blob: 49315cb0cb502d0304eef7bb39189636ab649e76 [file] [log] [blame] [edit]
// Copyright 2017 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
{% from 'dawn/cpp_macros.tmpl' import wgpu_string_constructors with context %}
{% set API = metadata.api.upper() %}
{% set api = API.lower() %}
{% set CAPI = metadata.c_prefix %}
{% if 'dawn' in enabled_tags %}
#ifdef __EMSCRIPTEN__
#error "Do not include this header. Emscripten already provides headers needed for {{metadata.api}}."
#endif
{% endif %}
{% set PREFIX = "" if not c_namespace else c_namespace.SNAKE_CASE() + "_" %}
#ifndef {{PREFIX}}{{API}}_CPP_H_
#define {{PREFIX}}{{API}}_CPP_H_
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <optional>
#include <functional>
#include <string_view>
#include <type_traits>
#include <utility>
#include "{{c_header}}"
#include "{{api}}/{{api}}_cpp_chained_struct.h"
#include "{{api}}/{{api}}_enum_class_bitmasks.h" // IWYU pragma: export
namespace {{metadata.namespace}} {
namespace detail {
constexpr size_t ConstexprMax(size_t a, size_t b) {
return a > b ? a : b;
}
template <typename T>
static T& AsNonConstReference(const T& value) {
return const_cast<T&>(value);
}
} // namespace detail
{% set c_prefix = metadata.c_prefix %}
{% for constant in by_category["constant"] %}
{% set type = as_cppType(constant.type.name) %}
{% set value = c_prefix + "_" + constant.name.SNAKE_CASE() %}
static constexpr {{type}} k{{as_cppType(constant.name)}} = {{ value }};
{% endfor %}
{%- macro render_c_actual_arg(arg) -%}
{%- if arg.annotation == "value" -%}
{%- if arg.type.category == "object" -%}
{{as_varName(arg.name)}}.Get()
{%- elif arg.type.category == "enum" or arg.type.category == "bitmask" -%}
static_cast<{{as_cType(arg.type.name)}}>({{as_varName(arg.name)}})
{%- elif arg.type.category == "structure" -%}
*reinterpret_cast<{{as_cType(arg.type.name)}} const*>(&{{as_varName(arg.name)}})
{%- elif arg.type.category in ["function pointer", "native"] -%}
{{as_varName(arg.name)}}
{%- else -%}
UNHANDLED
{%- endif -%}
{%- else -%}
reinterpret_cast<{{decorate("", as_cType(arg.type.name), arg)}}>({{as_varName(arg.name)}})
{%- endif -%}
{%- endmacro -%}
{%- macro render_cpp_to_c_method_call(type, method) -%}
{{as_cMethodNamespaced(type.name, method.name, c_namespace)}}(Get()
{%- for arg in method.arguments -%},{{" "}}{{render_c_actual_arg(arg)}}
{%- endfor -%}
)
{%- endmacro -%}
//* Although 'optional bool' is defined as an enum value, in C++, we manually implement it to
//* provide conversion utilities.
{% for type in by_category["enum"] if type.name.get() != "optional bool" %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
enum class {{CppType}} : uint32_t {
{% for value in type.values %}
{{as_cppEnum(value.name)}} = {{as_cEnum(type.name, value.name)}},
{% endfor %}
};
static_assert(sizeof({{CppType}}) == sizeof({{CType}}), "sizeof mismatch for {{CppType}}");
static_assert(alignof({{CppType}}) == alignof({{CType}}), "alignof mismatch for {{CppType}}");
{% endfor %}
{% for type in by_category["bitmask"] %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
enum class {{CppType}} : uint64_t {
{% for value in type.values %}
{{as_cppEnum(value.name)}} = {{as_cEnum(type.name, value.name)}},
{% endfor %}
};
static_assert(sizeof({{CppType}}) == sizeof({{CType}}), "sizeof mismatch for {{CppType}}");
static_assert(alignof({{CppType}}) == alignof({{CType}}), "alignof mismatch for {{CppType}}");
{% endfor %}
// TODO(crbug.com/42241461): Update these to not be using the C callback types, and instead be
// defined using C++ types instead. Note that when we remove these, the C++ callback info types
// should also all be removed as they will no longer be necessary given the C++ templated
// functions calls and setter utilities.
{% for type in by_category["function pointer"] %}
using {{as_cppType(type.name)}} = {{as_cType(type.name)}};
{% endfor %}
// Special class for booleans in order to allow implicit conversions.
{% set BoolCppType = as_cppType(types["bool"].name) %}
{% set BoolCType = as_cType(types["bool"].name) %}
class {{BoolCppType}} {
public:
constexpr {{BoolCppType}}() = default;
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
constexpr {{BoolCppType}}(bool value) : mValue(static_cast<{{BoolCType}}>(value)) {}
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
{{BoolCppType}}({{BoolCType}} value): mValue(value) {}
constexpr operator bool() const { return static_cast<bool>(mValue); }
private:
friend struct std::hash<{{BoolCppType}}>;
// Default to false.
{{BoolCType}} mValue = static_cast<{{BoolCType}}>(false);
};
// Special class for optional booleans in order to allow conversions.
