| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SRC_TINT_CASTABLE_H_ |
| #define SRC_TINT_CASTABLE_H_ |
| |
| #include <stdint.h> |
| #include <functional> |
| #include <tuple> |
| #include <utility> |
| |
| #include "src/tint/traits.h" |
| #include "src/tint/utils/crc32.h" |
| |
| #if defined(__clang__) |
| /// Temporarily disable certain warnings when using Castable API |
| #define TINT_CASTABLE_PUSH_DISABLE_WARNINGS() \ |
| _Pragma("clang diagnostic push") /**/ \ |
| _Pragma("clang diagnostic ignored \"-Wundefined-var-template\"") /**/ \ |
| static_assert(true, "require extra semicolon") |
| |
| /// Restore disabled warnings |
| #define TINT_CASTABLE_POP_DISABLE_WARNINGS() \ |
| _Pragma("clang diagnostic pop") /**/ \ |
| static_assert(true, "require extra semicolon") |
| #else |
| #define TINT_CASTABLE_PUSH_DISABLE_WARNINGS() \ |
| static_assert(true, "require extra semicolon") |
| #define TINT_CASTABLE_POP_DISABLE_WARNINGS() \ |
| static_assert(true, "require extra semicolon") |
| #endif |
| |
| TINT_CASTABLE_PUSH_DISABLE_WARNINGS(); |
| |
| namespace tint { |
| |
| // Forward declaration |
| class CastableBase; |
| |
| /// Ignore is used as a special type used for skipping over types for trait |
| /// helper functions. |
| class Ignore {}; |
| |
| namespace detail { |
| template <typename T> |
| struct TypeInfoOf; |
| |
| } // namespace detail |
| |
| /// True if all template types that are not Ignore derive from CastableBase |
| template <typename... TYPES> |
| static constexpr bool IsCastable = |
| ((traits::IsTypeOrDerived<TYPES, CastableBase> || |
| std::is_same_v<TYPES, Ignore>)&&...) && |
| !(std::is_same_v<TYPES, Ignore> && ...); |
| |
| /// Helper macro to instantiate the TypeInfo<T> template for `CLASS`. |
| #define TINT_INSTANTIATE_TYPEINFO(CLASS) \ |
| TINT_CASTABLE_PUSH_DISABLE_WARNINGS(); \ |
| template <> \ |
| const tint::TypeInfo tint::detail::TypeInfoOf<CLASS>::info{ \ |
| &tint::detail::TypeInfoOf<CLASS::TrueBase>::info, \ |
| #CLASS, \ |
| tint::TypeInfo::HashCodeOf<CLASS>(), \ |
| tint::TypeInfo::FullHashCodeOf<CLASS>(), \ |
| }; \ |
| TINT_CASTABLE_POP_DISABLE_WARNINGS() |
| |
| /// Bit flags that can be passed to the template parameter `FLAGS` of Is() and |
| /// As(). |
| enum CastFlags { |
| /// Disables the static_assert() inside Is(), that compile-time-verifies that |
| /// the cast is possible. This flag may be useful for highly-generic template |
| /// code that needs to compile for template permutations that generate |
| /// impossible casts. |
| kDontErrorOnImpossibleCast = 1, |
| }; |
| |
| /// TypeInfo holds type information for a Castable type. |
| struct TypeInfo { |
| /// The type of a hash code |
| using HashCode = uint64_t; |
| |
| /// The base class of this type |
| const TypeInfo* base; |
| /// The type name |
| const char* name; |
| /// The type hash code |
| const HashCode hashcode; |
| /// The type hash code bitwise-or'd with all ancestor's hashcodes. |
| const HashCode full_hashcode; |
| |
| /// @param type the test type info |
| /// @returns true if the class with this TypeInfo is of, or derives from the |
| /// class with the given TypeInfo. |
| inline bool Is(const tint::TypeInfo* type) const { |
| // Optimization: Check whether the all the bits of the type's hashcode can |
| // be found in the full_hashcode. If a single bit is missing, then we |
| // can quickly tell that that this TypeInfo does not derive from `type`. |
| if ((full_hashcode & type->hashcode) != type->hashcode) { |
| return false; |
| } |
| |
| // Walk the base types, starting with this TypeInfo, to see if any of the |
| // pointers match `type`. |
| for (auto* ti = this; ti != nullptr; ti = ti->base) { |
