blob: 4021327e26a437db65eba2b7b80503867ef9753f [file] [log] [blame]
let GAMMA = 2.200000048;
fn linearTosRGB(linear : vec3<f32>) -> vec3<f32> {
let INV_GAMMA = (1.0 / GAMMA);
return pow(linear, vec3(INV_GAMMA));
}
fn sRGBToLinear(srgb : vec3<f32>) -> vec3<f32> {
return pow(srgb, vec3(GAMMA));
}
struct Camera {
projection : mat4x4<f32>;
inverseProjection : mat4x4<f32>;
view : mat4x4<f32>;
position : vec3<f32>;
time : f32;
outputSize : vec2<f32>;
zNear : f32;
zFar : f32;
}
@binding(0) @group(0) var<uniform> camera : Camera;
struct ClusterLights {
offset : u32;
count : u32;
}
struct ClusterLightGroup {
offset : u32;
lights : array<ClusterLights, 27648>;
indices : array<u32, 1769472>;
}
@binding(1) @group(0) var<storage, read> clusterLights : ClusterLightGroup;
struct Light {
position : vec3<f32>;
range : f32;
color : vec3<f32>;
intensity : f32;
}
struct GlobalLights {
ambient : vec3<f32>;
dirColor : vec3<f32>;
dirIntensity : f32;
dirDirection : vec3<f32>;
lightCount : u32;
lights : @stride(32) array<Light>;
}
@binding(2) @group(0) var<storage, read> globalLights : GlobalLights;
let tileCount = vec3(32u, 18u, 48u);
fn linearDepth(depthSample : f32) -> f32 {
return ((camera.zFar * camera.zNear) / fma(depthSample, (camera.zNear - camera.zFar), camera.zFar));
}
fn getTile(fragCoord : vec4<f32>) -> vec3<u32> {
let sliceScale = (f32(tileCount.z) / log2((camera.zFar / camera.zNear)));
let sliceBias = -(((f32(tileCount.z) * log2(camera.zNear)) / log2((camera.zFar / camera.zNear))));
let zTile = u32(max(((log2(linearDepth(fragCoord.z)) * sliceScale) + sliceBias), 0.0));
return vec3(u32((fragCoord.x / (camera.outputSize.x / f32(tileCount.x)))), u32((fragCoord.y / (camera.outputSize.y / f32(tileCount.y)))), zTile);
}
fn getClusterIndex(fragCoord : vec4<f32>) -> u32 {
let tile = getTile(fragCoord);
return ((tile.x + (tile.y * tileCount.x)) + ((tile.z * tileCount.x) * tileCount.y));
}
@binding(3) @group(0) var defaultSampler : sampler;
@binding(4) @group(0) var shadowTexture : texture_depth_2d;
@binding(5) @group(0) var shadowSampler : sampler_comparison;
struct LightShadowTable {
light : array<i32>;
}
@binding(6) @group(0) var<storage, read> lightShadowTable : LightShadowTable;
var<private> shadowSampleOffsets : array<vec2<f32>, 16> = array<vec2<f32>, 16>(vec2(-1.5, -1.5), vec2(-1.5, -0.5), vec2(-1.5, 0.5), vec2(-1.5, 1.5), vec2(-0.5, -1.5), vec2(-0.5, -0.5), vec2(-0.5, 0.5), vec2(-0.5, 1.5), vec2(0.5, -1.5), vec2(0.5, -0.5), vec2(0.5, 0.5), vec2(0.5, 1.5), vec2(1.5, -1.5), vec2(1.5, -0.5), vec2(1.5, 0.5), vec2(1.5, 1.5));
let shadowSampleCount = 16u;
struct ShadowProperties {
viewport : vec4<f32>;
viewProj : mat4x4<f32>;
}
struct LightShadows {
properties : array<ShadowProperties>;
}
@binding(7) @group(0) var<storage, read> shadow : LightShadows;
fn dirLightVisibility(worldPos : vec3<f32>) -> f32 {
let shadowIndex = lightShadowTable.light[0u];
if ((shadowIndex == -1)) {
return 1.0;
}
let viewport = shadow.properties[shadowIndex].viewport;