{% set OptionalBool = types["optional bool"] %}
{% set OptionalBoolCppType = as_cppType(OptionalBool.name) %}
{% set OptionalBoolCType = as_cType(OptionalBool.name) %}
{% set OptionalBoolUndefined = as_cEnum(OptionalBool.name, find_by_name(OptionalBool.values, "undefined").name) %}
class {{OptionalBoolCppType}} {
public:
constexpr {{OptionalBoolCppType}}() = default;
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
constexpr {{OptionalBoolCppType}}(bool value) : mValue(static_cast<{{OptionalBoolCType}}>(value)) {}
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
constexpr {{OptionalBoolCppType}}(std::optional<bool> value) :
mValue(value ? static_cast<{{OptionalBoolCType}}>(*value) : {{OptionalBoolUndefined}}) {}
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
constexpr {{OptionalBoolCppType}}({{OptionalBoolCType}} value): mValue(value) {}
// Define the values that are equivalent to the enums.
{% for value in OptionalBool.values %}
static const {{OptionalBoolCppType}} {{as_cppEnum(value.name)}};
{% endfor %}
// Assignment operators.
{{OptionalBoolCppType}}& operator=(const bool& value) {
mValue = static_cast<{{OptionalBoolCType}}>(value);
return *this;
}
{{OptionalBoolCppType}}& operator=(const std::optional<bool>& value) {
mValue = value ? static_cast<{{OptionalBoolCType}}>(*value) : {{OptionalBoolUndefined}};
return *this;
}
{{OptionalBoolCppType}}& operator=(const {{OptionalBoolCType}}& value) {
mValue = value;
return *this;
}
// Conversion functions.
operator {{OptionalBoolCType}}() const { return mValue; }
operator std::optional<bool>() const {
if (mValue == {{OptionalBoolUndefined}}) {
return std::nullopt;
}
return static_cast<bool>(mValue);
}
// Comparison functions.
bool operator==({{OptionalBoolCType}} rhs) const {
return mValue == rhs;
}
bool operator!=({{OptionalBoolCType}} rhs) const {
return mValue != rhs;
}
private:
friend struct std::hash<{{OptionalBoolCppType}}>;
// Default to undefined.
{{OptionalBoolCType}} mValue = {{OptionalBoolUndefined}};
};
{% for value in OptionalBool.values %}
inline const {{OptionalBoolCppType}} {{OptionalBoolCppType}}::{{as_cppEnum(value.name)}} = {{OptionalBoolCppType}}({{as_cEnum(OptionalBool.name, value.name)}});
{% endfor %}
// Helper class to wrap Status which allows implicit conversion to bool.
// Used while callers switch to checking the Status enum instead of booleans.
// TODO(crbug.com/42241199): Remove when all callers check the enum.
struct ConvertibleStatus {
// NOLINTNEXTLINE(runtime/explicit) allow implicit construction
constexpr ConvertibleStatus(Status status) : status(status) {}
// NOLINTNEXTLINE(runtime/explicit) allow implicit conversion
constexpr operator bool() const {
return status == Status::Success;
}
// NOLINTNEXTLINE(runtime/explicit) allow implicit conversion
constexpr operator Status() const {
return status;
}
Status status;
};
template<typename Derived, typename CType>
class ObjectBase {
public:
ObjectBase() = default;
ObjectBase(CType handle): mHandle(handle) {
if (mHandle) Derived::{{c_prefix}}AddRef(mHandle);
}
~ObjectBase() {
if (mHandle) Derived::{{c_prefix}}Release(mHandle);
}
ObjectBase(ObjectBase const& other)
: ObjectBase(other.Get()) {
}
Derived& operator=(ObjectBase const& other) {
if (&other != this) {
if (mHandle) Derived::{{c_prefix}}Release(mHandle);
mHandle = other.mHandle;
if (mHandle) Derived::{{c_prefix}}AddRef(mHandle);
}
return static_cast<Derived&>(*this);
}
ObjectBase(ObjectBase&& other) {
mHandle = other.mHandle;
other.mHandle = 0;
}
Derived& operator=(ObjectBase&& other) {
if (&other != this) {
if (mHandle) Derived::{{c_prefix}}Release(mHandle);
mHandle = other.mHandle;
other.mHandle = 0;
}
return static_cast<Derived&>(*this);
}
ObjectBase(std::nullptr_t) {}
Derived& operator=(std::nullptr_t) {
if (mHandle != nullptr) {
Derived::{{c_prefix}}Release(mHandle);
mHandle = nullptr;
}
return static_cast<Derived&>(*this);
}
bool operator==(std::nullptr_t) const {
return mHandle == nullptr;
}
bool operator!=(std::nullptr_t) const {
return mHandle != nullptr;
}
explicit operator bool() const {
return mHandle != nullptr;
}
CType Get() const {
return mHandle;
}
CType MoveToCHandle() {
CType result = mHandle;
mHandle = 0;
return result;
}
static Derived Acquire(CType handle) {
Derived result;
result.mHandle = handle;
return result;
}
protected:
CType mHandle = nullptr;
};
{% macro render_cpp_default_value(member, is_struct, force_default=False) -%}
{%- if member.json_data.get("no_default", false) -%}
{%- elif member.annotation in ["*", "const*"] and member.optional or member.default_value == "nullptr" -%}
{{" "}}= nullptr
{%- elif member.type.category == "object" and member.optional and is_struct -%}
{{" "}}= nullptr
{%- elif member.type.category in ["enum", "bitmask"] and member.default_value != None -%}
{{" "}}= {{as_cppType(member.type.name)}}::{{as_cppEnum(Name(member.default_value))}}
{%- elif member.type.category == "native" and member.default_value != None -%}
{{" "}}= {{member.default_value}}
{%- elif member.default_value != None -%}
{{" "}}= {{member.default_value}}
{%- elif member.type.category == "structure" and member.annotation == "value" and is_struct -%}
{{" "}}= {}
{%- else -%}
{{assert(member.default_value == None)}}
{%- if force_default -%}
{{" "}}= {}
{%- endif -%}
{%- endif -%}
{%- endmacro %}
//* This rendering macro should ONLY be used for callback info type functions.