| if (ti == type) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// @returns true if `type` derives from the class `TO` |
| /// @param type the object type to test from, which must be, or derive from |
| /// type `FROM`. |
| /// @see CastFlags |
| template <typename TO, typename FROM, int FLAGS = 0> |
| static inline bool Is(const tint::TypeInfo* type) { |
| constexpr const bool downcast = std::is_base_of<FROM, TO>::value; |
| constexpr const bool upcast = std::is_base_of<TO, FROM>::value; |
| constexpr const bool nocast = std::is_same<FROM, TO>::value; |
| constexpr const bool assert_is_castable = |
| (FLAGS & kDontErrorOnImpossibleCast) == 0; |
| |
| static_assert(upcast || downcast || nocast || !assert_is_castable, |
| "impossible cast"); |
| |
| if (upcast || nocast) { |
| return true; |
| } |
| |
| return type->Is(&Of<std::remove_cv_t<TO>>()); |
| } |
| |
| /// @returns the static TypeInfo for the type T |
| template <typename T> |
| static const TypeInfo& Of() { |
| return detail::TypeInfoOf<std::remove_cv_t<T>>::info; |
| } |
| |
| /// @returns a compile-time hashcode for the type `T`. |
| /// @note the returned hashcode will have at most 2 bits set, as the hashes |
| /// are expected to be used in bloom-filters which will quickly saturate when |
| /// multiple hashcodes are bitwise-or'd together. |
| template <typename T> |
| static constexpr HashCode HashCodeOf() { |
| static_assert(IsCastable<T>, "T is not Castable"); |
| static_assert( |
| std::is_same_v<T, std::remove_cv_t<T>>, |
| "Strip const / volatile decorations before calling HashCodeOf"); |
| /// Use the compiler's "pretty" function name, which includes the template |
| /// type, to obtain a unique hash value. |
| #ifdef _MSC_VER |
| constexpr uint32_t crc = utils::CRC32(__FUNCSIG__); |
| #else |
| constexpr uint32_t crc = utils::CRC32(__PRETTY_FUNCTION__); |
| #endif |
| constexpr uint32_t bit_a = (crc & 63); |
| constexpr uint32_t bit_b = ((crc >> 6) & 63); |
| return (static_cast<HashCode>(1) << bit_a) | |
| (static_cast<HashCode>(1) << bit_b); |
| } |
| |
| /// @returns the hashcode of the given type, bitwise-or'd with the hashcodes |
| /// of all base classes. |
| template <typename T> |
| static constexpr HashCode FullHashCodeOf() { |
| if constexpr (std::is_same_v<T, CastableBase>) { |
| return HashCodeOf<CastableBase>(); |
| } else { |
| return HashCodeOf<T>() | FullHashCodeOf<typename T::TrueBase>(); |
| } |
| } |
| |
| /// @returns the bitwise-or'd hashcodes of all the types of the tuple `TUPLE`. |
| /// @see HashCodeOf |
| template <typename TUPLE> |
| static constexpr HashCode CombinedHashCodeOfTuple() { |
| constexpr auto kCount = std::tuple_size_v<TUPLE>; |
| if constexpr (kCount == 0) { |
| return 0; |
| } else if constexpr (kCount == 1) { |
| return HashCodeOf<std::remove_cv_t<std::tuple_element_t<0, TUPLE>>>(); |
| } else { |
| constexpr auto kMid = kCount / 2; |
| return CombinedHashCodeOfTuple<traits::SliceTuple<0, kMid, TUPLE>>() | |
| CombinedHashCodeOfTuple< |
| traits::SliceTuple<kMid, kCount - kMid, TUPLE>>(); |
| } |
| } |
| |
| /// @returns the bitwise-or'd hashcodes of all the template parameter types. |
| /// @see HashCodeOf |
| template <typename... TYPES> |
| static constexpr HashCode CombinedHashCodeOf() { |
| return CombinedHashCodeOfTuple<std::tuple<TYPES...>>(); |
| } |
| |
| /// @returns true if this TypeInfo is of, or derives from any of the types in |
| /// `TUPLE`. |
| template <typename TUPLE> |
| inline bool IsAnyOfTuple() const { |
| constexpr auto kCount = std::tuple_size_v<TUPLE>; |
| if constexpr (kCount == 0) { |
| return false; |
| } else if constexpr (kCount == 1) { |
