend = CreateOpaqueFDBackend(device);
break;
case ExternalImageType::DmaBuf:
mBackend = CreateDMABufBackend(device);
break;
default:
DAWN_UNREACHABLE();
}
VulkanImageWrappingTestBackend::TestParams params;
params.externalImageType = GetParam().mExternalImageType;
params.useDedicatedAllocation = GetParam().mUseDedicatedAllocation;
params.detectDedicatedAllocation = GetParam().mDetectDedicatedAllocation;
DAWN_TEST_UNSUPPORTED_IF(!mBackend->SupportsTestParams(params));
mBackend->SetParam(params);
defaultDescriptor.dimension = wgpu::TextureDimension::e2D;
defaultDescriptor.format = wgpu::TextureFormat::RGBA8Unorm;
defaultDescriptor.size = {1, 1, 1};
defaultDescriptor.sampleCount = 1;
defaultDescriptor.mipLevelCount = 1;
defaultDescriptor.usage = wgpu::TextureUsage::RenderAttachment |
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst;
for (int i = 0; i < kTestTexturesCount; ++i) {
testTextures[i] =
mBackend->CreateTexture(1, 1, defaultDescriptor.format, defaultDescriptor.usage);
}
defaultTexture = testTextures[0].get();
}
void TearDown() override {
if (UsesWire()) {
DawnTestWithParams::TearDown();
return;
}
defaultTexture = nullptr;
testTextures = {};
mBackend = nullptr;
DawnTestWithParams::TearDown();
}
ExternalImageDescriptorVkForTesting GetExternalImageDescriptor() {
return ExternalImageDescriptorVkForTesting(GetParam().mExternalImageType);
}
ExternalImageExportInfoVkForTesting GetExternalImageExportInfo() {
return ExternalImageExportInfoVkForTesting(GetParam().mExternalImageType);
}
wgpu::Texture WrapVulkanImage(wgpu::Device dawnDevice,
const wgpu::TextureDescriptor* textureDescriptor,
const ExternalTexture* externalTexture,
std::vector<std::unique_ptr<ExternalSemaphore>> semaphores,
bool isInitialized = true,
bool expectValid = true) {
ExternalImageDescriptorVkForTesting descriptor = GetExternalImageDescriptor();
return WrapVulkanImage(dawnDevice, textureDescriptor, externalTexture,
std::move(semaphores), descriptor.releasedOldLayout,
descriptor.releasedNewLayout, isInitialized, expectValid);
}
wgpu::Texture WrapVulkanImage(wgpu::Device dawnDevice,
const wgpu::TextureDescriptor* textureDescriptor,
const ExternalTexture* externalTexture,
std::vector<std::unique_ptr<ExternalSemaphore>> semaphores,
VkImageLayout releasedOldLayout,
VkImageLayout releasedNewLayout,
bool isInitialized = true,
bool expectValid = true) {
ExternalImageDescriptorVkForTesting descriptor = GetExternalImageDescriptor();
descriptor.cTextureDescriptor =
reinterpret_cast<const WGPUTextureDescriptor*>(textureDescriptor);
descriptor.isInitialized = isInitialized;
descriptor.releasedOldLayout = releasedOldLayout;
descriptor.releasedNewLayout = releasedNewLayout;
wgpu::Texture texture =
mBackend->WrapImage(dawnDevice, externalTexture, descriptor, std::move(semaphores));
if (expectValid) {
EXPECT_NE(texture, nullptr) << "Failed to wrap image, are external memory / "
"semaphore extensions supported?";
} else {
EXPECT_EQ(texture, nullptr);
}
return texture;
}
// Exports the signal from a wrapped texture and ignores it
// We have to export the signal before destroying the wrapped texture else it's an
// assertion failure
void IgnoreSignalSemaphore(wgpu::Texture wrappedTexture) {
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
bool result = mBackend->ExportImage(wrappedTexture, &exportInfo);
DAWN_ASSERT(result);
}
protected:
std::unique_ptr<VulkanImageWrappingTestBackend> mBackend;
wgpu::TextureDescriptor defaultDescriptor;
std::array<std::unique_ptr<ExternalTexture>, kTestTexturesCount> testTextures;
raw_ptr<ExternalTexture> defaultTexture;
};
using VulkanImageWrappingValidationTests = VulkanImageWrappingTestBase;
// Test no error occurs if the import is valid
TEST_P(VulkanImageWrappingValidationTests, SuccessfulImport) {
wgpu::Texture texture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, true, true);
EXPECT_NE(texture.Get(), nullptr);
IgnoreSignalSemaphore(texture);
}
