| // Copyright 2019 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <tuple> |
| #include <vector> |
| |
| #include "dawn/common/Assert.h" |
| #include "dawn/common/Constants.h" |
| #include "dawn/common/Math.h" |
| #include "dawn/tests/DawnTest.h" |
| #include "dawn/utils/ComboRenderPipelineDescriptor.h" |
| #include "dawn/utils/WGPUHelpers.h" |
| |
| namespace dawn { |
| namespace { |
| |
| class GpuMemorySyncTests : public DawnTest { |
| protected: |
| wgpu::Buffer CreateBuffer() { |
| wgpu::BufferDescriptor srcDesc; |
| srcDesc.size = 4; |
| srcDesc.usage = |
| wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Storage; |
| wgpu::Buffer buffer = device.CreateBuffer(&srcDesc); |
| |
| int myData = 0; |
| queue.WriteBuffer(buffer, 0, &myData, sizeof(myData)); |
| return buffer; |
| } |
| |
| std::tuple<wgpu::ComputePipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForCompute( |
| const wgpu::Buffer& buffer) { |
| wgpu::ShaderModule csModule = utils::CreateShaderModule(device, R"( |
| struct Data { |
| a : i32 |
| } |
| @group(0) @binding(0) var<storage, read_write> data : Data; |
| @compute @workgroup_size(1) fn main() { |
| data.a = data.a + 1; |
| })"); |
| |
| wgpu::ComputePipelineDescriptor cpDesc; |
| cpDesc.compute.module = csModule; |
| wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&cpDesc); |
| |
| wgpu::BindGroup bindGroup = |
| utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}}); |
| return std::make_tuple(pipeline, bindGroup); |
| } |
| |
| std::tuple<wgpu::RenderPipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForRender( |
| const wgpu::Buffer& buffer, |
| wgpu::TextureFormat colorFormat) { |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( |
| @vertex fn main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| })"); |
| |
| wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( |
| struct Data { |
| i : i32 |
| } |
| @group(0) @binding(0) var<storage, read_write> data : Data; |
| @fragment fn main() -> @location(0) vec4f { |
| data.i = data.i + 1; |
| return vec4f(f32(data.i) / 255.0, 0.0, 0.0, 1.0); |
| })"); |
| |
| utils::ComboRenderPipelineDescriptor rpDesc; |
| rpDesc.vertex.module = vsModule; |
| rpDesc.cFragment.module = fsModule; |
| rpDesc.primitive.topology = wgpu::PrimitiveTopology::PointList; |
| rpDesc.cTargets[0].format = colorFormat; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc); |
| |
| wgpu::BindGroup bindGroup = |
| utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}}); |
| return std::make_tuple(pipeline, bindGroup); |
| } |
| }; |
| |
| // Clear storage buffer with zero. Then read data, add one, and write the result to storage buffer |
| // in compute pass. Iterate this read-add-write steps per compute pass a few time. The successive |
| // iteration reads the result in buffer from last iteration, which makes the iterations a data |
| // dependency chain. The test verifies that data in buffer among iterations in compute passes is |
| // correctly synchronized. |
| TEST_P(GpuMemorySyncTests, ComputePass) { |
| // Create pipeline, bind group, and buffer for compute pass. |
| wgpu::Buffer buffer = CreateBuffer(); |
| auto [compute, bindGroup] = CreatePipelineAndBindGroupForCompute(buffer); |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| |
| // Iterate the read-add-write operations in compute pass a few times. |
| int iteration = 3; |
| for (int i = 0; i < iteration; ++i) { |
| wgpu::ComputePassEncoder pass = encoder.BeginComputePass(); |
| pass.SetPipeline(compute); |
| pass.SetBindGroup(0, bindGroup); |
| pass.DispatchWorkgroups(1); |
| pass.End(); |
| } |
| |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| // Verify the result. |
| EXPECT_BUFFER_U32_EQ(iteration, buffer, 0); |
| } |
| |
| // Clear storage buffer with zero. Then read data, add one, and write the result to storage buffer |
| // in render pass. Iterate this read-add-write steps per render pass a few time. The successive |
| // iteration reads the result in buffer from last iteration, which makes the iterations a data |
| // dependency chain. In addition, color output by fragment shader depends on the data in storage |