| return Is(&Of<std::tuple_element_t<0, TUPLE>>()); |
| } else if constexpr (kCount == 2) { |
| return Is(&Of<std::tuple_element_t<0, TUPLE>>()) || |
| Is(&Of<std::tuple_element_t<1, TUPLE>>()); |
| } else if constexpr (kCount == 3) { |
| return Is(&Of<std::tuple_element_t<0, TUPLE>>()) || |
| Is(&Of<std::tuple_element_t<1, TUPLE>>()) || |
| Is(&Of<std::tuple_element_t<2, TUPLE>>()); |
| } else { |
| // Optimization: Compare the object's hashcode to the bitwise-or of all |
| // the tested type's hashcodes. If there's no intersection of bits in |
| // the two masks, then we can guarantee that the type is not in `TO`. |
| if (full_hashcode & TypeInfo::CombinedHashCodeOfTuple<TUPLE>()) { |
| // Possibly one of the types in `TUPLE`. |
| // Split the search in two, and scan each block. |
| static constexpr auto kMid = kCount / 2; |
| return IsAnyOfTuple<traits::SliceTuple<0, kMid, TUPLE>>() || |
| IsAnyOfTuple<traits::SliceTuple<kMid, kCount - kMid, TUPLE>>(); |
| } |
| return false; |
| } |
| } |
| |
| /// @returns true if this TypeInfo is of, or derives from any of the types in |
| /// `TYPES`. |
| template <typename... TYPES> |
| inline bool IsAnyOf() const { |
| return IsAnyOfTuple<std::tuple<TYPES...>>(); |
| } |
| }; |
| |
| namespace detail { |
| |
| /// TypeInfoOf contains a single TypeInfo field for the type T. |
| /// TINT_INSTANTIATE_TYPEINFO() must be defined in a .cpp file for each type |
| /// `T`. |
| template <typename T> |
| struct TypeInfoOf { |
| /// The unique TypeInfo for the type T. |
| static const TypeInfo info; |
| }; |
| |
| /// A placeholder structure used for template parameters that need a default |
| /// type, but can always be automatically inferred. |
| struct Infer; |
| |
| } // namespace detail |
| |
| /// @returns true if `obj` is a valid pointer, and is of, or derives from the |
| /// class `TO` |
| /// @param obj the object to test from |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0, typename FROM = detail::Infer> |
| inline bool Is(FROM* obj) { |
| if (obj == nullptr) { |
| return false; |
| } |
| return TypeInfo::Is<TO, FROM, FLAGS>(&obj->TypeInfo()); |
| } |
| |
| /// @returns true if `obj` is a valid pointer, and is of, or derives from the |
| /// type `TYPE`, and pred(const TYPE*) returns true |
| /// @param obj the object to test from |
| /// @param pred predicate function with signature `bool(const TYPE*)` called iff |
| /// object is of, or derives from the class `TYPE`. |
| /// @see CastFlags |
| template <typename TYPE, |
| int FLAGS = 0, |
| typename OBJ = detail::Infer, |
| typename Pred = detail::Infer> |
| inline bool Is(OBJ* obj, Pred&& pred) { |
| return Is<TYPE, FLAGS, OBJ>(obj) && |
| pred(static_cast<std::add_const_t<TYPE>*>(obj)); |
| } |
| |
| /// @returns true if `obj` is a valid pointer, and is of, or derives from any of |
| /// the types in `TYPES`.OBJ |
| /// @param obj the object to query. |
| template <typename... TYPES, typename OBJ> |
| inline bool IsAnyOf(OBJ* obj) { |
| if (!obj) { |
| return false; |
| } |
| return obj->TypeInfo().template IsAnyOf<TYPES...>(); |
| } |
| |
| /// @returns obj dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @param obj the object to cast from |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0, typename FROM = detail::Infer> |
| inline TO* As(FROM* obj) { |
| auto* as_castable = static_cast<CastableBase*>(obj); |
| return Is<TO, FLAGS>(obj) ? static_cast<TO*>(as_castable) : nullptr; |
| } |
| |
| /// @returns obj dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @param obj the object to cast from |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0, typename FROM = detail::Infer> |
