blob: 6768fba4bf7947e9e8b429904fd04d8896d1c2b5 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/CommandBufferStateTracker.h"
#include <limits>
#include <optional>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <variant>
#include "dawn/common/Assert.h"
#include "dawn/common/BitSetIterator.h"
#include "dawn/common/StackContainer.h"
#include "dawn/native/BindGroup.h"
#include "dawn/native/ComputePassEncoder.h"
#include "dawn/native/ComputePipeline.h"
#include "dawn/native/Forward.h"
#include "dawn/native/ObjectType_autogen.h"
#include "dawn/native/PipelineLayout.h"
#include "dawn/native/RenderPipeline.h"
// TODO(dawn:563): None of the error messages in this file include the buffer objects they are
// validating against. It would be nice to improve that, but difficult to do without incurring
// additional tracking costs.
namespace dawn::native {
namespace {
// Returns nullopt if all buffers in unverifiedBufferSizes are at least large enough to satisfy the
// minimum listed in pipelineMinBufferSizes, or the index of the first detected failing buffer
// otherwise.
std::optional<uint32_t> FindFirstUndersizedBuffer(
const ityp::span<uint32_t, uint64_t> unverifiedBufferSizes,
const std::vector<uint64_t>& pipelineMinBufferSizes) {
ASSERT(unverifiedBufferSizes.size() == pipelineMinBufferSizes.size());
for (uint32_t i = 0; i < unverifiedBufferSizes.size(); ++i) {
if (unverifiedBufferSizes[i] < pipelineMinBufferSizes[i]) {
return i;
}
}
return std::nullopt;
}
struct BufferAliasing {
struct Entry {
BindGroupIndex bindGroupIndex;
BindingIndex bindingIndex;
// Adjusted offset with dynamic offset
uint64_t offset;
uint64_t size;
};
Entry e0;
Entry e1;
};
struct TextureAliasing {
struct Entry {
BindGroupIndex bindGroupIndex;
BindingIndex bindingIndex;
uint32_t baseMipLevel;
uint32_t mipLevelCount;
uint32_t baseArrayLayer;
uint32_t arrayLayerCount;
};
Entry e0;
Entry e1;
};
using WritableBindingAliasingResult = std::variant<std::monostate, BufferAliasing, TextureAliasing>;
template <typename Return>
Return FindStorageBufferBindingAliasing(
const PipelineLayoutBase* pipelineLayout,
const ityp::array<BindGroupIndex, BindGroupBase*, kMaxBindGroups>& bindGroups,
const ityp::array<BindGroupIndex, std::vector<uint32_t>, kMaxBindGroups>& dynamicOffsets) {
// If true, returns detailed validation error info. Otherwise simply returns if any binding
// aliasing is found.
constexpr bool kProduceDetails = std::is_same_v<Return, WritableBindingAliasingResult>;
// Reduce the bindings array first to only preserve storage buffer bindings that could
// potentially have ranges overlap.
// There can at most be 8 storage buffer bindings (in default limits) per shader stage.
StackVector<BufferBinding, 8> storageBufferBindingsToCheck;
StackVector<std::pair<BindGroupIndex, BindingIndex>, 8> bufferBindingIndices;
// Reduce the bindings array first to only preserve writable storage texture bindings that could
// potentially have ranges overlap.
// There can at most be 8 storage texture bindings (in default limits) per shader stage.
StackVector<const TextureViewBase*, 8> storageTextureViewsToCheck;
StackVector<std::pair<BindGroupIndex, BindingIndex>, 8> textureBindingIndices;
for (BindGroupIndex groupIndex : IterateBitSet(pipelineLayout->GetBindGroupLayoutsMask())) {
BindGroupLayoutInternalBase* bgl = bindGroups[groupIndex]->GetLayout();
for (BindingIndex bindingIndex{0}; bindingIndex < bgl->GetBufferCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = bgl->GetBindingInfo(bindingIndex);
// Buffer bindings are sorted to have smallest of bindingIndex.
ASSERT(bindingInfo.bindingType == BindingInfoType::Buffer);
// BindGroup validation already guarantees the buffer usage includes
// wgpu::BufferUsage::Storage
if (bindingInfo.buffer.type != wgpu::BufferBindingType::Storage) {
continue;
}
const BufferBinding bufferBinding =
bindGroups[groupIndex]->GetBindingAsBufferBinding(bindingIndex);
if (bufferBinding.size == 0) {
continue;
}
uint64_t adjustedOffset = bufferBinding.offset;
// Apply dynamic offset if any.
if (bindingInfo.buffer.hasDynamicOffset) {
// SetBindGroup validation already guarantees offsets and sizes don't overflow.
adjustedOffset += dynamicOffsets[groupIndex][static_cast<uint32_t>(bindingIndex)];
}
storageBufferBindingsToCheck->push_back(BufferBinding{
bufferBinding.buffer,
adjustedOffset,
bufferBinding.size,
});
if constexpr (kProduceDetails) {
bufferBindingIndices->emplace_back(groupIndex, bindingIndex);
}
}
// TODO(dawn:1642): optimize: precompute start/end range of storage textures bindings.