// Test no error occurs if the import is valid with DawnTextureInternalUsageDescriptor
TEST_P(VulkanImageWrappingValidationTests, SuccessfulImportWithInternalUsageDescriptor) {
wgpu::DawnTextureInternalUsageDescriptor internalDesc = {};
defaultDescriptor.nextInChain = &internalDesc;
internalDesc.internalUsage = wgpu::TextureUsage::CopySrc;
internalDesc.sType = wgpu::SType::DawnTextureInternalUsageDescriptor;
wgpu::Texture texture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, true, true);
EXPECT_NE(texture.Get(), nullptr);
IgnoreSignalSemaphore(texture);
}
// Test an error occurs if an invalid sType is the nextInChain
TEST_P(VulkanImageWrappingValidationTests, InvalidTextureDescriptor) {
wgpu::ChainedStruct chainedDescriptor;
chainedDescriptor.sType = wgpu::SType::SurfaceDescriptorFromWindowsSwapChainPanel;
defaultDescriptor.nextInChain = &chainedDescriptor;
ASSERT_DEVICE_ERROR(wgpu::Texture texture = WrapVulkanImage(device, &defaultDescriptor,
defaultTexture, {}, true, false));
EXPECT_EQ(texture.Get(), nullptr);
}
// Test an error occurs if the descriptor dimension isn't 2D
TEST_P(VulkanImageWrappingValidationTests, InvalidTextureDimension) {
defaultDescriptor.dimension = wgpu::TextureDimension::e1D;
ASSERT_DEVICE_ERROR(wgpu::Texture texture = WrapVulkanImage(device, &defaultDescriptor,
defaultTexture, {}, true, false));
EXPECT_EQ(texture.Get(), nullptr);
}
// Test an error occurs if the descriptor mip level count isn't 1
TEST_P(VulkanImageWrappingValidationTests, InvalidMipLevelCount) {
defaultDescriptor.mipLevelCount = 2;
ASSERT_DEVICE_ERROR(wgpu::Texture texture = WrapVulkanImage(device, &defaultDescriptor,
defaultTexture, {}, true, false));
EXPECT_EQ(texture.Get(), nullptr);
}
// Test an error occurs if the descriptor depth isn't 1
TEST_P(VulkanImageWrappingValidationTests, InvalidDepth) {
defaultDescriptor.size.depthOrArrayLayers = 2;
ASSERT_DEVICE_ERROR(wgpu::Texture texture = WrapVulkanImage(device, &defaultDescriptor,
defaultTexture, {}, true, false));
EXPECT_EQ(texture.Get(), nullptr);
}
// Test an error occurs if the descriptor sample count isn't 1
TEST_P(VulkanImageWrappingValidationTests, InvalidSampleCount) {
defaultDescriptor.sampleCount = 4;
ASSERT_DEVICE_ERROR(wgpu::Texture texture = WrapVulkanImage(device, &defaultDescriptor,
defaultTexture, {}, true, false));
EXPECT_EQ(texture.Get(), nullptr);
}
// Test an error occurs if we try to export the signal semaphore twice
TEST_P(VulkanImageWrappingValidationTests, DoubleSignalSemaphoreExport) {
wgpu::Texture texture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, true, true);
ASSERT_NE(texture.Get(), nullptr);
IgnoreSignalSemaphore(texture);
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_DEVICE_ERROR(bool success = mBackend->ExportImage(texture, &exportInfo));
ASSERT_FALSE(success);
ASSERT_EQ(exportInfo.semaphores.size(), 0u);
}
// Test an error occurs if we try to export the signal semaphore from a normal texture
TEST_P(VulkanImageWrappingValidationTests, NormalTextureSignalSemaphoreExport) {
wgpu::Texture texture = device.CreateTexture(&defaultDescriptor);
ASSERT_NE(texture.Get(), nullptr);
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_DEVICE_ERROR(bool success = mBackend->ExportImage(texture, &exportInfo));
ASSERT_FALSE(success);
ASSERT_EQ(exportInfo.semaphores.size(), 0u);
}
// Test an error occurs if we try to export the signal semaphore from a destroyed texture
TEST_P(VulkanImageWrappingValidationTests, DestroyedTextureSignalSemaphoreExport) {
wgpu::Texture texture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, true, true);
ASSERT_NE(texture.Get(), nullptr);
texture.Destroy();
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_DEVICE_ERROR(bool success = mBackend->ExportImage(texture, &exportInfo));
ASSERT_FALSE(success);
ASSERT_EQ(exportInfo.semaphores.size(), 0u);
}
// Fixture to test using external memory textures through different usages.