| inline const TO* As(const FROM* obj) { |
| auto* as_castable = static_cast<const CastableBase*>(obj); |
| return Is<TO, FLAGS>(obj) ? static_cast<const TO*>(as_castable) : nullptr; |
| } |
| |
| /// CastableBase is the base class for all Castable objects. |
| /// It is not encouraged to directly derive from CastableBase without using the |
| /// Castable helper template. |
| /// @see Castable |
| class CastableBase { |
| public: |
| /// Copy constructor |
| CastableBase(const CastableBase&) = default; |
| |
| /// Destructor |
| virtual ~CastableBase() = default; |
| |
| /// Copy assignment |
| /// @param other the CastableBase to copy |
| /// @returns the new CastableBase |
| CastableBase& operator=(const CastableBase& other) = default; |
| |
| /// @returns the TypeInfo of the object |
| virtual const tint::TypeInfo& TypeInfo() const = 0; |
| |
| /// @returns true if this object is of, or derives from the class `TO` |
| template <typename TO> |
| inline bool Is() const { |
| return tint::Is<TO>(this); |
| } |
| |
| /// @returns true if this object is of, or derives from the class `TO` and |
| /// pred(const TO*) returns true |
| /// @param pred predicate function with signature `bool(const TO*)` called iff |
| /// object is of, or derives from the class `TO`. |
| template <typename TO, int FLAGS = 0, typename Pred = detail::Infer> |
| inline bool Is(Pred&& pred) const { |
| return tint::Is<TO, FLAGS>(this, std::forward<Pred>(pred)); |
| } |
| |
| /// @returns true if this object is of, or derives from any of the `TO` |
| /// classes. |
| template <typename... TO> |
| inline bool IsAnyOf() const { |
| return tint::IsAnyOf<TO...>(this); |
| } |
| |
| /// @returns this object dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0> |
| inline TO* As() { |
| return tint::As<TO, FLAGS>(this); |
| } |
| |
| /// @returns this object dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0> |
| inline const TO* As() const { |
| return tint::As<const TO, FLAGS>(this); |
| } |
| |
| protected: |
| CastableBase() = default; |
| }; |
| |
| /// Castable is a helper to derive `CLASS` from `BASE`, automatically |
| /// implementing the Is() and As() methods, along with a #Base type alias. |
| /// |
| /// Example usage: |
| /// |
| /// ``` |
| /// class Animal : public Castable<Animal> {}; |
| /// |
| /// class Sheep : public Castable<Sheep, Animal> {}; |
| /// |
| /// Sheep* cast_to_sheep(Animal* animal) { |
| /// // You can query whether a Castable is of the given type with Is<T>(): |
| /// printf("animal is a sheep? %s", animal->Is<Sheep>() ? "yes" : "no"); |
| /// |
| /// // You can always just try the cast with As<T>(). |
| /// // If the object is not of the correct type, As<T>() will return nullptr: |
| /// return animal->As<Sheep>(); |
| /// } |
| /// ``` |
| template <typename CLASS, typename BASE = CastableBase> |
| class Castable : public BASE { |
| public: |
| // Inherit the `BASE` class constructors. |
| using BASE::BASE; |
| |
| /// A type alias for `CLASS` to easily access the `BASE` class members. |
| /// Base actually aliases to the Castable instead of `BASE` so that you can |
| /// use Base in the `CLASS` constructor. |
| using Base = Castable; |
| |
| /// A type alias for `BASE`. |
| using TrueBase = BASE; |
| |
| /// @returns the TypeInfo of the object |
| const tint::TypeInfo& TypeInfo() const override { |
| return TypeInfo::Of<CLASS>(); |
| } |
| |
| /// @returns true if this object is of, or derives from the class `TO` |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0> |
| inline bool Is() const { |
| return tint::Is<TO, FLAGS>(static_cast<const CLASS*>(this)); |
| } |
| |
| /// @returns true if this object is of, or derives from the class `TO` and |