for (BindingIndex bindingIndex{bgl->GetBufferCount()};
bindingIndex < bgl->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = bgl->GetBindingInfo(bindingIndex);
if (bindingInfo.bindingType != BindingInfoType::StorageTexture) {
continue;
}
switch (bindingInfo.storageTexture.access) {
case wgpu::StorageTextureAccess::WriteOnly:
case wgpu::StorageTextureAccess::ReadWrite:
break;
// TODO(dawn:1972): Implement ReadOnly storage texture
case wgpu::StorageTextureAccess::ReadOnly:
case wgpu::StorageTextureAccess::Undefined:
default:
UNREACHABLE();
}
const TextureViewBase* textureView =
bindGroups[groupIndex]->GetBindingAsTextureView(bindingIndex);
storageTextureViewsToCheck->push_back(textureView);
if constexpr (kProduceDetails) {
textureBindingIndices->emplace_back(groupIndex, bindingIndex);
}
}
}
// Iterate through each buffer bindings to find if any writable storage bindings aliasing
// exists. Given that maxStorageBuffersPerShaderStage is 8, it doesn't seem too bad to do a
// nested loop check.
// TODO(dawn:1642): Maybe do algorithm optimization from O(N^2) to O(N*logN).
for (size_t i = 0; i < storageBufferBindingsToCheck->size(); i++) {
const auto& bufferBinding0 = storageBufferBindingsToCheck[i];
for (size_t j = i + 1; j < storageBufferBindingsToCheck->size(); j++) {
const auto& bufferBinding1 = storageBufferBindingsToCheck[j];
if (bufferBinding0.buffer != bufferBinding1.buffer) {
continue;
}
if (RangesOverlap(
bufferBinding0.offset, bufferBinding0.offset + bufferBinding0.size - 1,
bufferBinding1.offset, bufferBinding1.offset + bufferBinding1.size - 1)) {
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult{BufferAliasing{
{bufferBindingIndices[i].first, bufferBindingIndices[i].second,
bufferBinding0.offset, bufferBinding0.size},
{bufferBindingIndices[j].first, bufferBindingIndices[j].second,
bufferBinding1.offset, bufferBinding1.size},
}};
} else {
return true;
}
}
}
}
// Iterate through each texture views to find if any writable storage bindings aliasing exists.
// Given that maxStorageTexturesPerShaderStage is 8,
// it doesn't seem too bad to do a nested loop check.
// TODO(dawn:1642): Maybe do algorithm optimization from O(N^2) to O(N*logN).
for (size_t i = 0; i < storageTextureViewsToCheck->size(); i++) {
const TextureViewBase* textureView0 = storageTextureViewsToCheck[i];
ASSERT(textureView0->GetAspects() == Aspect::Color);
uint32_t baseMipLevel0 = textureView0->GetBaseMipLevel();
uint32_t mipLevelCount0 = textureView0->GetLevelCount();
uint32_t baseArrayLayer0 = textureView0->GetBaseArrayLayer();
uint32_t arrayLayerCount0 = textureView0->GetLayerCount();
for (size_t j = i + 1; j < storageTextureViewsToCheck->size(); j++) {
const TextureViewBase* textureView1 = storageTextureViewsToCheck[j];
if (textureView0->GetTexture() != textureView1->GetTexture()) {
continue;
}
ASSERT(textureView1->GetAspects() == Aspect::Color);
uint32_t baseMipLevel1 = textureView1->GetBaseMipLevel();
uint32_t mipLevelCount1 = textureView1->GetLevelCount();
uint32_t baseArrayLayer1 = textureView1->GetBaseArrayLayer();
uint32_t arrayLayerCount1 = textureView1->GetLayerCount();
if (RangesOverlap(baseMipLevel0, baseMipLevel0 + mipLevelCount0 - 1, baseMipLevel1,
baseMipLevel1 + mipLevelCount1 - 1) &&
RangesOverlap(baseArrayLayer0, baseArrayLayer0 + arrayLayerCount0 - 1,
baseArrayLayer1, baseArrayLayer1 + arrayLayerCount1 - 1)) {
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult{TextureAliasing{
{textureBindingIndices[i].first, textureBindingIndices[i].second,
baseMipLevel0, mipLevelCount0, baseArrayLayer0, arrayLayerCount0},
{textureBindingIndices[j].first, textureBindingIndices[j].second,
baseMipLevel1, mipLevelCount1, baseArrayLayer1, arrayLayerCount1},
}};
} else {
return true;
}
}
}
}
if constexpr (kProduceDetails) {
return WritableBindingAliasingResult();
} else {
return false;
}
}
bool TextureViewsMatch(const TextureViewBase* a, const TextureViewBase* b) {
ASSERT(a->GetTexture() == b->GetTexture());
return a->GetFormat().GetIndex() == b->GetFormat().GetIndex() &&
a->GetDimension() == b->GetDimension() && a->GetBaseMipLevel() == b->GetBaseMipLevel() &&
a->GetLevelCount() == b->GetLevelCount() &&