{% macro render_cpp_callback_info_template_method_declaration(type, method, dfn=False) %}
{% set CppType = as_cppType(type.name) %}
{% set OriginalMethodName = method.name.CamelCase() %}
{% set MethodName = OriginalMethodName[:-1] if method.name.chunks[-1] == "2" else OriginalMethodName %}
{% set MethodName = CppType + "::" + MethodName if dfn else MethodName %}
//* Stripping the 2 at the end of the callback functions for now until we can deprecate old ones.
//* TODO: crbug.com/dawn/2509 - Remove name handling once old APIs are deprecated.
{% set CallbackInfoType = (method.arguments|last).type %}
{% set CallbackType = find_by_name(CallbackInfoType.members, "callback").type %}
{% set SfinaeArg = " = std::enable_if_t<std::is_convertible_v<F, Cb*>>" if not dfn else "" %}
template <typename F, typename T,
typename Cb
{%- if not dfn -%}
{{" "}}= void (
{%- for arg in CallbackType.arguments -%}
{{as_annotated_cppType(arg)}}{{", "}}
{%- endfor -%}
T userdata)
{%- endif -%},
typename{{SfinaeArg}}>
{{as_cppType(method.return_type.name)}} {{MethodName}}(
{%- for arg in method.arguments if arg.type.category != "callback info" -%}
{%- if arg.type.category == "object" and arg.annotation == "value" -%}
{{as_cppType(arg.type.name)}} const& {{as_varName(arg.name)}}{{ ", "}}
{%- else -%}
{{as_annotated_cppType(arg)}}{{ ", "}}
{%- endif -%}
{%- endfor -%}
{{as_cppType(types["callback mode"].name)}} callbackMode, F callback, T userdata) const
{%- endmacro %}
//* This rendering macro should ONLY be used for callback info type functions.
{% macro render_cpp_callback_info_lambda_method_declaration(type, method, dfn=False) %}
{% set CppType = as_cppType(type.name) %}
{% set OriginalMethodName = method.name.CamelCase() %}
{% set MethodName = OriginalMethodName[:-1] if method.name.chunks[-1] == "2" else OriginalMethodName %}
{% set MethodName = CppType + "::" + MethodName if dfn else MethodName %}
//* Stripping the 2 at the end of the callback functions for now until we can deprecate old ones.
//* TODO: crbug.com/dawn/2509 - Remove name handling once old APIs are deprecated.
{% set CallbackInfoType = (method.arguments|last).type %}
{% set CallbackType = find_by_name(CallbackInfoType.members, "callback").type %}
{% set SfinaeArg = " = std::enable_if_t<std::is_convertible_v<L, Cb>>" if not dfn else "" %}
template <typename L,
typename Cb
{%- if not dfn -%}
{{" "}}= std::function<void(
{%- for arg in CallbackType.arguments -%}
{%- if not loop.first %}, {% endif -%}
{{as_annotated_cppType(arg)}}
{%- endfor -%}
)>
{%- endif -%},
typename{{SfinaeArg}}>
{{as_cppType(method.return_type.name)}} {{MethodName}}(
{%- for arg in method.arguments if arg.type.category != "callback info" -%}
{%- if arg.type.category == "object" and arg.annotation == "value" -%}
{{as_cppType(arg.type.name)}} const& {{as_varName(arg.name)}}{{ ", "}}
{%- else -%}
{{as_annotated_cppType(arg)}}{{ ", "}}
{%- endif -%}
{%- endfor -%}
{{as_cppType(types["callback mode"].name)}} callbackMode, L callback) const
{%- endmacro %}
//* This rendering macro should NOT be used for callback info type functions.
{% macro render_cpp_method_declaration(type, method, dfn=False) %}
{% set CppType = as_cppType(type.name) %}
{% set OriginalMethodName = method.name.CamelCase() %}
{% set MethodName = OriginalMethodName[:-1] if method.name.chunks[-1] == "f" or method.name.chunks[-1] == "2" else OriginalMethodName %}
{% set MethodName = CppType + "::" + MethodName if dfn else MethodName %}
{{"ConvertibleStatus" if method.return_type.name.get() == "status" else as_cppType(method.return_type.name)}} {{MethodName}}(
{%- for arg in method.arguments -%}
{%- if not loop.first %}, {% endif -%}
{%- if arg.type.category == "object" and arg.annotation == "value" -%}
{{as_cppType(arg.type.name)}} const& {{as_varName(arg.name)}}
{%- else -%}
{{as_annotated_cppType(arg)}}
{%- endif -%}
{% if not dfn %}{{render_cpp_default_value(arg, False)}}{% endif %}
{%- endfor -%}
) const
{%- endmacro %}
{%- macro render_function_call(function) -%}
{{as_cMethodNamespaced(None, function.name, c_namespace)}}(
{%- for arg in function.arguments -%}
{% if not loop.first %}, {% endif %}{{render_c_actual_arg(arg)}}
{%- endfor -%}
)
{%- endmacro -%}
{%- if metadata.namespace != 'wgpu' %}
// The operators of webgpu_enum_class_bitmasks.h are in the wgpu:: namespace,
// and need to be imported into this namespace for Argument Dependent Lookup.