// These tests are skipped if the harness is using the wire.
class VulkanImageWrappingUsageTests : public VulkanImageWrappingTestBase {
public:
void SetUp() override {
VulkanImageWrappingTestBase::SetUp();
if (UsesWire()) {
return;
}
// Create another device based on the original
adapterBase = native::FromAPI(device.Get())->GetAdapter();
deviceDescriptor.nextInChain = &deviceTogglesDesc;
deviceTogglesDesc.enabledToggles = GetParam().forceEnabledWorkarounds.data();
deviceTogglesDesc.enabledToggleCount = GetParam().forceEnabledWorkarounds.size();
deviceTogglesDesc.disabledToggles = GetParam().forceDisabledWorkarounds.data();
deviceTogglesDesc.disabledToggleCount = GetParam().forceDisabledWorkarounds.size();
secondDeviceVk = native::vulkan::ToBackend(adapterBase->APICreateDevice(&deviceDescriptor));
secondDevice = wgpu::Device::Acquire(native::ToAPI(secondDeviceVk));
}
protected:
raw_ptr<native::AdapterBase> adapterBase;
native::DeviceDescriptor deviceDescriptor;
native::DawnTogglesDescriptor deviceTogglesDesc;
wgpu::Device secondDevice;
raw_ptr<native::vulkan::Device> secondDeviceVk;
// Clear a texture on a given device
void ClearImage(wgpu::Device dawnDevice, wgpu::Texture wrappedTexture, wgpu::Color clearColor) {
wgpu::TextureView wrappedView = wrappedTexture.CreateView();
// Submit a clear operation
utils::ComboRenderPassDescriptor renderPassDescriptor({wrappedView}, {});
renderPassDescriptor.cColorAttachments[0].clearValue = clearColor;
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::CommandEncoder encoder = dawnDevice.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
wgpu::Queue queue = dawnDevice.GetQueue();
queue.Submit(1, &commands);
}
void ClearImages(wgpu::Device dawnDevice,
std::vector<wgpu::Texture> wrappedTextures,
wgpu::Color clearColor) {
wgpu::CommandEncoder encoder = dawnDevice.CreateCommandEncoder();
for (auto wrappedTexture : wrappedTextures) {
wgpu::TextureView wrappedView = wrappedTexture.CreateView();
// Submit a clear operation
utils::ComboRenderPassDescriptor renderPassDescriptor({wrappedView}, {});
renderPassDescriptor.cColorAttachments[0].clearValue = clearColor;
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
wgpu::Queue queue = dawnDevice.GetQueue();
queue.Submit(1, &commands);
}
// Submits a 1x1x1 copy from source to destination
void SimpleCopyTextureToTexture(wgpu::Device dawnDevice,
wgpu::Queue dawnQueue,
wgpu::Texture source,
wgpu::Texture destination) {
wgpu::ImageCopyTexture copySrc = utils::CreateImageCopyTexture(source, 0, {0, 0, 0});
wgpu::ImageCopyTexture copyDst = utils::CreateImageCopyTexture(destination, 0, {0, 0, 0});
wgpu::Extent3D copySize = {1, 1, 1};
wgpu::CommandEncoder encoder = dawnDevice.CreateCommandEncoder();
encoder.CopyTextureToTexture(&copySrc, &copyDst, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
dawnQueue.Submit(1, &commands);
}
};
// Clear an image in |secondDevice|
// Verify clear color is visible in |device|
TEST_P(VulkanImageWrappingUsageTests, ClearImageAcrossDevices) {
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &defaultDescriptor, defaultTexture, {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |secondDevice|
ClearImage(secondDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on signalFd
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Verify |device| sees the changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
}
// Clear two images in |secondDevice|
// Verify clear color is visible in |device|
// This is intended to verify that waiting on the signalFd for one external texture does not affect
// those of other external textures.
TEST_P(VulkanImageWrappingUsageTests, ClearTwoImagesAcrossDevices) {
// TODO(crbug.com/341124484): Fails on Linux/Intel UHD 770.