| // buffer, so we can check color in render target to verify that data in buffer among iterations in |
| // render passes is correctly synchronized. |
| TEST_P(GpuMemorySyncTests, RenderPass) { |
| // Create pipeline, bind group, and buffer for render pass. |
| wgpu::Buffer buffer = CreateBuffer(); |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| auto [render, bindGroup] = CreatePipelineAndBindGroupForRender(buffer, renderPass.colorFormat); |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| |
| // Iterate the read-add-write operations in render pass a few times. |
| int iteration = 3; |
| for (int i = 0; i < iteration; ++i) { |
| wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass.SetPipeline(render); |
| pass.SetBindGroup(0, bindGroup); |
| pass.Draw(1); |
| pass.End(); |
| } |
| |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| // Verify the result. |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(iteration, 0, 0, 255), renderPass.color, 0, 0); |
| } |
| |
| // Write into a storage buffer in a render pass. Then read that data in a compute |
| // pass. And verify the data flow is correctly synchronized. |
| TEST_P(GpuMemorySyncTests, RenderPassToComputePass) { |
| // Create pipeline, bind group, and buffer for render pass and compute pass. |
| wgpu::Buffer buffer = CreateBuffer(); |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| |
| auto [render, bindGroup0] = CreatePipelineAndBindGroupForRender(buffer, renderPass.colorFormat); |
| auto [compute, bindGroup1] = CreatePipelineAndBindGroupForCompute(buffer); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| |
| // Write data into a storage buffer in render pass. |
| wgpu::RenderPassEncoder pass0 = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass0.SetPipeline(render); |
| pass0.SetBindGroup(0, bindGroup0); |
| pass0.Draw(1); |
| pass0.End(); |
| |
| // Read that data in compute pass. |
| wgpu::ComputePassEncoder pass1 = encoder.BeginComputePass(); |
| pass1.SetPipeline(compute); |
| pass1.SetBindGroup(0, bindGroup1); |
| pass1.DispatchWorkgroups(1); |
| pass1.End(); |
| |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| // Verify the result. |
| EXPECT_BUFFER_U32_EQ(2, buffer, 0); |
| } |
| |
| // Write into a storage buffer in a compute pass. Then read that data in a render |
| // pass. And verify the data flow is correctly synchronized. |
| TEST_P(GpuMemorySyncTests, ComputePassToRenderPass) { |
| // Create pipeline, bind group, and buffer for compute pass and render pass. |
| wgpu::Buffer buffer = CreateBuffer(); |
| auto [compute, bindGroup1] = CreatePipelineAndBindGroupForCompute(buffer); |
| |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| auto [render, bindGroup0] = CreatePipelineAndBindGroupForRender(buffer, renderPass.colorFormat); |
| |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| |
| // Write data into a storage buffer in compute pass. |
| wgpu::ComputePassEncoder pass0 = encoder.BeginComputePass(); |
| pass0.SetPipeline(compute); |
| pass0.SetBindGroup(0, bindGroup1); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| |
| // Read that data in render pass. |
| wgpu::RenderPassEncoder pass1 = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(render); |
| pass1.SetBindGroup(0, bindGroup0); |
| pass1.Draw(1); |
| pass1.End(); |
| |
| wgpu::CommandBuffer commands = encoder.Finish(); |
| queue.Submit(1, &commands); |
| |
| // Verify the result. |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(2, 0, 0, 255), renderPass.color, 0, 0); |
| } |
| |
| DAWN_INSTANTIATE_TEST( |
| GpuMemorySyncTests, |
| D3D11Backend(), |
| D3D12Backend(), |
| MetalBackend(), |
| OpenGLBackend(), |
| OpenGLESBackend(), |
| VulkanBackend(), |
| VulkanBackend({"vulkan_split_command_buffer_on_compute_pass_after_render_pass"})); |
| |
| class StorageToUniformSyncTests : public DawnTest { |
| protected: |
| void CreateBuffer() { |
| wgpu::BufferDescriptor bufferDesc; |
| bufferDesc.size = sizeof(float); |
| bufferDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform; |
| mBuffer = device.CreateBuffer(&bufferDesc); |
| } |
| |
| std::tuple<wgpu::ComputePipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForCompute() { |