WGPU_IMPORT_BITMASK_OPERATORS
{% endif %}
{% if c_namespace %}
namespace {{c_namespace.namespace_case()}} {
{% endif %}
{% for type in by_category["object"] %}
class {{as_cppType(type.name)}};
{% endfor %}
{% for type in by_category["structure"] %}
struct {{as_cppType(type.name)}};
{% endfor %}
{% macro render_cpp_callback_info_template_method_impl(type, method) %}
{{render_cpp_callback_info_template_method_declaration(type, method, dfn=True)}} {
{% set CallbackInfoType = (method.arguments|last).type %}
{% set CallbackType = find_by_name(CallbackInfoType.members, "callback").type %}
{{as_cType(CallbackInfoType.name)}} callbackInfo = {};
callbackInfo.mode = static_cast<{{as_cType(types["callback mode"].name)}}>(callbackMode);
callbackInfo.callback = [](
{%- for arg in CallbackType.arguments -%}
{{as_annotated_cType(arg)}}{{", "}}
{%- endfor -%}
void* callback, void* userdata) {
auto cb = reinterpret_cast<Cb*>(callback);
(*cb)(
{%- for arg in CallbackType.arguments -%}
{{convert_cType_to_cppType(arg.type, arg.annotation, as_varName(arg.name))}}{{", "}}
{%- endfor -%}
static_cast<T>(userdata));
};
callbackInfo.userdata1 = reinterpret_cast<void*>(+callback);
callbackInfo.userdata2 = reinterpret_cast<void*>(userdata);
auto result = {{as_cMethodNamespaced(type.name, method.name, c_namespace)}}(Get(){{", "}}
{%- for arg in method.arguments if arg.type.category != "callback info" -%}
{{render_c_actual_arg(arg)}}{{", "}}
{%- endfor -%}
callbackInfo);
return {{convert_cType_to_cppType(method.return_type, 'value', 'result') | indent(4)}};
}
{%- endmacro %}
{% macro render_cpp_callback_info_lambda_method_impl(type, method) %}
{{render_cpp_callback_info_lambda_method_declaration(type, method, dfn=True)}} {
{% set CallbackInfoType = (method.arguments|last).type %}
{% set CallbackType = find_by_name(CallbackInfoType.members, "callback").type %}
using F = void (
{%- for arg in CallbackType.arguments -%}
{%- if not loop.first %}, {% endif -%}
{{as_annotated_cppType(arg)}}
{%- endfor -%}
);
{{as_cType(CallbackInfoType.name)}} callbackInfo = {};
callbackInfo.mode = static_cast<{{as_cType(types["callback mode"].name)}}>(callbackMode);
if constexpr (std::is_convertible_v<L, F*>) {
callbackInfo.callback = [](
{%- for arg in CallbackType.arguments -%}
{{as_annotated_cType(arg)}}{{", "}}
{%- endfor -%}
void* callback, void*) {
auto cb = reinterpret_cast<F*>(callback);
(*cb)(
{%- for arg in CallbackType.arguments -%}
{%- if not loop.first %}, {% endif -%}
{{convert_cType_to_cppType(arg.type, arg.annotation, as_varName(arg.name))}}
{%- endfor -%});
};
callbackInfo.userdata1 = reinterpret_cast<void*>(+callback);
callbackInfo.userdata2 = nullptr;
auto result = {{as_cMethodNamespaced(type.name, method.name, c_namespace)}}(Get(){{", "}}
{%- for arg in method.arguments if arg.type.category != "callback info" -%}
{{render_c_actual_arg(arg)}}{{", "}}
{%- endfor -%}
callbackInfo);
return {{convert_cType_to_cppType(method.return_type, 'value', 'result') | indent(8)}};
} else {
auto* lambda = new L(std::move(callback));
callbackInfo.callback = [](
{%- for arg in CallbackType.arguments -%}
{{as_annotated_cType(arg)}}{{", "}}
{%- endfor -%}
void* callback, void*) {
std::unique_ptr<L> lambda(reinterpret_cast<L*>(callback));
(*lambda)(
{%- for arg in CallbackType.arguments -%}
{%- if not loop.first %}, {% endif -%}
{{convert_cType_to_cppType(arg.type, arg.annotation, as_varName(arg.name))}}
{%- endfor -%});
};
callbackInfo.userdata1 = reinterpret_cast<void*>(lambda);
callbackInfo.userdata2 = nullptr;
auto result = {{as_cMethodNamespaced(type.name, method.name, c_namespace)}}(Get(){{", "}}
{%- for arg in method.arguments if arg.type.category != "callback info" -%}
{{render_c_actual_arg(arg)}}{{", "}}
{%- endfor -%}
callbackInfo);
return {{convert_cType_to_cppType(method.return_type, 'value', 'result') | indent(8)}};
}
}
{%- endmacro %}
{% macro render_cpp_method_impl(type, method) %}
{{render_cpp_method_declaration(type, method, dfn=True)}} {
{% for arg in method.arguments if arg.type.has_free_members_function and arg.annotation == '*' %}
*{{as_varName(arg.name)}} = {{as_cppType(arg.type.name)}}();
{% endfor %}
{% if method.return_type.name.concatcase() == "void" %}
{{render_cpp_to_c_method_call(type, method)}};
{% else %}
auto result = {{render_cpp_to_c_method_call(type, method)}};