| /// pred(const TO*) returns true |
| /// @param pred predicate function with signature `bool(const TO*)` called iff |
| /// object is of, or derives from the class `TO`. |
| template <int FLAGS = 0, typename Pred = detail::Infer> |
| inline bool Is(Pred&& pred) const { |
| using TO = |
| typename std::remove_pointer<traits::ParameterType<Pred, 0>>::type; |
| return tint::Is<TO, FLAGS>(static_cast<const CLASS*>(this), |
| std::forward<Pred>(pred)); |
| } |
| |
| /// @returns true if this object is of, or derives from any of the `TO` |
| /// classes. |
| template <typename... TO> |
| inline bool IsAnyOf() const { |
| return tint::IsAnyOf<TO...>(static_cast<const CLASS*>(this)); |
| } |
| |
| /// @returns this object dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0> |
| inline TO* As() { |
| return tint::As<TO, FLAGS>(this); |
| } |
| |
| /// @returns this object dynamically cast to the type `TO` or `nullptr` if |
| /// this object does not derive from `TO`. |
| /// @see CastFlags |
| template <typename TO, int FLAGS = 0> |
| inline const TO* As() const { |
| return tint::As<const TO, FLAGS>(this); |
| } |
| }; |
| |
| namespace detail { |
| /// <code>typename CastableCommonBaseImpl<TYPES>::type</code> resolves to the |
| /// common base class for all of TYPES. |
| template <typename... TYPES> |
| struct CastableCommonBaseImpl {}; |
| |
| /// Alias to typename CastableCommonBaseImpl<TYPES>::type |
| template <typename... TYPES> |
| using CastableCommonBase = |
| typename detail::CastableCommonBaseImpl<TYPES...>::type; |
| |
| /// CastableCommonBaseImpl template specialization for a single type |
| template <typename T> |
| struct CastableCommonBaseImpl<T> { |
| /// Common base class of a single type is itself |
| using type = T; |
| }; |
| |
| /// CastableCommonBaseImpl A <-> CastableBase specialization |
| template <typename A> |
| struct CastableCommonBaseImpl<A, CastableBase> { |
| /// Common base class for A and CastableBase is CastableBase |
| using type = CastableBase; |
| }; |
| |
| /// CastableCommonBaseImpl T <-> Ignore specialization |
| template <typename T> |
| struct CastableCommonBaseImpl<T, Ignore> { |
| /// Resolves to T as the other type is ignored |
| using type = T; |
| }; |
| |
| /// CastableCommonBaseImpl Ignore <-> T specialization |
| template <typename T> |
| struct CastableCommonBaseImpl<Ignore, T> { |
| /// Resolves to T as the other type is ignored |
| using type = T; |
| }; |
| |
| /// CastableCommonBaseImpl A <-> B specialization |
| template <typename A, typename B> |
| struct CastableCommonBaseImpl<A, B> { |
| /// The common base class for A, B and OTHERS |
| using type = std::conditional_t<traits::IsTypeOrDerived<A, B>, |
| B, // A derives from B |
| CastableCommonBase<A, typename B::TrueBase>>; |
| }; |
| |
| /// CastableCommonBaseImpl 3+ types specialization |
| template <typename A, typename B, typename... OTHERS> |
| struct CastableCommonBaseImpl<A, B, OTHERS...> { |
| /// The common base class for A, B and OTHERS |
| using type = CastableCommonBase<CastableCommonBase<A, B>, OTHERS...>; |
| }; |
| |
| } // namespace detail |
| |
| /// Resolves to the common most derived type that each of the types in `TYPES` |
| /// derives from. |
| template <typename... TYPES> |
| using CastableCommonBase = detail::CastableCommonBase<TYPES...>; |
| |
| /// Default can be used as the default case for a Switch(), when all previous |
| /// cases failed to match. |
| /// |
| /// Example: |
| /// ``` |
| /// Switch(object, |
| /// [&](TypeA*) { /* ... */ }, |
| /// [&](TypeB*) { /* ... */ }, |
| /// [&](Default) { /* If not TypeA or TypeB */ }); |
| /// ``` |