| wgpu::ShaderModule csModule = utils::CreateShaderModule(device, R"( |
| struct Data { |
| a : f32 |
| } |
| @group(0) @binding(0) var<storage, read_write> data : Data; |
| @compute @workgroup_size(1) fn main() { |
| data.a = 1.0; |
| })"); |
| |
| wgpu::ComputePipelineDescriptor cpDesc; |
| cpDesc.compute.module = csModule; |
| wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&cpDesc); |
| |
| wgpu::BindGroup bindGroup = |
| utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, mBuffer}}); |
| return std::make_tuple(pipeline, bindGroup); |
| } |
| |
| std::tuple<wgpu::RenderPipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForRender( |
| wgpu::TextureFormat colorFormat) { |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( |
| @vertex fn main() -> @builtin(position) vec4f { |
| return vec4f(0.0, 0.0, 0.0, 1.0); |
| })"); |
| |
| wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( |
| struct Contents { |
| color : f32 |
| } |
| @group(0) @binding(0) var<uniform> contents : Contents; |
| |
| @fragment fn main() -> @location(0) vec4f { |
| return vec4f(contents.color, 0.0, 0.0, 1.0); |
| })"); |
| |
| utils::ComboRenderPipelineDescriptor rpDesc; |
| rpDesc.vertex.module = vsModule; |
| rpDesc.cFragment.module = fsModule; |
| rpDesc.primitive.topology = wgpu::PrimitiveTopology::PointList; |
| rpDesc.cTargets[0].format = colorFormat; |
| |
| wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc); |
| |
| wgpu::BindGroup bindGroup = |
| utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, mBuffer}}); |
| return std::make_tuple(pipeline, bindGroup); |
| } |
| |
| wgpu::Buffer mBuffer; |
| }; |
| |
| // Write into a storage buffer in compute pass in a command buffer. Then read that data in a render |
| // pass. The two passes use the same command buffer. |
| TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithSameCommandBuffer) { |
| // Create pipeline, bind group, and buffer for compute pass and render pass. |
| CreateBuffer(); |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| auto [compute, computeBindGroup] = CreatePipelineAndBindGroupForCompute(); |
| auto [render, renderBindGroup] = CreatePipelineAndBindGroupForRender(renderPass.colorFormat); |
| |
| // Write data into a storage buffer in compute pass. |
| wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder(); |
| wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass(); |
| pass0.SetPipeline(compute); |
| pass0.SetBindGroup(0, computeBindGroup); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| |
| // Read that data in render pass. |
| wgpu::RenderPassEncoder pass1 = encoder0.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(render); |
| pass1.SetBindGroup(0, renderBindGroup); |
| pass1.Draw(1); |
| pass1.End(); |
| |
| wgpu::CommandBuffer commands = encoder0.Finish(); |
| queue.Submit(1, &commands); |
| |
| // Verify the rendering result. |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kRed, renderPass.color, 0, 0); |
| } |
| |
| // Write into a storage buffer in compute pass in a command buffer. Then read that data in a render |
| // pass. The two passes use the different command buffers. The command buffers are submitted to the |
| // queue in one shot. |
| TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithDifferentCommandBuffers) { |
| // Create pipeline, bind group, and buffer for compute pass and render pass. |
| CreateBuffer(); |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| auto [compute, computeBindGroup] = CreatePipelineAndBindGroupForCompute(); |
| auto [render, renderBindGroup] = CreatePipelineAndBindGroupForRender(renderPass.colorFormat); |
| |
| // Write data into a storage buffer in compute pass. |
| wgpu::CommandBuffer cb[2]; |
| wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder(); |
| wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass(); |
| pass0.SetPipeline(compute); |
| pass0.SetBindGroup(0, computeBindGroup); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| cb[0] = encoder0.Finish(); |
| |
| // Read that data in render pass. |
| wgpu::CommandEncoder encoder1 = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder pass1 = encoder1.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(render); |