return {{convert_cType_to_cppType(method.return_type, 'value', 'result') | indent(8)}};
{% endif %}
}
{%- endmacro %}
{% for type in by_category["object"] %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
class {{CppType}} : public ObjectBase<{{CppType}}, {{CType}}> {
public:
using ObjectBase::ObjectBase;
using ObjectBase::operator=;
{% for method in type.methods %}
{% if has_callbackInfoStruct(method) %}
{{render_cpp_callback_info_template_method_declaration(type, method)|indent}};
{{render_cpp_callback_info_lambda_method_declaration(type, method)|indent}};
{% else %}
inline {{render_cpp_method_declaration(type, method)}};
{% endif %}
{% endfor %}
{% if CppType == "Instance" %}
inline WaitStatus WaitAny(Future f, uint64_t timeout);
{% endif %}
private:
friend ObjectBase<{{CppType}}, {{CType}}>;
static inline void {{c_prefix}}AddRef({{CType}} handle);
static inline void {{c_prefix}}Release({{CType}} handle);
};
{% endfor %}
// ChainedStruct
{% set c_prefix = metadata.c_prefix %}
static_assert(sizeof(ChainedStruct) == sizeof({{c_prefix}}ChainedStruct),
"sizeof mismatch for ChainedStruct");
static_assert(alignof(ChainedStruct) == alignof({{c_prefix}}ChainedStruct),
"alignof mismatch for ChainedStruct");
static_assert(offsetof(ChainedStruct, nextInChain) == offsetof({{c_prefix}}ChainedStruct, next),
"offsetof mismatch for ChainedStruct::nextInChain");
static_assert(offsetof(ChainedStruct, sType) == offsetof({{c_prefix}}ChainedStruct, sType),
"offsetof mismatch for ChainedStruct::sType");
//* Special structures that require some custom code generation.
{% set SpecialStructures = ["device descriptor"] %}
{% for type in by_category["structure"] if type.name.get() not in SpecialStructures %}
{% set Out = "Out" if type.output else "" %}
{% set const = "const" if not type.output else "" %}
{% if type.chained %}
{% for root in type.chain_roots %}
// Can be chained in {{as_cppType(root.name)}}
{% endfor %}
struct {{as_cppType(type.name)}} : ChainedStruct{{Out}} {
inline {{as_cppType(type.name)}}();
struct Init;
inline {{as_cppType(type.name)}}(Init&& init);
{% else %}
struct {{as_cppType(type.name)}} {
{% if type.has_free_members_function %}
inline {{as_cppType(type.name)}}();
{% endif %}
{% endif %}
{% if type.has_free_members_function %}
inline ~{{as_cppType(type.name)}}();
{{as_cppType(type.name)}}(const {{as_cppType(type.name)}}&) = delete;
{{as_cppType(type.name)}}& operator=(const {{as_cppType(type.name)}}&) = delete;
inline {{as_cppType(type.name)}}({{as_cppType(type.name)}}&&);
inline {{as_cppType(type.name)}}& operator=({{as_cppType(type.name)}}&&);
{% endif %}
inline operator const {{as_cType(type.name)}}&() const noexcept;
{% if type.extensible %}
ChainedStruct{{Out}} {{const}} * nextInChain = nullptr;
{% endif %}
{% for member in type.members %}
{% set member_declaration = as_annotated_cppType(member, type.has_free_members_function) + render_cpp_default_value(member, True, type.has_free_members_function) %}
{% if type.chained and loop.first %}
//* Align the first member after ChainedStruct to match the C struct layout.
//* It has to be aligned both to its natural and ChainedStruct's alignment.
static constexpr size_t kFirstMemberAlignment = detail::ConstexprMax(alignof(ChainedStruct{{out}}), alignof({{decorate("", as_cppType(member.type.name), member)}}));
alignas(kFirstMemberAlignment) {{member_declaration}};
{% else %}
{{member_declaration}};
{% endif %}
{% endfor %}
//* Custom string constructors
{% if type.name.get() == "string view" %}
{{wgpu_string_constructors(as_cppType(type.name), false) | indent(4)}}
{% elif type.name.get() == "nullable string view" %}
{{wgpu_string_constructors(as_cppType(type.name), true) | indent(4)}}
{% endif %}
{% if type.has_free_members_function %}
private:
{% if type.has_free_members_function %}
inline void FreeMembers();
{% endif %}
static inline void Reset({{as_cppType(type.name)}}& value);
{% endif %}
};
{% endfor %}
//* Device descriptor is specially implemented in C++ in order to hide callback info. Note that
//* this is placed at the end of the structs and works for the device descriptor because no other
//* structs include it as a member. In the future for these special structs, we may need to add
//* a way to order the definitions w.r.t the topology of the structs.