let lightPos = (shadow.properties[shadowIndex].viewProj * vec4(worldPos, 1.0));
let shadowPos = vec3((((lightPos.xy / lightPos.w) * vec2(0.5, -0.5)) + vec2(0.5, 0.5)), (lightPos.z / lightPos.w));
let viewportPos = vec2((viewport.xy + (shadowPos.xy * viewport.zw)));
let texelSize = (1.0 / vec2<f32>(textureDimensions(shadowTexture, 0)));
let clampRect = vec4((viewport.xy - texelSize), ((viewport.xy + viewport.zw) + texelSize));
var visibility = 0.0;
for(var i = 0u; (i < shadowSampleCount); i = (i + 1u)) {
visibility = (visibility + textureSampleCompareLevel(shadowTexture, shadowSampler, clamp((viewportPos + (shadowSampleOffsets[i] * texelSize)), clampRect.xy, clampRect.zw), (shadowPos.z - 0.003)));
}
return (visibility / f32(shadowSampleCount));
}
fn getCubeFace(v : vec3<f32>) -> i32 {
let vAbs = abs(v);
if (((vAbs.z >= vAbs.x) && (vAbs.z >= vAbs.y))) {
if ((v.z < 0.0)) {
return 5;
}
return 4;
}
if ((vAbs.y >= vAbs.x)) {
if ((v.y < 0.0)) {
return 3;
}
return 2;
}
if ((v.x < 0.0)) {
return 1;
}
return 0;
}
fn pointLightVisibility(lightIndex : u32, worldPos : vec3<f32>, pointToLight : vec3<f32>) -> f32 {
var shadowIndex = lightShadowTable.light[(lightIndex + 1u)];
if ((shadowIndex == -1)) {
return 1.0;
}
shadowIndex = (shadowIndex + getCubeFace((pointToLight * -1.0)));
let viewport = shadow.properties[shadowIndex].viewport;
let lightPos = (shadow.properties[shadowIndex].viewProj * vec4(worldPos, 1.0));
let shadowPos = vec3((((lightPos.xy / lightPos.w) * vec2(0.5, -0.5)) + vec2(0.5, 0.5)), (lightPos.z / lightPos.w));
let viewportPos = vec2((viewport.xy + (shadowPos.xy * viewport.zw)));
let texelSize = (1.0 / vec2<f32>(textureDimensions(shadowTexture, 0)));
let clampRect = vec4(viewport.xy, (viewport.xy + viewport.zw));
var visibility = 0.0;
for(var i = 0u; (i < shadowSampleCount); i = (i + 1u)) {
visibility = (visibility + textureSampleCompareLevel(shadowTexture, shadowSampler, clamp((viewportPos + (shadowSampleOffsets[i] * texelSize)), clampRect.xy, clampRect.zw), (shadowPos.z - 0.01)));
}
return (visibility / f32(shadowSampleCount));
}
struct VertexOutput {
@builtin(position)
position : vec4<f32>;
@location(0)
worldPos : vec3<f32>;
@location(1)
view : vec3<f32>;
@location(2)
texcoord : vec2<f32>;
@location(3)
texcoord2 : vec2<f32>;
@location(4)
color : vec4<f32>;
@location(5)
instanceColor : vec4<f32>;
@location(6)
normal : vec3<f32>;
@location(7)
tangent : vec3<f32>;
@location(8)
bitangent : vec3<f32>;
}
struct Material {
baseColorFactor : vec4<f32>;
emissiveFactor : vec3<f32>;
occlusionStrength : f32;
metallicRoughnessFactor : vec2<f32>;
alphaCutoff : f32;
}
@binding(8) @group(0) var<uniform> material : Material;
@binding(9) @group(0) var baseColorTexture : texture_2d<f32>;
@binding(10) @group(0) var baseColorSampler : sampler;
@binding(11) @group(0) var normalTexture : texture_2d<f32>;
@binding(12) @group(0) var normalSampler : sampler;
@binding(13) @group(0) var metallicRoughnessTexture : texture_2d<f32>;