| struct Default {}; |
| |
| namespace detail { |
| |
| /// Evaluates to the Switch case type being matched by the switch case function |
| /// `FN`. |
| /// @note does not handle the Default case |
| /// @see Switch(). |
| template <typename FN> |
| using SwitchCaseType = std::remove_pointer_t< |
| traits::ParameterType<std::remove_reference_t<FN>, 0>>; |
| |
| /// Evaluates to true if the function `FN` has the signature of a Default case |
| /// in a Switch(). |
| /// @see Switch(). |
| template <typename FN> |
| inline constexpr bool IsDefaultCase = |
| std::is_same_v<traits::ParameterType<std::remove_reference_t<FN>, 0>, |
| Default>; |
| |
| /// Searches the list of Switch cases for a Default case, returning the index of |
| /// the Default case. If the a Default case is not found in the tuple, then -1 |
| /// is returned. |
| template <typename TUPLE, std::size_t START_IDX = 0> |
| constexpr int IndexOfDefaultCase() { |
| if constexpr (START_IDX < std::tuple_size_v<TUPLE>) { |
| return IsDefaultCase<std::tuple_element_t<START_IDX, TUPLE>> |
| ? static_cast<int>(START_IDX) |
| : IndexOfDefaultCase<TUPLE, START_IDX + 1>(); |
| } else { |
| return -1; |
| } |
| } |
| |
| /// The implementation of Switch() for non-Default cases. |
| /// Switch splits the cases into two a low and high block of cases, and quickly |
| /// rules out blocks that cannot match by comparing the TypeInfo::HashCode of |
| /// the object and the cases in the block. If a block of cases may match the |
| /// given object's type, then that block is split into two, and the process |
| /// recurses. When NonDefaultCases() is called with a single case, then As<> |
| /// will be used to dynamically cast to the case type and if the cast succeeds, |
| /// then the case handler is called. |
| /// @returns true if a case handler was found, otherwise false. |
| template <typename T, typename RETURN_TYPE, typename... CASES> |
| inline bool NonDefaultCases(T* object, |
| const TypeInfo* type, |
| RETURN_TYPE* result, |
| std::tuple<CASES...>&& cases) { |
| using Cases = std::tuple<CASES...>; |
| |
| (void)result; // Not always used, avoid warning. |
| |
| static constexpr bool kHasReturnType = !std::is_same_v<RETURN_TYPE, void>; |
| static constexpr size_t kNumCases = sizeof...(CASES); |
| |
| if constexpr (kNumCases == 0) { |
| // No cases. Nothing to do. |
| return false; |
| } else if constexpr (kNumCases == 1) { // NOLINT: cpplint doesn't understand |
| // `else if constexpr` |
| // Single case. |
| using CaseFunc = std::tuple_element_t<0, Cases>; |
| static_assert(!IsDefaultCase<CaseFunc>, |
| "NonDefaultCases called with a Default case"); |
| // Attempt to dynamically cast the object to the handler type. If that |
| // succeeds, call the case handler with the cast object. |
| using CaseType = SwitchCaseType<CaseFunc>; |
| if (type->Is(&TypeInfo::Of<CaseType>())) { |
| auto* ptr = static_cast<CaseType*>(object); |
| if constexpr (kHasReturnType) { |
| *result = static_cast<RETURN_TYPE>(std::get<0>(cases)(ptr)); |
| } else { |
| std::get<0>(cases)(ptr); |
| } |
| return true; |
| } |
| return false; |
| } else { |
| // Multiple cases. |
| // Check the hashcode bits to see if there's any possibility of a case |
| // matching in these cases. If there isn't, we can skip all these cases. |
| if (type->full_hashcode & |
| TypeInfo::CombinedHashCodeOf<SwitchCaseType<CASES>...>()) { |
| // There's a possibility. We need to scan further. |
| // Split the cases into two, and recurse. |
| constexpr size_t kMid = kNumCases / 2; |
| return NonDefaultCases(object, type, result, |
| traits::Slice<0, kMid>(cases)) || |
| NonDefaultCases(object, type, result, |