{% set type = types["device descriptor"] %}
{% set CppType = as_cppType(type.name) %}
namespace detail {
struct {{CppType}} {
ChainedStruct const * nextInChain = nullptr;
{% for member in type.members %}
{% if member.type.category != "callback info" %}
{{as_annotated_cppType(member, type.has_free_members_function) + render_cpp_default_value(member, True, type.has_free_members_function)}};
{% else %}
{{as_annotated_cType(member)}} = {{CAPI}}_{{member.name.SNAKE_CASE()}}_INIT;
{% endif %}
{% endfor %}
};
} // namespace detail
struct {{CppType}} : protected detail::{{CppType}} {
inline operator const {{as_cType(type.name)}}&() const noexcept;
using detail::{{CppType}}::nextInChain;
{% for member in type.members %}
{% if member.type.category != "callback info" %}
using detail::{{CppType}}::{{as_varName(member.name)}};
{% endif %}
{% endfor %}
inline {{CppType}}();
struct Init;
inline {{CppType}}(Init&& init);
template <typename F, typename T,
typename Cb = void (const Device& device, DeviceLostReason reason, const char * message, T userdata),
typename = std::enable_if_t<std::is_convertible_v<F, Cb*>>>
void SetDeviceLostCallback(CallbackMode callbackMode, F callback, T userdata);
template <typename L,
typename Cb = std::function<void(const Device& device, DeviceLostReason reason, const char * message)>,
typename = std::enable_if_t<std::is_convertible_v<L, Cb>>>
void SetDeviceLostCallback(CallbackMode callbackMode, L callback);
template <typename F, typename T,
typename Cb = void (const Device& device, ErrorType type, const char * message, T userdata),
typename = std::enable_if_t<std::is_convertible_v<F, Cb*>>>
void SetUncapturedErrorCallback(F callback, T userdata);
template <typename L,
typename Cb = std::function<void(const Device& device, ErrorType type, const char * message)>,
typename = std::enable_if_t<std::is_convertible_v<L, Cb>>>
void SetUncapturedErrorCallback(L callback);
};
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
// error: 'offsetof' within non-standard-layout type '{{metadata.namespace}}::XXX' is conditionally-supported
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
#endif
{% for type in by_category["structure"] if type.name.get() not in SpecialStructures %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
// {{CppType}} implementation
{% if type.chained %}
{% set Out = "Out" if type.output else "" %}
{% set const = "const" if not type.output else "" %}
{{CppType}}::{{CppType}}()
: ChainedStruct{{Out}} { nullptr, SType::{{type.name.CamelCase()}} } {}
struct {{CppType}}::Init {
ChainedStruct{{Out}} * {{const}} nextInChain;
{% for member in type.members %}
{% set member_declaration = as_annotated_cppType(member, type.has_free_members_function) + render_cpp_default_value(member, True, type.has_free_members_function) %}
{{member_declaration}};
{% endfor %}
};
{{CppType}}::{{CppType}}({{CppType}}::Init&& init)
: ChainedStruct{{Out}} { init.nextInChain, SType::{{type.name.CamelCase()}} }
{%- for member in type.members -%},{{" "}}
{{as_varName(member.name)}}(std::move(init.{{as_varName(member.name)}}))
{%- endfor -%}
{}
{% elif type.has_free_members_function %}
{{CppType}}::{{CppType}}() = default;
{% endif %}
{% if type.has_free_members_function %}
{{CppType}}::~{{CppType}}() {
FreeMembers();
}
{{CppType}}::{{CppType}}({{CppType}}&& rhs)
: {% for member in type.members %}
{%- set memberName = member.name.camelCase() -%}
{{memberName}}(rhs.{{memberName}}){% if not loop.last %},{{"\n "}}{% endif %}
{% endfor -%}
{
Reset(rhs);
}
{{CppType}}& {{CppType}}::operator=({{CppType}}&& rhs) {
if (&rhs == this) {
return *this;
}
FreeMembers();
{% for member in type.members %}
::{{metadata.namespace}}::detail::AsNonConstReference(this->{{member.name.camelCase()}}) = std::move(rhs.{{member.name.camelCase()}});
{% endfor %}
Reset(rhs);
return *this;
}
{% if type.has_free_members_function %}
void {{CppType}}::FreeMembers() {
if (
{%- for member in type.members if member.annotation != 'value' %}
{% if not loop.first %} || {% endif -%}
this->{{member.name.camelCase()}} != nullptr
{%- endfor -%}
) {
{{as_cMethodNamespaced(type.name, Name("free members"), c_namespace)}}(
*reinterpret_cast<{{CType}}*>(this));
}
}
{% endif %}
// static
void {{CppType}}::Reset({{CppType}}& value) {
{{CppType}} defaultValue{};
{% for member in type.members %}
::{{metadata.namespace}}::detail::AsNonConstReference(value.{{member.name.camelCase()}}) = defaultValue.{{member.name.camelCase()}};
{% endfor %}
}
{% endif %}
{{CppType}}::operator const {{CType}}&() const noexcept {
return *reinterpret_cast<const {{CType}}*>(this);
}
static_assert(sizeof({{CppType}}) == sizeof({{CType}}), "sizeof mismatch for {{CppType}}");
static_assert(alignof({{CppType}}) == alignof({{CType}}), "alignof mismatch for {{CppType}}");
{% if type.extensible %}
static_assert(offsetof({{CppType}}, nextInChain) == offsetof({{CType}}, nextInChain),
"offsetof mismatch for {{CppType}}::nextInChain");
{% endif %}
{% for member in type.members %}
{% set memberName = member.name.camelCase() %}
static_assert(offsetof({{CppType}}, {{memberName}}) == offsetof({{CType}}, {{memberName}}),
"offsetof mismatch for {{CppType}}::{{memberName}}");
{% endfor %}
{% endfor %}
//* Special implementation for device descriptor.