DAWN_SUPPRESS_TEST_IF(IsLinux() && IsBackendValidationEnabled() && IsIntelGen12());
static_assert(kTestTexturesCount >= 2);
std::vector<wgpu::Texture> wrappedTextures;
for (int i = 0; i < 2; ++i) {
// Import the images on |secondDevice|
wrappedTextures.push_back(
WrapVulkanImage(secondDevice, &defaultDescriptor, testTextures[i].get(), {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL));
}
// Clear |wrappedTextures| on |secondDevice|
ClearImages(secondDevice, wrappedTextures, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
for (int i = 0; i < 2; ++i) {
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTextures[i], &exportInfo));
// Import the image to |device|, making sure we wait on signalFd
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, testTextures[i].get(), std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Verify |device| sees the changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
}
}
// Clear an image in |secondDevice|
// Verify clear color is not visible in |device| if we import the texture as not cleared
TEST_P(VulkanImageWrappingUsageTests, UninitializedTextureIsCleared) {
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &defaultDescriptor, defaultTexture, {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |secondDevice|
ClearImage(secondDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on signalFd
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout, false);
// Verify |device| doesn't see the changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 0, 0, 0), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
}
// Import a texture into |secondDevice|
// Clear the texture on |secondDevice|
// Issue a copy of the imported texture inside |device| to |copyDstTexture|
// Verify the clear color from |secondDevice| is visible in |copyDstTexture|
TEST_P(VulkanImageWrappingUsageTests, CopyTextureToTextureSrcSync) {
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &defaultDescriptor, defaultTexture, {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |secondDevice|
ClearImage(secondDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on |signalFd|
wgpu::Texture deviceWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Create a second texture on |device|
wgpu::Texture copyDstTexture = device.CreateTexture(&defaultDescriptor);
// Copy |deviceWrappedTexture| into |copyDstTexture|
SimpleCopyTextureToTexture(device, queue, deviceWrappedTexture, copyDstTexture);
// Verify |copyDstTexture| sees changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), copyDstTexture, 0, 0);
IgnoreSignalSemaphore(deviceWrappedTexture);
}
// Import a texture into |device|
// Clear texture with color A on |device|
// Import same texture into |secondDevice|, waiting on the copy signal
// Clear the new texture with color B on |secondDevice|
// Copy color B using Texture to Texture copy on |secondDevice|
// Import texture back into |device|, waiting on color B signal
// Verify texture contains color B
// If texture destination isn't synchronized, |secondDevice| could copy color B
// into the texture first, then |device| writes color A
TEST_P(VulkanImageWrappingUsageTests, CopyTextureToTextureDstSync) {
// Import the image on |device|
wgpu::Texture wrappedTexture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |device|
ClearImage(device, wrappedTexture, {5 / 255.0f, 6 / 255.0f, 7 / 255.0f, 8 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |secondDevice|, making sure we wait on |signalFd|
wgpu::Texture secondDeviceWrappedTexture = WrapVulkanImage(
secondDevice, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Create a texture with color B on |secondDevice|
wgpu::Texture copySrcTexture = secondDevice.CreateTexture(&defaultDescriptor);
ClearImage(secondDevice, copySrcTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
// Copy color B on |secondDevice|
wgpu::Queue secondDeviceQueue = secondDevice.GetQueue();
SimpleCopyTextureToTexture(secondDevice, secondDeviceQueue, copySrcTexture,
secondDeviceWrappedTexture);
// Re-import back into |device|, waiting on |secondDevice|'s signal
ExternalImageExportInfoVkForTesting secondExportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(secondDeviceWrappedTexture, &secondExportInfo));
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(secondExportInfo.semaphores),
secondExportInfo.releasedOldLayout, secondExportInfo.releasedNewLayout);
// Verify |nextWrappedTexture| contains the color from our copy
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
}
// Import a texture from |secondDevice|
// Clear the texture on |secondDevice|
// Issue a copy of the imported texture inside |device| to |copyDstBuffer|
// Verify the clear color from |secondDevice| is visible in |copyDstBuffer|
TEST_P(VulkanImageWrappingUsageTests, CopyTextureToBufferSrcSync) {
