| // Copyright 2024 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/glsl/writer/raise/texture_polyfill.h" |
| |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/tint/lang/core/fluent_types.h" // IWYU pragma: export |
| #include "src/tint/lang/core/ir/builder.h" |
| #include "src/tint/lang/core/ir/module.h" |
| #include "src/tint/lang/core/ir/validator.h" |
| #include "src/tint/lang/core/type/depth_multisampled_texture.h" |
| #include "src/tint/lang/core/type/depth_texture.h" |
| #include "src/tint/lang/core/type/multisampled_texture.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/storage_texture.h" |
| #include "src/tint/lang/glsl/ir/builtin_call.h" |
| #include "src/tint/lang/glsl/ir/member_builtin_call.h" |
| |
| namespace tint::glsl::writer::raise { |
| namespace { |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| using namespace tint::core::number_suffixes; // NOLINT |
| |
| /// PIMPL state for the transform. |
| struct State { |
| /// The IR module. |
| core::ir::Module& ir; |
| |
| /// The configuration |
| const TexturePolyfillConfig& cfg; |
| |
| /// The IR builder. |
| core::ir::Builder b{ir}; |
| |
| /// The type manager. |
| core::type::Manager& ty{ir.Types()}; |
| |
| // A map of the <texture,sampler> binding pair to the replacement var |
| Hashmap<binding::CombinedTextureSamplerPair, core::ir::Var*, 2> |
| texture_sampler_to_replacement_{}; |
| |
| // The list of textures and samplers that were replaced. There may have been textures which |
| // existed but were unused. We don't want to delete them, so we only delete replaced values. |
| Hashset<core::ir::Var*, 4> replaced_textures_and_samplers_{}; |
| |
| /// Process the module. |
| void Process() { |
| /// Converts all 1D texture types and accesses to 2D. This is required for GLSL ES, which |
| /// does not support 1D textures. We do this for desktop GL as well for consistency. This |
| /// could be relaxed in the future if desired. |
| UpgradeTexture1DVars(); |
| UpgradeTexture1DParams(); |
| |
| PopulateTextureInformation(); |
| |
| Vector<core::ir::CoreBuiltinCall*, 4> call_worklist; |
| for (auto* inst : ir.Instructions()) { |
| if (auto* call = inst->As<core::ir::CoreBuiltinCall>()) { |
| switch (call->Func()) { |
| case core::BuiltinFn::kTextureDimensions: |
| case core::BuiltinFn::kTextureLoad: |
| case core::BuiltinFn::kTextureNumLayers: |
| case core::BuiltinFn::kTextureStore: |
| call_worklist.Push(call); |
| break; |
| default: |
| break; |
| } |
| continue; |
| } |
| } |
| |
| // Replace the builtin calls that we found |
| for (auto* call : call_worklist) { |
| switch (call->Func()) { |
| case core::BuiltinFn::kTextureDimensions: |
| TextureDimensions(call); |
| break; |
| case core::BuiltinFn::kTextureLoad: |
| TextureLoad(call); |
| break; |
| case core::BuiltinFn::kTextureNumLayers: |
| TextureNumLayers(call); |
| break; |
| case core::BuiltinFn::kTextureStore: |
| TextureStore(call); |
| break; |
| default: |
| TINT_UNREACHABLE(); |
| } |
| } |
| |
| // Remove all replaced textures and samplers as they have been replaced by new globals. |
| for (auto* var : replaced_textures_and_samplers_.Vector()) { |
| var->Result(0)->ForEachUseUnsorted([](core::ir::Usage use) { |
| TINT_ASSERT(use.instruction->Is<core::ir::Load>()); |
| use.instruction->Destroy(); |
| }); |
| var->Destroy(); |
| } |
| } |
| |
| core::ir::Var* GetReplacement(core::ir::Var* tex, core::ir::Var* sampler) { |
| // Don't change storage textures |
| if (tex->Result(0)->Type()->UnwrapPtr()->Is<core::type::StorageTexture>()) { |
| return tex; |
| } |
| |
| auto tex_bp = tex->BindingPoint(); |
| auto samp_bp = sampler ? sampler->BindingPoint() : cfg.placeholder_sampler_bind_point; |