{% set type = types["device descriptor"] %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
// {{CppType}} implementation
{{CppType}}::operator const {{CType}}&() const noexcept {
return *reinterpret_cast<const {{CType}}*>(this);
}
{{CppType}}::{{CppType}}() : detail::{{CppType}} {} {
static_assert(offsetof({{CppType}}, nextInChain) == offsetof({{CType}}, nextInChain),
"offsetof mismatch for {{CppType}}::nextInChain");
{% for member in type.members %}
{% set memberName = member.name.camelCase() %}
static_assert(offsetof({{CppType}}, {{memberName}}) == offsetof({{CType}}, {{memberName}}),
"offsetof mismatch for {{CppType}}::{{memberName}}");
{% endfor %}
}
struct {{CppType}}::Init {
ChainedStruct const * nextInChain;
{% for member in type.members if member.type.category != "callback info" %}
{% set member_declaration = as_annotated_cppType(member, type.has_free_members_function) + render_cpp_default_value(member, True, type.has_free_members_function) %}
{{member_declaration}};
{% endfor %}
};
{{CppType}}::{{CppType}}({{CppType}}::Init&& init) : detail::{{CppType}} {
init.nextInChain
{%- for member in type.members if member.type.category != "callback info" -%},{{" "}}
std::move(init.{{as_varName(member.name)}})
{%- endfor -%}
} {}
static_assert(sizeof({{CppType}}) == sizeof({{CType}}), "sizeof mismatch for {{CppType}}");
static_assert(alignof({{CppType}}) == alignof({{CType}}), "alignof mismatch for {{CppType}}");
template <typename F, typename T, typename Cb, typename>
void {{CppType}}::SetDeviceLostCallback(CallbackMode callbackMode, F callback, T userdata) {
assert(deviceLostCallbackInfo2.callback == nullptr);
deviceLostCallbackInfo2.mode = static_cast<WGPUCallbackMode>(callbackMode);
deviceLostCallbackInfo2.callback = [](WGPUDevice const * device, WGPUDeviceLostReason reason, char const * message, void* callback, void* userdata) {
auto cb = reinterpret_cast<Cb*>(callback);
// We manually acquire and release the device to avoid changing any ref counts.
auto apiDevice = Device::Acquire(*device);
(*cb)(apiDevice, static_cast<DeviceLostReason>(reason), message, static_cast<T>(userdata));
apiDevice.MoveToCHandle();
};
deviceLostCallbackInfo2.userdata1 = reinterpret_cast<void*>(+callback);
deviceLostCallbackInfo2.userdata2 = reinterpret_cast<void*>(userdata);
}
template <typename L, typename Cb, typename>
void {{CppType}}::SetDeviceLostCallback(CallbackMode callbackMode, L callback) {
assert(deviceLostCallbackInfo2.callback == nullptr);
using F = void (const Device& device, DeviceLostReason reason, const char * message);
deviceLostCallbackInfo2.mode = static_cast<WGPUCallbackMode>(callbackMode);
if constexpr (std::is_convertible_v<L, F*>) {
deviceLostCallbackInfo2.callback = [](WGPUDevice const * device, WGPUDeviceLostReason reason, char const * message, void* callback, void*) {
auto cb = reinterpret_cast<F*>(callback);
// We manually acquire and release the device to avoid changing any ref counts.
auto apiDevice = Device::Acquire(*device);
(*cb)(apiDevice, static_cast<DeviceLostReason>(reason), message);
apiDevice.MoveToCHandle();
};
deviceLostCallbackInfo2.userdata1 = reinterpret_cast<void*>(+callback);
deviceLostCallbackInfo2.userdata2 = nullptr;
} else {
auto* lambda = new L(std::move(callback));
deviceLostCallbackInfo2.callback = [](WGPUDevice const * device, WGPUDeviceLostReason reason, char const * message, void* callback, void*) {
std::unique_ptr<L> lambda(reinterpret_cast<L*>(callback));
// We manually acquire and release the device to avoid changing any ref counts.
auto apiDevice = Device::Acquire(*device);
(*lambda)(apiDevice, static_cast<DeviceLostReason>(reason), message);
apiDevice.MoveToCHandle();
};
deviceLostCallbackInfo2.userdata1 = reinterpret_cast<void*>(lambda);
deviceLostCallbackInfo2.userdata2 = nullptr;
}
}
template <typename F, typename T, typename Cb, typename>
void {{CppType}}::SetUncapturedErrorCallback(F callback, T userdata) {
uncapturedErrorCallbackInfo2.callback = [](WGPUDevice const * device, WGPUErrorType type, char const * message, void* callback, void* userdata) {
auto cb = reinterpret_cast<Cb*>(callback);
// We manually acquire and release the device to avoid changing any ref counts.