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &defaultDescriptor, defaultTexture, {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |secondDevice|
ClearImage(secondDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on |signalFd|
wgpu::Texture deviceWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Create a destination buffer on |device|
wgpu::BufferDescriptor bufferDesc;
bufferDesc.size = 4;
bufferDesc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
wgpu::Buffer copyDstBuffer = device.CreateBuffer(&bufferDesc);
// Copy |deviceWrappedTexture| into |copyDstBuffer|
wgpu::ImageCopyTexture copySrc =
utils::CreateImageCopyTexture(deviceWrappedTexture, 0, {0, 0, 0});
wgpu::ImageCopyBuffer copyDst = utils::CreateImageCopyBuffer(copyDstBuffer, 0, 256);
wgpu::Extent3D copySize = {1, 1, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&copySrc, &copyDst, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Verify |copyDstBuffer| sees changes from |secondDevice|
uint32_t expected = 0x04030201;
EXPECT_BUFFER_U32_EQ(expected, copyDstBuffer, 0);
IgnoreSignalSemaphore(deviceWrappedTexture);
}
// Import a texture into |device|
// Clear texture with color A on |device|
// Import same texture into |secondDevice|, waiting on the copy signal
// Copy color B using Buffer to Texture copy on |secondDevice|
// Import texture back into |device|, waiting on color B signal
// Verify texture contains color B
// If texture destination isn't synchronized, |secondDevice| could copy color B
// into the texture first, then |device| writes color A
TEST_P(VulkanImageWrappingUsageTests, CopyBufferToTextureDstSync) {
// Import the image on |device|
wgpu::Texture wrappedTexture =
WrapVulkanImage(device, &defaultDescriptor, defaultTexture, {}, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |device|
ClearImage(device, wrappedTexture, {5 / 255.0f, 6 / 255.0f, 7 / 255.0f, 8 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |secondDevice|, making sure we wait on |signalFd|
wgpu::Texture secondDeviceWrappedTexture = WrapVulkanImage(
secondDevice, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Copy color B on |secondDevice|
wgpu::Queue secondDeviceQueue = secondDevice.GetQueue();
// Create a buffer on |secondDevice|
wgpu::Buffer copySrcBuffer =
utils::CreateBufferFromData(secondDevice, wgpu::BufferUsage::CopySrc, {0x04030201});
// Copy |copySrcBuffer| into |secondDeviceWrappedTexture|
wgpu::ImageCopyBuffer copySrc = utils::CreateImageCopyBuffer(copySrcBuffer, 0, 256);
wgpu::ImageCopyTexture copyDst =
utils::CreateImageCopyTexture(secondDeviceWrappedTexture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {1, 1, 1};
wgpu::CommandEncoder encoder = secondDevice.CreateCommandEncoder();
encoder.CopyBufferToTexture(&copySrc, &copyDst, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
secondDeviceQueue.Submit(1, &commands);
// Re-import back into |device|, waiting on |secondDevice|'s signal
ExternalImageExportInfoVkForTesting secondExportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(secondDeviceWrappedTexture, &secondExportInfo));
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(secondExportInfo.semaphores),
secondExportInfo.releasedOldLayout, secondExportInfo.releasedNewLayout);
// Verify |nextWrappedTexture| contains the color from our copy
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
}
// Import a texture from |secondDevice|
// Clear the texture on |secondDevice|
// Issue a copy of the imported texture inside |device| to |copyDstTexture|
// Issue second copy to |secondCopyDstTexture|
// Verify the clear color from |secondDevice| is visible in both copies
TEST_P(VulkanImageWrappingUsageTests, DoubleTextureUsage) {
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &defaultDescriptor, defaultTexture, {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |secondDevice|
ClearImage(secondDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on |signalFd|
wgpu::Texture deviceWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, defaultTexture, std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Create a second texture on |device|
wgpu::Texture copyDstTexture = device.CreateTexture(&defaultDescriptor);
// Create a third texture on |device|
wgpu::Texture secondCopyDstTexture = device.CreateTexture(&defaultDescriptor);
// Copy |deviceWrappedTexture| into |copyDstTexture|
SimpleCopyTextureToTexture(device, queue, deviceWrappedTexture, copyDstTexture);
// Copy |deviceWrappedTexture| into |secondCopyDstTexture|
SimpleCopyTextureToTexture(device, queue, deviceWrappedTexture, secondCopyDstTexture);
// Verify |copyDstTexture| sees changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), copyDstTexture, 0, 0);
// Verify |secondCopyDstTexture| sees changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), secondCopyDstTexture, 0, 0);
IgnoreSignalSemaphore(deviceWrappedTexture);
}
// Tex A on device 3 (external export)