| TINT_ASSERT(tex_bp.has_value() && samp_bp.has_value()); |
| |
| replaced_textures_and_samplers_.Add(tex); |
| if (sampler) { |
| replaced_textures_and_samplers_.Add(sampler); |
| } |
| |
| binding::CombinedTextureSamplerPair key{tex_bp.value(), samp_bp.value()}; |
| auto var = texture_sampler_to_replacement_.Get(key); |
| TINT_ASSERT(var); |
| return *(var.value); |
| } |
| |
| // Get the `var` for a texture/sampler value. This means the value must be the result of a load. |
| core::ir::Var* VarForValue(core::ir::Value* val) { |
| if (!val) { |
| return nullptr; |
| } |
| |
| auto* load = LoadForValue(val); |
| TINT_ASSERT(load); |
| auto* from = load->From()->As<core::ir::InstructionResult>(); |
| TINT_ASSERT(from); |
| auto* var = from->Instruction()->As<core::ir::Var>(); |
| TINT_ASSERT(var); |
| return var; |
| } |
| |
| core::ir::Load* LoadForValue(core::ir::Value* val) { |
| if (!val) { |
| return nullptr; |
| } |
| |
| auto* res = val->As<core::ir::InstructionResult>(); |
| TINT_ASSERT(res); |
| auto* load = res->Instruction()->As<core::ir::Load>(); |
| TINT_ASSERT(load); |
| return load; |
| } |
| |
| struct SamplerTextureVars { |
| core::ir::Var* texture; |
| core::ir::Var* sampler; |
| }; |
| SamplerTextureVars GetTextureSamplerFor(core::ir::CoreBuiltinCall* call) { |
| auto args = call->Args(); |
| switch (call->Func()) { |
| case core::BuiltinFn::kTextureDimensions: |
| case core::BuiltinFn::kTextureLoad: |
| case core::BuiltinFn::kTextureNumLayers: |
| case core::BuiltinFn::kTextureNumLevels: |
| case core::BuiltinFn::kTextureNumSamples: |
| case core::BuiltinFn::kTextureStore: |
| return {VarForValue(args[0]), nullptr}; |
| case core::BuiltinFn::kTextureGather: { |
| if (args[0]->Type()->Is<core::type::Texture>()) { |
| return {VarForValue(args[0]), VarForValue(args[1])}; |
| } |
| return {VarForValue(args[1]), VarForValue(args[2])}; |
| } |
| case core::BuiltinFn::kTextureGatherCompare: |
| case core::BuiltinFn::kTextureSample: |
| case core::BuiltinFn::kTextureSampleBaseClampToEdge: |
| case core::BuiltinFn::kTextureSampleBias: |
| case core::BuiltinFn::kTextureSampleCompare: |
| case core::BuiltinFn::kTextureSampleCompareLevel: |
| case core::BuiltinFn::kTextureSampleGrad: |
| case core::BuiltinFn::kTextureSampleLevel: |
| return {VarForValue(args[0]), VarForValue(args[1])}; |
| default: |
| TINT_UNREACHABLE() << "unhandled texture function: " << call->Func(); |
| } |
| } |
| |
| core::ir::Var* MakeVar(binding::CombinedTextureSamplerPair& key, |
| core::ir::Var* tex, |
| core::ir::Var* sampler) { |
| std::string name; |
| auto it = (cfg.sampler_texture_to_name.find(key)); |
| if (it != cfg.sampler_texture_to_name.end()) { |
| name = it->second; |
| } else { |
| name = ir.NameOf(tex).Name(); |
| if (sampler) { |
| name += "_" + ir.NameOf(sampler).Name(); |
| } |
| if (name.empty()) { |
| name = "v"; |
| } |
| } |
| |
| core::ir::Var* var = nullptr; |
| // We may already be inside an insert block, so make a new insert block instead of |
| // appending directly to the root block. |
| b.Append(ir.root_block, |
| [&] { var = b.Var(name, tex->Result(0)->Type()->As<core::type::Pointer>()); }); |
| return var; |
| } |
| |
| // This function builds up replacement combined textures. It creates a global mapping, one for |
| // all the texture,sampler pairs and one with individual textures. The individual textures will |
| // attempt to populate with the first texture from a texture,sampler pair but if we didn't see |
| // the texture in any pair we'll create it on the fly when getting the replacemnt later. |
| void PopulateTextureInformation() { |
| for (auto* inst : ir.Instructions()) { |
| auto* call = inst->As<core::ir::CoreBuiltinCall>(); |