auto apiDevice = Device::Acquire(*device);
(*cb)(apiDevice, static_cast<ErrorType>(type), message, static_cast<T>(userdata));
apiDevice.MoveToCHandle();
};
uncapturedErrorCallbackInfo2.userdata1 = reinterpret_cast<void*>(+callback);
uncapturedErrorCallbackInfo2.userdata2 = reinterpret_cast<void*>(userdata);
}
template <typename L, typename Cb, typename>
void {{CppType}}::SetUncapturedErrorCallback(L callback) {
using F = void (const Device& device, ErrorType type, const char * message);
static_assert(std::is_convertible_v<L, F*>, "Uncaptured error callback cannot be a binding lambda");
uncapturedErrorCallbackInfo2.callback = [](WGPUDevice const * device, WGPUErrorType type, char const * message, void* callback, void*) {
auto cb = reinterpret_cast<F*>(callback);
// We manually acquire and release the device to avoid changing any ref counts.
auto apiDevice = Device::Acquire(*device);
(*cb)(apiDevice, static_cast<ErrorType>(type), message);
apiDevice.MoveToCHandle();
};
uncapturedErrorCallbackInfo2.userdata1 = reinterpret_cast<void*>(+callback);
uncapturedErrorCallbackInfo2.userdata2 = nullptr;
}
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
{% for type in by_category["object"] %}
{% set CppType = as_cppType(type.name) %}
{% set CType = as_cType(type.name) %}
// {{CppType}} implementation
{% for method in type.methods %}
{% if has_callbackInfoStruct(method) %}
{{render_cpp_callback_info_template_method_impl(type, method)}}
{{render_cpp_callback_info_lambda_method_impl(type, method)}}
{% else %}
{{render_cpp_method_impl(type, method)}}
{% endif %}
{% endfor %}
{% if CppType == "Instance" %}
WaitStatus Instance::WaitAny(Future f, uint64_t timeout) {
FutureWaitInfo waitInfo { f };
return WaitAny(1, &waitInfo, timeout);
}
{% endif %}
void {{CppType}}::{{c_prefix}}AddRef({{CType}} handle) {
if (handle != nullptr) {
{{as_cMethodNamespaced(type.name, Name("add ref"), c_namespace)}}(handle);
}
}
void {{CppType}}::{{c_prefix}}Release({{CType}} handle) {
if (handle != nullptr) {
{{as_cMethodNamespaced(type.name, Name("release"), c_namespace)}}(handle);
}
}
static_assert(sizeof({{CppType}}) == sizeof({{CType}}), "sizeof mismatch for {{CppType}}");
static_assert(alignof({{CppType}}) == alignof({{CType}}), "alignof mismatch for {{CppType}}");
{% endfor %}
{% if c_namespace %}
} // namespace {{c_namespace.namespace_case()}}
{% for type in by_category["object"] %}
using {{as_cppType(type.name)}} = {{c_namespace.namespace_case()}}::{{as_cppType(type.name)}};
{% endfor %}
{% for type in by_category["structure"] %}
using {{as_cppType(type.name)}} = {{c_namespace.namespace_case()}}::{{as_cppType(type.name)}};
{% endfor %}
{% endif %}
{% for typeDef in by_category["typedef"] %}
// {{as_cppType(typeDef.name)}} is deprecated.
// Use {{as_cppType(typeDef.type.name)}} instead.
using {{as_cppType(typeDef.name)}} = {{as_cppType(typeDef.type.name)}};
{% endfor %}
// Free Functions
{% for function in by_category["function"] if not function.no_cpp %}
//* TODO(crbug.com/42241188): Remove "2" suffix when WGPUStringView changes complete.
{% set OriginalFunctionName = as_cppType(function.name) %}
{% set FunctionName = OriginalFunctionName[:-1] if function.name.chunks[-1] == "2" else OriginalFunctionName %}
static inline {{as_cppType(function.return_type.name)}} {{FunctionName}}(
{%- for arg in function.arguments -%}
{%- if not loop.first %}, {% endif -%}
{%- if arg.type.name.get() == "string" and arg.annotation == "value" -%}
{%- if arg.optional -%}
std::optional<std::string_view> {{as_varName(arg.name)}}{{render_cpp_default_value(arg, False)}}
{%- else -%}
std::string_view {{as_varName(arg.name)}}{{render_cpp_default_value(arg, False)}}
{%- endif -%}
{%- else -%}
{{as_annotated_cppType(arg)}}{{render_cpp_default_value(arg, False)}}
{%- endif -%}
{%- endfor -%}
) {
{% if function.return_type.name.concatcase() == "void" %}
{{render_function_call(function)}};
{% else %}
auto result = {{render_function_call(function)}};
return {{convert_cType_to_cppType(function.return_type, 'value', 'result')}};
{% endif %}
}
{% endfor %}
} // namespace {{metadata.namespace}}
namespace wgpu {
{% for type in by_category["bitmask"] %}
template<>
struct IsWGPUBitmask<{{metadata.namespace}}::{{as_cppType(type.name)}}> {
static constexpr bool enable = true;
};
{% endfor %}
} // namespace wgpu
namespace std {
// Custom boolean class needs corresponding hash function so that it appears as a transparent bool.
template <>
struct hash<{{metadata.namespace}}::{{BoolCppType}}> {
public:
size_t operator()(const {{metadata.namespace}}::{{BoolCppType}} &v) const {
return hash<bool>()(v);
}
};
template <>
struct hash<{{metadata.namespace}}::{{OptionalBoolCppType}}> {
public:
size_t operator()(const {{metadata.namespace}}::{{OptionalBoolCppType}} &v) const {
return hash<{{OptionalBoolCType}}>()(v.mValue);
}
};
} // namespace std
#endif // {{PREFIX}}{{API}}_CPP_H_