| pass1.SetBindGroup(0, renderBindGroup); |
| pass1.Draw(1); |
| pass1.End(); |
| |
| cb[1] = encoder1.Finish(); |
| queue.Submit(2, cb); |
| |
| // Verify the rendering result. |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kRed, renderPass.color, 0, 0); |
| } |
| |
| // Write into a storage buffer in compute pass in a command buffer. Then read that data in a render |
| // pass. The two passes use the different command buffers. The command buffers are submitted to the |
| // queue separately. |
| TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithDifferentQueueSubmits) { |
| // Create pipeline, bind group, and buffer for compute pass and render pass. |
| CreateBuffer(); |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1); |
| auto [compute, computeBindGroup] = CreatePipelineAndBindGroupForCompute(); |
| auto [render, renderBindGroup] = CreatePipelineAndBindGroupForRender(renderPass.colorFormat); |
| |
| // Write data into a storage buffer in compute pass. |
| wgpu::CommandBuffer cb[2]; |
| wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder(); |
| wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass(); |
| pass0.SetPipeline(compute); |
| pass0.SetBindGroup(0, computeBindGroup); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| cb[0] = encoder0.Finish(); |
| queue.Submit(1, &cb[0]); |
| |
| // Read that data in render pass. |
| wgpu::CommandEncoder encoder1 = device.CreateCommandEncoder(); |
| wgpu::RenderPassEncoder pass1 = encoder1.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(render); |
| pass1.SetBindGroup(0, renderBindGroup); |
| pass1.Draw(1); |
| pass1.End(); |
| |
| cb[1] = encoder1.Finish(); |
| queue.Submit(1, &cb[1]); |
| |
| // Verify the rendering result. |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kRed, renderPass.color, 0, 0); |
| } |
| |
| DAWN_INSTANTIATE_TEST(StorageToUniformSyncTests, |
| D3D11Backend(), |
| D3D12Backend(), |
| MetalBackend(), |
| OpenGLBackend(), |
| OpenGLESBackend(), |
| VulkanBackend()); |
| |
| constexpr int kRTSize = 8; |
| constexpr int kVertexBufferStride = 4 * sizeof(float); |
| |
| class MultipleWriteThenMultipleReadTests : public DawnTest { |
| protected: |
| wgpu::Buffer CreateZeroedBuffer(uint64_t size, wgpu::BufferUsage usage) { |
| wgpu::BufferDescriptor srcDesc; |
| srcDesc.size = size; |
| srcDesc.usage = usage; |
| wgpu::Buffer buffer = device.CreateBuffer(&srcDesc); |
| |
| std::vector<uint8_t> zeros(size, 0); |
| queue.WriteBuffer(buffer, 0, zeros.data(), size); |
| |
| return buffer; |
| } |
| }; |
| |
| // Write into a few storage buffers in compute pass. Then read that data in a render pass. The |
| // readonly buffers in render pass include vertex buffer, index buffer, uniform buffer, and readonly |
| // storage buffer. Data to be read in all of these buffers in render pass depend on the write |
| // operation in compute pass. |
| TEST_P(MultipleWriteThenMultipleReadTests, SeparateBuffers) { |
| // TODO(crbug.com/dawn/2295): diagnose this failure on Pixel 6 OpenGLES |
| DAWN_SUPPRESS_TEST_IF(IsOpenGLES() && IsAndroid() && IsARM()); |
| |
| // Create pipeline, bind group, and different buffers for compute pass. |
| wgpu::ShaderModule csModule = utils::CreateShaderModule(device, R"( |
| struct VBContents { |
| pos : array<vec4f, 4> |
| } |
| @group(0) @binding(0) var<storage, read_write> vbContents : VBContents; |
| |
| struct IBContents { |
| indices : array<vec4i, 2> |
| } |
| @group(0) @binding(1) var<storage, read_write> ibContents : IBContents; |
| |
| struct ColorContents { |
| color : f32 |
| } |
| @group(0) @binding(2) var<storage, read_write> uniformContents : ColorContents; |
| @group(0) @binding(3) var<storage, read_write> storageContents : ColorContents; |
| |
| @compute @workgroup_size(1) fn main() { |
| vbContents.pos[0] = vec4f(-1.0, 1.0, 0.0, 1.0); |
| vbContents.pos[1] = vec4f(1.0, 1.0, 0.0, 1.0); |
| vbContents.pos[2] = vec4f(1.0, -1.0, 0.0, 1.0); |
| vbContents.pos[3] = vec4f(-1.0, -1.0, 0.0, 1.0); |
| let placeholder : i32 = 0; |
| ibContents.indices[0] = vec4i(0, 1, 2, 0); |
| ibContents.indices[1] = vec4i(2, 3, placeholder, placeholder); |