| if (!call || (!core::IsTexture(call->Func()) && !core::IsImageQuery(call->Func()))) { |
| continue; |
| } |
| |
| auto tex_sampler = GetTextureSamplerFor(call); |
| auto* tex = tex_sampler.texture; |
| auto* sampler = tex_sampler.sampler; |
| |
| // No change to storage textures. |
| if (tex->Result(0)->Type()->UnwrapPtr()->Is<core::type::StorageTexture>()) { |
| continue; |
| } |
| |
| BindingPoint tex_bp = tex->BindingPoint().value(); |
| |
| // No sampler, use the placeholder binding |
| BindingPoint samp_bp = |
| sampler ? sampler->BindingPoint().value() : cfg.placeholder_sampler_bind_point; |
| |
| binding::CombinedTextureSamplerPair key{tex_bp, samp_bp}; |
| texture_sampler_to_replacement_.GetOrAdd(key, |
| [&] { return MakeVar(key, tex, sampler); }); |
| } |
| } |
| |
| std::optional<const core::type::Type*> UpgradeTexture1D(core::ir::Value* value) { |
| bool is_1d = false; |
| const core::type::Type* new_type = nullptr; |
| tint::Switch( |
| value->Type()->UnwrapPtr(), |
| [&](const core::type::SampledTexture* s) { |
| is_1d = s->Dim() == core::type::TextureDimension::k1d; |
| new_type = ty.Get<core::type::SampledTexture>(core::type::TextureDimension::k2d, |
| s->Type()); |
| }, |
| [&](const core::type::StorageTexture* s) { |
| is_1d = s->Dim() == core::type::TextureDimension::k1d; |
| new_type = ty.Get<core::type::StorageTexture>( |
| core::type::TextureDimension::k2d, s->TexelFormat(), s->Access(), s->Type()); |
| }); |
| if (!is_1d) { |
| return std::nullopt; |
| } |
| |
| if (auto* ptr = value->Type()->As<core::type::Pointer>()) { |
| new_type = ty.ptr(ptr->AddressSpace(), new_type, ptr->Access()); |
| } |
| |
| // For each 1d texture usage we have to make sure return values and arguments are modified |
| // to fit the 2d texture. |
| for (auto usage : value->UsagesUnsorted()) { |
| if (auto* call = usage->instruction->As<core::ir::CoreBuiltinCall>()) { |
| switch (call->Func()) { |
| case core::BuiltinFn::kTextureDimensions: { |
| // Upgrade result to a vec2 and swizzle out the `x` component. |
| auto* res = call->DetachResult(); |
| call->SetResults(b.InstructionResult(ty.vec2<u32>())); |
| |
| b.InsertAfter(call, [&] { |
| auto* s = b.Swizzle(res->Type(), call, Vector<uint32_t, 1>{0}); |
| res->ReplaceAllUsesWith(s->Result(0)); |
| }); |
| break; |
| } |
| case core::BuiltinFn::kTextureLoad: |
| case core::BuiltinFn::kTextureStore: { |
| // Add a new coord item so it's a vec2. |
| auto arg = call->Args()[1]; |
| b.InsertBefore(call, [&] { |
| call->SetArg(1, |
| b.Construct(ty.vec2(arg->Type()), arg, b.Zero(arg->Type())) |
| ->Result(0)); |
| }); |
| break; |
| } |
| case core::BuiltinFn::kTextureSample: { |
| // Add a new coord item so it's a vec2. |
| auto arg = call->Args()[1]; |
| b.InsertBefore(call, [&] { |
| call->SetArg(1, |
| b.Construct(ty.vec2(arg->Type()), arg, 0.5_f)->Result(0)); |
| }); |
| break; |
| } |
| case core::BuiltinFn::kTextureNumLevels: |
| // No changes needed. |
| break; |
| default: |
| TINT_UNREACHABLE() << "unknown usage instruction for texture"; |
| } |
| } |
| } |
| |
| return {new_type}; |
| } |
| |
| void UpgradeTexture1DVars() { |
| for (auto* inst : *ir.root_block) { |
| auto* var = inst->As<core::ir::Var>(); |
| if (!var) { |
| continue; |
| } |
| auto new_type = UpgradeTexture1D(var->Result(0)); |
| if (!new_type.has_value()) { |
| continue; |
| } |
| var->Result(0)->SetType(new_type.value()); |
| |
| // All of the usages of the textures should involve loading them as the `var` |
| // declarations will be pointers and the function usages require non-pointer textures. |
| for (auto usage : var->Result(0)->UsagesUnsorted()) { |
| UpgradeLoadOf1DTexture(usage->instruction); |
| } |
| } |
| } |
| |
| void UpgradeTexture1DParams() { |
| for (auto func : ir.functions) { |