// Tex B on device 2 (external export)
// Tex C on device 1 (external export)
// Clear color for A on device 3
// Copy A->B on device 3
// Copy B->C on device 2 (wait on B from previous op)
// Copy C->D on device 1 (wait on C from previous op)
// Verify D has same color as A
TEST_P(VulkanImageWrappingUsageTests, ChainTextureCopy) {
// device 1 = |device|
// device 2 = |secondDevice|
// Create device 3
native::vulkan::Device* thirdDeviceVk =
native::vulkan::ToBackend(adapterBase->APICreateDevice(&deviceDescriptor));
wgpu::Device thirdDevice = wgpu::Device::Acquire(native::ToAPI(thirdDeviceVk));
// Make queue for device 2 and 3
wgpu::Queue secondDeviceQueue = secondDevice.GetQueue();
wgpu::Queue thirdDeviceQueue = thirdDevice.GetQueue();
// Create textures A, B, C
std::unique_ptr<ExternalTexture> textureA =
mBackend->CreateTexture(1, 1, wgpu::TextureFormat::RGBA8Unorm, defaultDescriptor.usage);
std::unique_ptr<ExternalTexture> textureB =
mBackend->CreateTexture(1, 1, wgpu::TextureFormat::RGBA8Unorm, defaultDescriptor.usage);
std::unique_ptr<ExternalTexture> textureC =
mBackend->CreateTexture(1, 1, wgpu::TextureFormat::RGBA8Unorm, defaultDescriptor.usage);
// Import TexA, TexB on device 3
wgpu::Texture wrappedTexADevice3 =
WrapVulkanImage(thirdDevice, &defaultDescriptor, textureA.get(), {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
wgpu::Texture wrappedTexBDevice3 =
WrapVulkanImage(thirdDevice, &defaultDescriptor, textureB.get(), {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Clear TexA
ClearImage(thirdDevice, wrappedTexADevice3, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
// Copy A->B
SimpleCopyTextureToTexture(thirdDevice, thirdDeviceQueue, wrappedTexADevice3,
wrappedTexBDevice3);
ExternalImageExportInfoVkForTesting exportInfoTexBDevice3 = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexBDevice3, &exportInfoTexBDevice3));
IgnoreSignalSemaphore(wrappedTexADevice3);
// Import TexB, TexC on device 2
wgpu::Texture wrappedTexBDevice2 = WrapVulkanImage(
secondDevice, &defaultDescriptor, textureB.get(),
std::move(exportInfoTexBDevice3.semaphores), exportInfoTexBDevice3.releasedOldLayout,
exportInfoTexBDevice3.releasedNewLayout);
wgpu::Texture wrappedTexCDevice2 =
WrapVulkanImage(secondDevice, &defaultDescriptor, textureC.get(), {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy B->C on device 2
SimpleCopyTextureToTexture(secondDevice, secondDeviceQueue, wrappedTexBDevice2,
wrappedTexCDevice2);
ExternalImageExportInfoVkForTesting exportInfoTexCDevice2 = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexCDevice2, &exportInfoTexCDevice2));
IgnoreSignalSemaphore(wrappedTexBDevice2);
// Import TexC on device 1
wgpu::Texture wrappedTexCDevice1 = WrapVulkanImage(
device, &defaultDescriptor, textureC.get(), std::move(exportInfoTexCDevice2.semaphores),
exportInfoTexCDevice2.releasedOldLayout, exportInfoTexCDevice2.releasedNewLayout);
// Create TexD on device 1
wgpu::Texture texD = device.CreateTexture(&defaultDescriptor);
// Copy C->D on device 1
SimpleCopyTextureToTexture(device, queue, wrappedTexCDevice1, texD);
// Verify D matches clear color
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), texD, 0, 0);
IgnoreSignalSemaphore(wrappedTexCDevice1);
}
// Tests a larger image is preserved when importing
TEST_P(VulkanImageWrappingUsageTests, LargerImage) {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = 640;
descriptor.size.height = 480;
descriptor.size.depthOrArrayLayers = 1;
descriptor.sampleCount = 1;
descriptor.format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.mipLevelCount = 1;
descriptor.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc;
// Fill memory with textures
std::vector<wgpu::Texture> textures;
for (int i = 0; i < 20; i++) {
textures.push_back(device.CreateTexture(&descriptor));
}
wgpu::Queue secondDeviceQueue = secondDevice.GetQueue();
// Make an image on |secondDevice|
std::unique_ptr<ExternalTexture> texture = mBackend->CreateTexture(
descriptor.size.width, descriptor.size.height, descriptor.format, descriptor.usage);
// Import the image on |secondDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(secondDevice, &descriptor, texture.get(), {}, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Draw a non-trivial picture
uint32_t width = 640, height = 480, pixelSize = 4;
uint32_t bytesPerRow = Align(width * pixelSize, kTextureBytesPerRowAlignment);
std::vector<unsigned char> data(bytesPerRow * (height - 1) + width * pixelSize);
for (uint32_t row = 0; row < height; row++) {
for (uint32_t col = 0; col < width; col++) {
float normRow = static_cast<float>(row) / height;
float normCol = static_cast<float>(col) / width;
float dist = sqrt(normRow * normRow + normCol * normCol) * 3;
dist = dist - static_cast<int>(dist);
data[4 * (row * width + col)] = static_cast<unsigned char>(dist * 255);