| uniformContents.color = 1.0; |
| storageContents.color = 1.0; |
| })"); |
| |
| wgpu::ComputePipelineDescriptor cpDesc; |
| cpDesc.compute.module = csModule; |
| wgpu::ComputePipeline cp = device.CreateComputePipeline(&cpDesc); |
| wgpu::Buffer vertexBuffer = CreateZeroedBuffer( |
| kVertexBufferStride * 4, |
| wgpu::BufferUsage::Vertex | wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst); |
| wgpu::Buffer indexBuffer = CreateZeroedBuffer( |
| sizeof(int) * 4 * 2, |
| wgpu::BufferUsage::Index | wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst); |
| wgpu::Buffer uniformBuffer = |
| CreateZeroedBuffer(sizeof(float), wgpu::BufferUsage::Uniform | wgpu::BufferUsage::Storage | |
| wgpu::BufferUsage::CopyDst); |
| wgpu::Buffer storageBuffer = |
| CreateZeroedBuffer(sizeof(float), wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst); |
| |
| wgpu::BindGroup bindGroup0 = utils::MakeBindGroup( |
| device, cp.GetBindGroupLayout(0), |
| {{0, vertexBuffer}, {1, indexBuffer}, {2, uniformBuffer}, {3, storageBuffer}}); |
| // Write data into storage buffers in compute pass. |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::ComputePassEncoder pass0 = encoder.BeginComputePass(); |
| pass0.SetPipeline(cp); |
| pass0.SetBindGroup(0, bindGroup0); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| |
| // Create pipeline, bind group, and reuse buffers in render pass. |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( |
| @vertex |
| fn main(@location(0) pos : vec4f) -> @builtin(position) vec4f { |
| return pos; |
| })"); |
| |
| wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( |
| struct Buf { |
| color : f32 |
| } |
| |
| @group(0) @binding(0) var<uniform> uniformBuffer : Buf; |
| @group(0) @binding(1) var<storage, read> storageBuffer : Buf; |
| |
| @fragment fn main() -> @location(0) vec4f { |
| return vec4f(uniformBuffer.color, storageBuffer.color, 0.0, 1.0); |
| })"); |
| |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize); |
| |
| utils::ComboRenderPipelineDescriptor rpDesc; |
| rpDesc.vertex.module = vsModule; |
| rpDesc.cFragment.module = fsModule; |
| rpDesc.primitive.topology = wgpu::PrimitiveTopology::TriangleList; |
| rpDesc.vertex.bufferCount = 1; |
| rpDesc.cBuffers[0].arrayStride = kVertexBufferStride; |
| rpDesc.cBuffers[0].attributeCount = 1; |
| rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x4; |
| rpDesc.cTargets[0].format = renderPass.colorFormat; |
| |
| wgpu::RenderPipeline rp = device.CreateRenderPipeline(&rpDesc); |
| |
| wgpu::BindGroup bindGroup1 = utils::MakeBindGroup(device, rp.GetBindGroupLayout(0), |
| {{0, uniformBuffer}, {1, storageBuffer}}); |
| |
| // Read data in buffers in render pass. |
| wgpu::RenderPassEncoder pass1 = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(rp); |
| pass1.SetVertexBuffer(0, vertexBuffer); |
| pass1.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32, 0); |
| pass1.SetBindGroup(0, bindGroup1); |
| pass1.DrawIndexed(6); |
| pass1.End(); |
| |
| wgpu::CommandBuffer commandBuffer = encoder.Finish(); |
| queue.Submit(1, &commandBuffer); |
| |
| // Verify the rendering result. |
| uint32_t min = 1, max = kRTSize - 3; |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, min, min); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, max, min); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, min, max); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, max, max); |
| } |
| |
| // Write into a storage buffer in compute pass. Then read that data in buffer in a render pass. The |
| // buffer is composed of vertices, indices, uniforms and readonly storage. Data to be read in the |
| // buffer in render pass depend on the write operation in compute pass. |
| TEST_P(MultipleWriteThenMultipleReadTests, OneBuffer) { |
| // TODO(crbug.com/dawn/646): diagnose this failure on Pixel 6 OpenGLES |
| DAWN_SUPPRESS_TEST_IF(IsOpenGLES() && IsAndroid() && IsARM()); |
| |
| // Create pipeline, bind group, and a complex buffer for compute pass. |
| wgpu::ShaderModule csModule = utils::CreateShaderModule(device, R"( |
| struct Contents { |
| @align(256) pos : array<vec4f, 4>, |
| @align(256) indices : array<vec4i, 2>, |