| traits::Slice<kMid, kNumCases - kMid>(cases)); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| /// The implementation of Switch() for all cases. |
| /// @see NonDefaultCases |
| template <typename T, typename RETURN_TYPE, typename... CASES> |
| inline void SwitchCases(T* object, |
| RETURN_TYPE* result, |
| std::tuple<CASES...>&& cases) { |
| using Cases = std::tuple<CASES...>; |
| static constexpr int kDefaultIndex = detail::IndexOfDefaultCase<Cases>(); |
| static_assert( |
| kDefaultIndex == -1 || kDefaultIndex == std::tuple_size_v<Cases> - 1, |
| "Default case must be last in Switch()"); |
| static constexpr bool kHasDefaultCase = kDefaultIndex >= 0; |
| static constexpr bool kHasReturnType = !std::is_same_v<RETURN_TYPE, void>; |
| |
| if (object) { |
| auto* type = &object->TypeInfo(); |
| if constexpr (kHasDefaultCase) { |
| // Evaluate non-default cases. |
| if (!detail::NonDefaultCases<T>(object, type, result, |
| traits::Slice<0, kDefaultIndex>(cases))) { |
| // Nothing matched. Evaluate default case. |
| if constexpr (kHasReturnType) { |
| *result = |
| static_cast<RETURN_TYPE>(std::get<kDefaultIndex>(cases)({})); |
| } else { |
| std::get<kDefaultIndex>(cases)({}); |
| } |
| } |
| } else { |
| detail::NonDefaultCases<T>(object, type, result, std::move(cases)); |
| } |
| } else { |
| // Object is nullptr, so no cases can match |
| if constexpr (kHasDefaultCase) { |
| // Evaluate default case. |
| if constexpr (kHasReturnType) { |
| *result = static_cast<RETURN_TYPE>(std::get<kDefaultIndex>(cases)({})); |
| } else { |
| std::get<kDefaultIndex>(cases)({}); |
| } |
| } |
| } |
| } |
| |
| /// Resolves to T if T is not nullptr_t, otherwise resolves to Ignore. |
| template <typename T> |
| using NullptrToIgnore = |
| std::conditional_t<std::is_same_v<T, std::nullptr_t>, Ignore, T>; |
| |
| /// Resolves to `const TYPE` if any of `CASE_RETURN_TYPES` are const or |
| /// pointer-to-const, otherwise resolves to TYPE. |
| template <typename TYPE, typename... CASE_RETURN_TYPES> |
| using PropagateReturnConst = std::conditional_t< |
| // Are any of the pointer-stripped types const? |
| (std::is_const_v<std::remove_pointer_t<CASE_RETURN_TYPES>> || ...), |
| const TYPE, // Yes: Apply const to TYPE |
| TYPE>; // No: Passthrough |
| |
| /// SwitchReturnTypeImpl is the implementation of SwitchReturnType |
| template <bool IS_CASTABLE, |
| typename REQUESTED_TYPE, |
| typename... CASE_RETURN_TYPES> |
| struct SwitchReturnTypeImpl; |
| |
| /// SwitchReturnTypeImpl specialization for non-castable case types and an |
| /// explicitly specified return type. |
| template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES> |
| struct SwitchReturnTypeImpl</*IS_CASTABLE*/ false, |
| REQUESTED_TYPE, |
| CASE_RETURN_TYPES...> { |
| /// Resolves to `REQUESTED_TYPE` |
| using type = REQUESTED_TYPE; |
| }; |
| |
| /// SwitchReturnTypeImpl specialization for non-castable case types and an |
| /// inferred return type. |
| template <typename... CASE_RETURN_TYPES> |
| struct SwitchReturnTypeImpl</*IS_CASTABLE*/ false, |
| Infer, |
| CASE_RETURN_TYPES...> { |
| /// Resolves to the common type for all the cases return types. |
| using type = std::common_type_t<CASE_RETURN_TYPES...>; |
| }; |
| |
| /// SwitchReturnTypeImpl specialization for castable case types and an |
| /// explicitly specified return type. |
| template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES> |
| struct SwitchReturnTypeImpl</*IS_CASTABLE*/ true, |
| REQUESTED_TYPE, |
| CASE_RETURN_TYPES...> { |
| public: |
| /// Resolves to `const REQUESTED_TYPE*` or `REQUESTED_TYPE*` |
| using type = PropagateReturnConst<std::remove_pointer_t<REQUESTED_TYPE>, |