@binding(14) @group(0) var metallicRoughnessSampler : sampler;
@binding(15) @group(0) var occlusionTexture : texture_2d<f32>;
@binding(16) @group(0) var occlusionSampler : sampler;
@binding(17) @group(0) var emissiveTexture : texture_2d<f32>;
@binding(18) @group(0) var emissiveSampler : sampler;
struct SurfaceInfo {
baseColor : vec4<f32>;
albedo : vec3<f32>;
metallic : f32;
roughness : f32;
normal : vec3<f32>;
f0 : vec3<f32>;
ao : f32;
emissive : vec3<f32>;
v : vec3<f32>;
}
fn GetSurfaceInfo(input : VertexOutput) -> SurfaceInfo {
var surface : SurfaceInfo;
surface.v = normalize(input.view);
let tbn = mat3x3(input.tangent, input.bitangent, input.normal);
let normalMap = textureSample(normalTexture, normalSampler, input.texcoord).rgb;
surface.normal = normalize((tbn * ((2.0 * normalMap) - vec3(1.0))));
let baseColorMap = textureSample(baseColorTexture, baseColorSampler, input.texcoord);
surface.baseColor = ((input.color * material.baseColorFactor) * baseColorMap);
if ((surface.baseColor.a < material.alphaCutoff)) {
discard;
}
surface.albedo = surface.baseColor.rgb;
let metallicRoughnessMap = textureSample(metallicRoughnessTexture, metallicRoughnessSampler, input.texcoord);
surface.metallic = (material.metallicRoughnessFactor.x * metallicRoughnessMap.b);
surface.roughness = (material.metallicRoughnessFactor.y * metallicRoughnessMap.g);
let dielectricSpec = vec3(0.039999999);
surface.f0 = mix(dielectricSpec, surface.albedo, vec3(surface.metallic));
let occlusionMap = textureSample(occlusionTexture, occlusionSampler, input.texcoord);
surface.ao = (material.occlusionStrength * occlusionMap.r);
let emissiveMap = textureSample(emissiveTexture, emissiveSampler, input.texcoord);
surface.emissive = (material.emissiveFactor * emissiveMap.rgb);
if ((input.instanceColor.a == 0.0)) {
surface.albedo = (surface.albedo + input.instanceColor.rgb);
} else {
surface.albedo = (surface.albedo * input.instanceColor.rgb);
}
return surface;
}
let PI = 3.141592741;
let LightType_Point = 0u;
let LightType_Spot = 1u;
let LightType_Directional = 2u;
struct PuctualLight {
lightType : u32;
pointToLight : vec3<f32>;
range : f32;
color : vec3<f32>;
intensity : f32;
}
fn FresnelSchlick(cosTheta : f32, F0 : vec3<f32>) -> vec3<f32> {
return (F0 + ((vec3(1.0) - F0) * pow((1.0 - cosTheta), 5.0)));
}
fn DistributionGGX(N : vec3<f32>, H : vec3<f32>, roughness : f32) -> f32 {
let a = (roughness * roughness);
let a2 = (a * a);
let NdotH = max(dot(N, H), 0.0);
let NdotH2 = (NdotH * NdotH);
let num = a2;
let denom = ((NdotH2 * (a2 - 1.0)) + 1.0);
return (num / ((PI * denom) * denom));
}
fn GeometrySchlickGGX(NdotV : f32, roughness : f32) -> f32 {
let r = (roughness + 1.0);
let k = ((r * r) / 8.0);
let num = NdotV;
let denom = ((NdotV * (1.0 - k)) + k);
return (num / denom);
}
fn GeometrySmith(N : vec3<f32>, V : vec3<f32>, L : vec3<f32>, roughness : f32) -> f32 {
let NdotV = max(dot(N, V), 0.0);
let NdotL = max(dot(N, L), 0.0);
let ggx2 = GeometrySchlickGGX(NdotV, roughness);