| @align(256) color0 : f32, |
| @align(256) color1 : f32, |
| } |
| |
| @group(0) @binding(0) var<storage, read_write> contents : Contents; |
| |
| @compute @workgroup_size(1) fn main() { |
| contents.pos[0] = vec4f(-1.0, 1.0, 0.0, 1.0); |
| contents.pos[1] = vec4f(1.0, 1.0, 0.0, 1.0); |
| contents.pos[2] = vec4f(1.0, -1.0, 0.0, 1.0); |
| contents.pos[3] = vec4f(-1.0, -1.0, 0.0, 1.0); |
| let placeholder : i32 = 0; |
| contents.indices[0] = vec4i(0, 1, 2, 0); |
| contents.indices[1] = vec4i(2, 3, placeholder, placeholder); |
| contents.color0 = 1.0; |
| contents.color1 = 1.0; |
| })"); |
| |
| wgpu::ComputePipelineDescriptor cpDesc; |
| cpDesc.compute.module = csModule; |
| wgpu::ComputePipeline cp = device.CreateComputePipeline(&cpDesc); |
| struct Data { |
| float pos[4][4]; |
| char padding0[256 - sizeof(float) * 16]; |
| int indices[2][4]; |
| char padding1[256 - sizeof(int) * 8]; |
| float color0; |
| char padding2[256 - sizeof(float)]; |
| float color1; |
| char padding3[256 - sizeof(float)]; |
| }; |
| wgpu::Buffer buffer = CreateZeroedBuffer( |
| sizeof(Data), wgpu::BufferUsage::Vertex | wgpu::BufferUsage::Index | |
| wgpu::BufferUsage::Uniform | wgpu::BufferUsage::Storage | |
| wgpu::BufferUsage::CopyDst); |
| wgpu::BindGroup bindGroup0 = |
| utils::MakeBindGroup(device, cp.GetBindGroupLayout(0), {{0, buffer}}); |
| |
| // Write various data (vertices, indices, and uniforms) into the buffer in compute pass. |
| wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); |
| wgpu::ComputePassEncoder pass0 = encoder.BeginComputePass(); |
| pass0.SetPipeline(cp); |
| pass0.SetBindGroup(0, bindGroup0); |
| pass0.DispatchWorkgroups(1); |
| pass0.End(); |
| |
| // Create pipeline, bind group, and reuse the buffer in render pass. |
| wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( |
| @vertex |
| fn main(@location(0) pos : vec4f) -> @builtin(position) vec4f { |
| return pos; |
| })"); |
| |
| wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( |
| struct Buf { |
| color : f32 |
| } |
| @group(0) @binding(0) var<uniform> uniformBuffer : Buf; |
| @group(0) @binding(1) var<storage, read> storageBuffer : Buf; |
| |
| @fragment fn main() -> @location(0) vec4f { |
| return vec4f(uniformBuffer.color, storageBuffer.color, 0.0, 1.0); |
| })"); |
| |
| utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize); |
| |
| utils::ComboRenderPipelineDescriptor rpDesc; |
| rpDesc.vertex.module = vsModule; |
| rpDesc.cFragment.module = fsModule; |
| rpDesc.primitive.topology = wgpu::PrimitiveTopology::TriangleList; |
| rpDesc.vertex.bufferCount = 1; |
| rpDesc.cBuffers[0].arrayStride = kVertexBufferStride; |
| rpDesc.cBuffers[0].attributeCount = 1; |
| rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x4; |
| rpDesc.cTargets[0].format = renderPass.colorFormat; |
| |
| wgpu::RenderPipeline rp = device.CreateRenderPipeline(&rpDesc); |
| |
| wgpu::BindGroup bindGroup1 = |
| utils::MakeBindGroup(device, rp.GetBindGroupLayout(0), |
| {{0, buffer, offsetof(Data, color0), sizeof(float)}, |
| {1, buffer, offsetof(Data, color1), sizeof(float)}}); |
| |
| // Read various data in the buffer in render pass. |
| wgpu::RenderPassEncoder pass1 = encoder.BeginRenderPass(&renderPass.renderPassInfo); |
| pass1.SetPipeline(rp); |
| pass1.SetVertexBuffer(0, buffer); |
| pass1.SetIndexBuffer(buffer, wgpu::IndexFormat::Uint32, offsetof(Data, indices)); |
| pass1.SetBindGroup(0, bindGroup1); |
| pass1.DrawIndexed(6); |
| pass1.End(); |
| |
| wgpu::CommandBuffer commandBuffer = encoder.Finish(); |
| queue.Submit(1, &commandBuffer); |
| |
| // Verify the rendering result. |
| uint32_t min = 1, max = kRTSize - 3; |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, min, min); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, max, min); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, min, max); |
| EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kYellow, renderPass.color, max, max); |
| } |
| |
| DAWN_INSTANTIATE_TEST(MultipleWriteThenMultipleReadTests, |
| D3D11Backend(), |
| D3D12Backend(), |
| MetalBackend(), |
| OpenGLBackend(), |
| OpenGLESBackend(), |
| VulkanBackend()); |
| |
| } // anonymous namespace |
| } // namespace dawn |