| CASE_RETURN_TYPES...>*; |
| }; |
| |
| /// SwitchReturnTypeImpl specialization for castable case types and an infered |
| /// return type. |
| template <typename... CASE_RETURN_TYPES> |
| struct SwitchReturnTypeImpl</*IS_CASTABLE*/ true, Infer, CASE_RETURN_TYPES...> { |
| private: |
| using InferredType = CastableCommonBase< |
| detail::NullptrToIgnore<std::remove_pointer_t<CASE_RETURN_TYPES>>...>; |
| |
| public: |
| /// `const T*` or `T*`, where T is the common base type for all the castable |
| /// case types. |
| using type = PropagateReturnConst<InferredType, CASE_RETURN_TYPES...>*; |
| }; |
| |
| /// Resolves to the return type for a Switch() with the requested return type |
| /// `REQUESTED_TYPE` and case statement return types. If `REQUESTED_TYPE` is |
| /// Infer then the return type will be inferred from the case return types. |
| template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES> |
| using SwitchReturnType = typename SwitchReturnTypeImpl< |
| IsCastable<NullptrToIgnore<std::remove_pointer_t<CASE_RETURN_TYPES>>...>, |
| REQUESTED_TYPE, |
| CASE_RETURN_TYPES...>::type; |
| |
| } // namespace detail |
| |
| /// Switch is used to dispatch one of the provided callback case handler |
| /// functions based on the type of `object` and the parameter type of the case |
| /// handlers. Switch will sequentially check the type of `object` against each |
| /// of the switch case handler functions, and will invoke the first case handler |
| /// function which has a parameter type that matches the object type. When a |
| /// case handler is matched, it will be called with the single argument of |
| /// `object` cast to the case handler's parameter type. Switch will invoke at |
| /// most one case handler. Each of the case functions must have the signature |
| /// `R(T*)` or `R(const T*)`, where `T` is the type matched by that case and `R` |
| /// is the return type, consistent across all case handlers. |
| /// |
| /// An optional default case function with the signature `R(Default)` can be |
| /// used as the last case. This default case will be called if all previous |
| /// cases failed to match. |
| /// |
| /// If `object` is nullptr and a default case is provided, then the default case |
| /// will be called. If `object` is nullptr and no default case is provided, then |
| /// no cases will be called. |
| /// |
| /// Example: |
| /// ``` |
| /// Switch(object, |
| /// [&](TypeA*) { /* ... */ }, |
| /// [&](TypeB*) { /* ... */ }); |
| /// |
| /// Switch(object, |
| /// [&](TypeA*) { /* ... */ }, |
| /// [&](TypeB*) { /* ... */ }, |
| /// [&](Default) { /* Called if object is not TypeA or TypeB */ }); |
| /// ``` |
| /// |
| /// @param object the object who's type is used to |
| /// @param cases the switch cases |
| /// @return the value returned by the called case. If no cases matched, then the |
| /// zero value for the consistent case type. |
| template <typename RETURN_TYPE = detail::Infer, |
| typename T = CastableBase, |
| typename... CASES> |
| inline auto Switch(T* object, CASES&&... cases) { |
| using ReturnType = |
| detail::SwitchReturnType<RETURN_TYPE, traits::ReturnType<CASES>...>; |
| static constexpr bool kHasReturnType = !std::is_same_v<ReturnType, void>; |
| |
| if constexpr (kHasReturnType) { |
| ReturnType res = {}; |
| detail::SwitchCases(object, &res, |
| std::forward_as_tuple(std::forward<CASES>(cases)...)); |
| return res; |
| } else { |
| detail::SwitchCases<T, void>( |
| object, nullptr, std::forward_as_tuple(std::forward<CASES>(cases)...)); |
| } |
| } |
| |
| } // namespace tint |
| |
| TINT_CASTABLE_POP_DISABLE_WARNINGS(); |
| |
| #endif // SRC_TINT_CASTABLE_H_ |