data[4 * (row * width + col) + 1] = static_cast<unsigned char>(dist * 255);
data[4 * (row * width + col) + 2] = static_cast<unsigned char>(dist * 255);
data[4 * (row * width + col) + 3] = 255;
}
}
// Write the picture
{
wgpu::Buffer copySrcBuffer = utils::CreateBufferFromData(
secondDevice, data.data(), data.size(), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer copySrc = utils::CreateImageCopyBuffer(copySrcBuffer, 0, bytesPerRow);
wgpu::ImageCopyTexture copyDst =
utils::CreateImageCopyTexture(wrappedTexture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {width, height, 1};
wgpu::CommandEncoder encoder = secondDevice.CreateCommandEncoder();
encoder.CopyBufferToTexture(&copySrc, &copyDst, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
secondDeviceQueue.Submit(1, &commands);
}
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image on |device|
wgpu::Texture nextWrappedTexture =
WrapVulkanImage(device, &descriptor, texture.get(), std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Copy the image into a buffer for comparison
wgpu::BufferDescriptor copyDesc;
copyDesc.size = data.size();
copyDesc.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer copyDstBuffer = device.CreateBuffer(&copyDesc);
{
wgpu::ImageCopyTexture copySrc =
utils::CreateImageCopyTexture(nextWrappedTexture, 0, {0, 0, 0});
wgpu::ImageCopyBuffer copyDst = utils::CreateImageCopyBuffer(copyDstBuffer, 0, bytesPerRow);
wgpu::Extent3D copySize = {width, height, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&copySrc, &copyDst, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
}
// Check the image is not corrupted on |device|
EXPECT_BUFFER_U32_RANGE_EQ(reinterpret_cast<uint32_t*>(data.data()), copyDstBuffer, 0,
data.size() / 4);
IgnoreSignalSemaphore(nextWrappedTexture);
}
// Test that texture descriptor view formats are passed to the backend for wrapped external
// textures, and that contents may be reinterpreted as sRGB.
TEST_P(VulkanImageWrappingUsageTests, SRGBReinterpretation) {
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.format = wgpu::TextureFormat::RGBA8UnormSrgb;
wgpu::TextureDescriptor textureDesc = {};
textureDesc.size = {2, 2, 1};
textureDesc.format = wgpu::TextureFormat::RGBA8Unorm;
textureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
textureDesc.viewFormatCount = 1;
textureDesc.viewFormats = &viewDesc.format;
std::unique_ptr<ExternalTexture> backendTexture = mBackend->CreateTexture(
textureDesc.size.width, textureDesc.size.height, textureDesc.format, textureDesc.usage);
// Import the image on |device|
wgpu::Texture texture =
WrapVulkanImage(device, &textureDesc, backendTexture.get(), {}, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
ASSERT_NE(texture.Get(), nullptr);
wgpu::ImageCopyTexture dst = {};
dst.texture = texture;
std::array<utils::RGBA8, 4> rgbaTextureData = {
utils::RGBA8(180, 0, 0, 255),
utils::RGBA8(0, 84, 0, 127),
utils::RGBA8(0, 0, 62, 100),
utils::RGBA8(62, 180, 84, 90),
};
wgpu::TextureDataLayout dataLayout = {};
dataLayout.bytesPerRow = textureDesc.size.width * sizeof(utils::RGBA8);
queue.WriteTexture(&dst, rgbaTextureData.data(), rgbaTextureData.size() * sizeof(utils::RGBA8),
&dataLayout, &textureDesc.size);
wgpu::TextureView textureView = texture.CreateView(&viewDesc);
utils::ComboRenderPipelineDescriptor pipelineDesc;
pipelineDesc.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
var pos = array(
vec2f(-1.0, -1.0),
vec2f(-1.0, 1.0),
vec2f( 1.0, -1.0),
vec2f(-1.0, 1.0),
vec2f( 1.0, -1.0),
vec2f( 1.0, 1.0));
return vec4f(pos[VertexIndex], 0.0, 1.0);
}
)");
pipelineDesc.cFragment.module = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var texture : texture_2d<f32>;
@fragment
fn main(@builtin(position) coord: vec4f) -> @location(0) vec4f {
return textureLoad(texture, vec2i(coord.xy), 0);
}
)");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(
device, textureDesc.size.width, textureDesc.size.height, wgpu::TextureFormat::RGBA8Unorm);
pipelineDesc.cTargets[0].format = renderPass.colorFormat;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, textureView}});
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(116, 0, 0, 255), //
utils::RGBA8(117, 0, 0, 255), renderPass.color, 0, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 23, 0, 127), //
utils::RGBA8(0, 24, 0, 127), renderPass.color, 1, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 0, 12, 100), //
utils::RGBA8(0, 0, 13, 100), renderPass.color, 0, 1);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(12, 116, 23, 90), //
utils::RGBA8(13, 117, 24, 90), renderPass.color, 1, 1);
IgnoreSignalSemaphore(texture);
}
class VulkanImageWrappingMultithreadTests : public VulkanImageWrappingUsageTests {
protected:
std::vector<wgpu::FeatureName> GetRequiredFeatures() override {
std::vector<wgpu::FeatureName> features;
// TODO(crbug.com/dawn/1678): DawnWire doesn't support thread safe API yet.