| for (auto* param : func->Params()) { |
| auto new_type = UpgradeTexture1D(param); |
| if (!new_type.has_value()) { |
| continue; |
| } |
| param->SetType(new_type.value()); |
| } |
| } |
| } |
| |
| void UpgradeLoadOf1DTexture(core::ir::Instruction* inst) { |
| auto* ld = inst->As<core::ir::Load>(); |
| TINT_ASSERT(ld); |
| |
| auto new_type = UpgradeTexture1D(ld->Result(0)); |
| if (!new_type.has_value()) { |
| return; |
| } |
| ld->Result(0)->SetType(new_type.value()); |
| } |
| |
| // Must be called inside an insertion block |
| core::ir::Value* GetNewTexture(core::ir::Value* tex, core::ir::Value* sampler = nullptr) { |
| auto* t = VarForValue(tex); |
| auto* s = VarForValue(sampler); |
| |
| auto* replacement = GetReplacement(t, s); |
| TINT_ASSERT(replacement); |
| |
| // In the storage case, we'll return the original texture. Nothing else to do in that case. |
| if (replacement == t) { |
| return tex; |
| } |
| |
| return b.Load(replacement)->Result(0); |
| } |
| |
| // `textureDimensions` returns an unsigned scalar / vector in WGSL. `textureSize` and |
| // `imageSize` return a signed scalar / vector in GLSL. So, we need to cast the result |
| // to the needed WGSL type. |
| void TextureDimensions(core::ir::BuiltinCall* call) { |
| auto args = call->Args(); |
| |
| b.InsertBefore(call, [&] { |
| auto func = glsl::BuiltinFn::kTextureSize; |
| |
| Vector<core::ir::Value*, 2> new_args; |
| auto* tex = GetNewTexture(args[0]); |
| auto* tex_ty = tex->Type()->As<core::type::Texture>(); |
| |
| new_args.Push(tex); |
| |
| if (tex_ty->Is<core::type::StorageTexture>()) { |
| func = glsl::BuiltinFn::kImageSize; |
| } |
| |
| if (!(tex_ty->Is<core::type::StorageTexture>() || |
| tex_ty->Is<core::type::MultisampledTexture>() || |
| tex_ty->Is<core::type::DepthMultisampledTexture>())) { |
| // Add a LOD to any texture other then storage, and multi-sampled textures |
| // which does not already have an LOD. |
| if (args.Length() == 1) { |
| new_args.Push(b.Constant(0_i)); |
| } else { |
| // Make sure the LOD is a i32 |
| new_args.Push(b.Bitcast(ty.i32(), args[1])->Result(0)); |
| } |
| } |
| |
| auto ret_type = call->Result(0)->Type(); |
| |
| // In GLSL the array dimensions return a 3rd parameter. |
| if (tex_ty->Dim() == core::type::TextureDimension::k2dArray || |
| tex_ty->Dim() == core::type::TextureDimension::kCubeArray) { |
| ret_type = ty.vec(ty.i32(), 3); |
| } else { |
| ret_type = ty.MatchWidth(ty.i32(), call->Result(0)->Type()); |
| } |
| |
| core::ir::Value* result = |
| b.Call<glsl::ir::BuiltinCall>(ret_type, func, new_args)->Result(0); |
| |
| // `textureSize` on array samplers returns the array size in the final |
| // component, WGSL requires a 2 component response, so drop the array size |
| if (tex_ty->Dim() == core::type::TextureDimension::k2dArray || |
| tex_ty->Dim() == core::type::TextureDimension::kCubeArray) { |
| ret_type = ty.MatchWidth(ty.i32(), call->Result(0)->Type()); |
| result = b.Swizzle(ret_type, result, {0, 1})->Result(0); |
| } |
| |
| b.BitcastWithResult(call->DetachResult(), result)->Result(0); |
| }); |
| call->Destroy(); |
| } |
| |
| // `textureNumLayers` returns an unsigned scalar in WGSL. `textureSize` and `imageSize` |
| // return a signed scalar / vector in GLSL. |
| // |
| // For the `textureSize` and `imageSize` calls the valid WGSL values always produce a |
| // `vec3` in GLSL so we extract the `z` component for the number of layers. |
| void TextureNumLayers(core::ir::BuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| auto* tex = GetNewTexture(args[0]); |
| auto* tex_ty = tex->Type()->As<core::type::Texture>(); |
| |
| auto func = glsl::BuiltinFn::kTextureSize; |
| if (tex_ty->Is<core::type::StorageTexture>()) { |