let ggx1 = GeometrySchlickGGX(NdotL, roughness);
return (ggx1 * ggx2);
}
fn lightAttenuation(light : PuctualLight) -> f32 {
if ((light.lightType == LightType_Directional)) {
return 1.0;
}
let distance = length(light.pointToLight);
if ((light.range <= 0.0)) {
return (1.0 / pow(distance, 2.0));
}
return (clamp((1.0 - pow((distance / light.range), 4.0)), 0.0, 1.0) / pow(distance, 2.0));
}
fn lightRadiance(light : PuctualLight, surface : SurfaceInfo) -> vec3<f32> {
let L = normalize(light.pointToLight);
let H = normalize((surface.v + L));
let NDF = DistributionGGX(surface.normal, H, surface.roughness);
let G = GeometrySmith(surface.normal, surface.v, L, surface.roughness);
let F = FresnelSchlick(max(dot(H, surface.v), 0.0), surface.f0);
let kD = ((vec3(1.0) - F) * (1.0 - surface.metallic));
let NdotL = max(dot(surface.normal, L), 0.0);
let numerator = ((NDF * G) * F);
let denominator = max(((4.0 * max(dot(surface.normal, surface.v), 0.0)) * NdotL), 0.001);
let specular = (numerator / vec3(denominator));
let radiance = ((light.color * light.intensity) * lightAttenuation(light));
return (((((kD * surface.albedo) / vec3(PI)) + specular) * radiance) * NdotL);
}
@binding(19) @group(0) var ssaoTexture : texture_2d<f32>;
struct FragmentOutput {
@location(0)
color : vec4<f32>;
@location(1)
emissive : vec4<f32>;
}
@stage(fragment)
fn fragmentMain(input : VertexOutput) -> FragmentOutput {
let surface = GetSurfaceInfo(input);
var Lo = vec3(0.0, 0.0, 0.0);
if ((globalLights.dirIntensity > 0.0)) {
var light : PuctualLight;
light.lightType = LightType_Directional;
light.pointToLight = globalLights.dirDirection;
light.color = globalLights.dirColor;
light.intensity = globalLights.dirIntensity;
let lightVis = dirLightVisibility(input.worldPos);
Lo = (Lo + (lightRadiance(light, surface) * lightVis));
}
let clusterIndex = getClusterIndex(input.position);
let lightOffset = clusterLights.lights[clusterIndex].offset;
let lightCount = clusterLights.lights[clusterIndex].count;
for(var lightIndex = 0u; (lightIndex < lightCount); lightIndex = (lightIndex + 1u)) {
let i = clusterLights.indices[(lightOffset + lightIndex)];
var light : PuctualLight;
light.lightType = LightType_Point;
light.pointToLight = (globalLights.lights[i].position.xyz - input.worldPos);
light.range = globalLights.lights[i].range;
light.color = globalLights.lights[i].color;
light.intensity = globalLights.lights[i].intensity;
let lightVis = pointLightVisibility(i, input.worldPos, light.pointToLight);
Lo = (Lo + (lightRadiance(light, surface) * lightVis));
}
let ssaoCoord = (input.position.xy / vec2<f32>(textureDimensions(ssaoTexture).xy));
let ssaoFactor = textureSample(ssaoTexture, defaultSampler, ssaoCoord).r;
let ambient = (((globalLights.ambient * surface.albedo) * surface.ao) * ssaoFactor);
let color = linearTosRGB(((Lo + ambient) + surface.emissive));
var out : FragmentOutput;
out.color = vec4(color, surface.baseColor.a);
out.emissive = vec4(surface.emissive, surface.baseColor.a);
return out;
}