if (!UsesWire()) {
features.push_back(wgpu::FeatureName::ImplicitDeviceSynchronization);
}
return features;
}
void SetUp() override {
VulkanImageWrappingUsageTests::SetUp();
// TODO(crbug.com/dawn/1678): DawnWire doesn't support thread safe API yet.
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
}
};
// Test that wrapping multiple VulkanImage and clear them on multiple threads work.
TEST_P(VulkanImageWrappingMultithreadTests, WrapAndClear_OnMultipleThreads) {
// TODO(crbug.com/341124484): Crashes on Linux/Intel UHD 770.
DAWN_SUPPRESS_TEST_IF(IsLinux() && IsBackendValidationEnabled() && IsIntelGen12());
std::vector<std::unique_ptr<ExternalTexture>> testTextures(10);
for (auto& testTexture : testTextures) {
testTexture =
mBackend->CreateTexture(1, 1, defaultDescriptor.format, defaultDescriptor.usage);
}
wgpu::Device writeDevice = CreateDevice();
utils::RunInParallel(testTextures.size(), [&](uint32_t idx) {
// Import the image on |writeDevice|
wgpu::Texture wrappedTexture =
WrapVulkanImage(writeDevice, &defaultDescriptor, testTextures[idx].get(), {},
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Clear |wrappedTexture| on |writeDevice|
ClearImage(writeDevice, wrappedTexture, {1 / 255.0f, 2 / 255.0f, 3 / 255.0f, 4 / 255.0f});
ExternalImageExportInfoVkForTesting exportInfo = GetExternalImageExportInfo();
ASSERT_TRUE(mBackend->ExportImage(wrappedTexture, &exportInfo));
// Import the image to |device|, making sure we wait on signalFd
wgpu::Texture nextWrappedTexture = WrapVulkanImage(
device, &defaultDescriptor, testTextures[idx].get(), std::move(exportInfo.semaphores),
exportInfo.releasedOldLayout, exportInfo.releasedNewLayout);
// Verify |device| sees the changes from |secondDevice|
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(1, 2, 3, 4), nextWrappedTexture, 0, 0);
IgnoreSignalSemaphore(nextWrappedTexture);
});
}
DAWN_INSTANTIATE_TEST_P(VulkanImageWrappingValidationTests,
{VulkanBackend()},
{ExternalImageType::OpaqueFD, ExternalImageType::DmaBuf},
{true, false}, // UseDedicatedAllocation
{true, false} // DetectDedicatedAllocation
);
DAWN_INSTANTIATE_TEST_P(VulkanImageWrappingUsageTests,
{VulkanBackend()},
{ExternalImageType::OpaqueFD, ExternalImageType::DmaBuf},
{true, false}, // UseDedicatedAllocation
{true, false} // DetectDedicatedAllocation
);
DAWN_INSTANTIATE_TEST_P(VulkanImageWrappingMultithreadTests,
{VulkanBackend()},
{ExternalImageType::OpaqueFD, ExternalImageType::DmaBuf},
{true, false}, // UseDedicatedAllocation
{true, false} // DetectDedicatedAllocation
);
} // anonymous namespace
} // namespace dawn::native::vulkan