| func = glsl::BuiltinFn::kImageSize; |
| } |
| |
| Vector<core::ir::Value*, 2> new_args; |
| new_args.Push(tex); |
| |
| // Non-storage textures require a LOD |
| if (!tex_ty->Is<core::type::StorageTexture>()) { |
| new_args.Push(b.Constant(0_i)); |
| } |
| |
| auto* new_call = b.Call<glsl::ir::BuiltinCall>(ty.vec(ty.i32(), 3), func, new_args); |
| |
| auto* swizzle = b.Swizzle(ty.i32(), new_call, {2}); |
| b.BitcastWithResult(call->DetachResult(), swizzle->Result(0)); |
| }); |
| call->Destroy(); |
| } |
| |
| void TextureLoad(core::ir::CoreBuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| auto* tex = GetNewTexture(args[0]); |
| |
| // No loading from a depth texture in GLSL, so we should never have gotten here. |
| TINT_ASSERT(!tex->Type()->Is<core::type::DepthTexture>()); |
| |
| auto* tex_type = tex->Type()->As<core::type::Texture>(); |
| |
| glsl::BuiltinFn func = glsl::BuiltinFn::kNone; |
| if (tex_type->Is<core::type::StorageTexture>()) { |
| func = glsl::BuiltinFn::kImageLoad; |
| } else { |
| func = glsl::BuiltinFn::kTexelFetch; |
| } |
| |
| bool is_ms = tex_type->Is<core::type::MultisampledTexture>(); |
| bool is_storage = tex_type->Is<core::type::StorageTexture>(); |
| |
| Vector<core::ir::Value*, 3> call_args{tex}; |
| switch (tex_type->Dim()) { |
| case core::type::TextureDimension::k2d: { |
| call_args.Push(b.Convert(ty.vec2<i32>(), args[1])->Result(0)); |
| if (is_ms) { |
| call_args.Push(b.Convert(ty.i32(), args[2])->Result(0)); |
| } else { |
| if (!is_storage) { |
| call_args.Push(b.Convert(ty.i32(), args[2])->Result(0)); |
| } |
| } |
| break; |
| } |
| case core::type::TextureDimension::k2dArray: { |
| auto* coord = b.Convert(ty.vec2<i32>(), args[1]); |
| auto* ary_idx = b.Convert(ty.i32(), args[2]); |
| call_args.Push(b.Construct(ty.vec3<i32>(), coord, ary_idx)->Result(0)); |
| |
| if (!is_storage) { |
| call_args.Push(b.Convert(ty.i32(), args[3])->Result(0)); |
| } |
| break; |
| } |
| case core::type::TextureDimension::k3d: { |
| call_args.Push(b.Convert(ty.vec3<i32>(), args[1])->Result(0)); |
| |
| if (!is_storage) { |
| call_args.Push(b.Convert(ty.i32(), args[2])->Result(0)); |
| } |
| break; |
| } |
| default: |
| TINT_UNREACHABLE(); |
| } |
| |
| b.CallWithResult<glsl::ir::BuiltinCall>(call->DetachResult(), func, |
| std::move(call_args)); |
| }); |
| call->Destroy(); |
| } |
| |
| void TextureStore(core::ir::BuiltinCall* call) { |
| b.InsertBefore(call, [&] { |
| auto args = call->Args(); |
| auto* tex = GetNewTexture(args[0]); |
| auto* tex_type = tex->Type()->As<core::type::StorageTexture>(); |
| TINT_ASSERT(tex_type); |
| |
| Vector<core::ir::Value*, 3> new_args; |
| new_args.Push(tex); |
| |
| if (tex_type->Dim() == core::type::TextureDimension::k2dArray) { |
| auto* coords = args[1]; |
| auto* array_idx = args[2]; |
| |
| auto* coords_ty = coords->Type()->As<core::type::Vector>(); |
| TINT_ASSERT(coords_ty); |
| |
| auto* new_coords = b.Construct(ty.vec3(coords_ty->Type()), coords, |
| b.Convert(coords_ty->Type(), array_idx)); |
| new_args.Push(new_coords->Result(0)); |
| |
| new_args.Push(args[3]); |
| } else { |
| new_args.Push(args[1]); |
| new_args.Push(args[2]); |
| } |
| |
| b.CallWithResult<glsl::ir::BuiltinCall>( |
| call->DetachResult(), glsl::BuiltinFn::kImageStore, std::move(new_args)); |
| }); |
| call->Destroy(); |
| } |
| }; |
| |
| } // namespace |
| |
| Result<SuccessType> TexturePolyfill(core::ir::Module& ir, const TexturePolyfillConfig& cfg) { |
| auto result = ValidateAndDumpIfNeeded(ir, "glsl.TexturePolyfill transform"); |
| if (result != Success) { |
| return result.Failure(); |
| } |
| |
| State{ir, cfg}.Process(); |
| |
| return Success; |
| } |
| |
| } // namespace tint::glsl::writer::raise |