a->GetBaseArrayLayer() == b->GetBaseArrayLayer() &&
a->GetLayerCount() == b->GetLayerCount();
}
using VectorOfTextureViews = StackVector<const TextureViewBase*, 8>;
bool TextureViewsAllMatch(const VectorOfTextureViews& views) {
ASSERT(!views->empty());
const TextureViewBase* first = views[0];
for (size_t i = 1; i < views->size(); ++i) {
if (!TextureViewsMatch(first, views[i])) {
return false;
}
}
return true;
}
} // namespace
enum ValidationAspect {
VALIDATION_ASPECT_PIPELINE,
VALIDATION_ASPECT_BIND_GROUPS,
VALIDATION_ASPECT_VERTEX_BUFFERS,
VALIDATION_ASPECT_INDEX_BUFFER,
VALIDATION_ASPECT_COUNT
};
static_assert(VALIDATION_ASPECT_COUNT == CommandBufferStateTracker::kNumAspects);
static constexpr CommandBufferStateTracker::ValidationAspects kDispatchAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS;
static constexpr CommandBufferStateTracker::ValidationAspects kDrawAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS |
1 << VALIDATION_ASPECT_VERTEX_BUFFERS;
static constexpr CommandBufferStateTracker::ValidationAspects kDrawIndexedAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS |
1 << VALIDATION_ASPECT_VERTEX_BUFFERS | 1 << VALIDATION_ASPECT_INDEX_BUFFER;
static constexpr CommandBufferStateTracker::ValidationAspects kLazyAspects =
1 << VALIDATION_ASPECT_BIND_GROUPS | 1 << VALIDATION_ASPECT_VERTEX_BUFFERS |
1 << VALIDATION_ASPECT_INDEX_BUFFER;
CommandBufferStateTracker::CommandBufferStateTracker() = default;
CommandBufferStateTracker::CommandBufferStateTracker(const CommandBufferStateTracker&) = default;
CommandBufferStateTracker::CommandBufferStateTracker(CommandBufferStateTracker&&) = default;
CommandBufferStateTracker::~CommandBufferStateTracker() = default;
CommandBufferStateTracker& CommandBufferStateTracker::operator=(const CommandBufferStateTracker&) =
default;
CommandBufferStateTracker& CommandBufferStateTracker::operator=(CommandBufferStateTracker&&) =
default;
MaybeError CommandBufferStateTracker::ValidateCanDispatch() {
return ValidateOperation(kDispatchAspects);
}
MaybeError CommandBufferStateTracker::ValidateCanDraw() {
return ValidateOperation(kDrawAspects);
}
MaybeError CommandBufferStateTracker::ValidateCanDrawIndexed() {
return ValidateOperation(kDrawIndexedAspects);
}
MaybeError CommandBufferStateTracker::ValidateNoDifferentTextureViewsOnSameTexture() {
// TODO(dawn:1855): Look into optimizations as unordered_map does many allocations
std::unordered_map<const TextureBase*, VectorOfTextureViews> textureToViews;
for (BindGroupIndex groupIndex :
IterateBitSet(mLastPipelineLayout->GetBindGroupLayoutsMask())) {
BindGroupBase* bindGroup = mBindgroups[groupIndex];
BindGroupLayoutInternalBase* bgl = bindGroup->GetLayout();
for (BindingIndex bindingIndex{0}; bindingIndex < bgl->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = bgl->GetBindingInfo(bindingIndex);
if (bindingInfo.bindingType != BindingInfoType::Texture &&
bindingInfo.bindingType != BindingInfoType::StorageTexture) {
continue;
}
const TextureViewBase* textureViewBase =
bindGroup->GetBindingAsTextureView(bindingIndex);
textureToViews[textureViewBase->GetTexture()]->push_back(textureViewBase);
}
}
for (const auto& it : textureToViews) {
const TextureBase* texture = it.first;
const VectorOfTextureViews& views = it.second;
DAWN_INVALID_IF(
!TextureViewsAllMatch(views),
"In compatibility mode, %s must not have different views in a single draw/dispatch "
"command. texture views: %s",
texture,
ityp::span<size_t, const TextureViewBase* const>(views->data(), views->size()));
}
return {};
}
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForVertexBuffer(uint32_t vertexCount,
uint32_t firstVertex) {
uint64_t strideCount = static_cast<uint64_t>(firstVertex) + vertexCount;
if (strideCount == 0) {
// All vertex step mode buffers are always in range if stride count is zero
return {};
}
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>& vertexBufferSlotsUsedAsVertexBuffer =
lastRenderPipeline->GetVertexBufferSlotsUsedAsVertexBuffer();
for (auto usedSlotVertex : IterateBitSet(vertexBufferSlotsUsedAsVertexBuffer)) {
const VertexBufferInfo& vertexBuffer = lastRenderPipeline->GetVertexBuffer(usedSlotVertex);
uint64_t arrayStride = vertexBuffer.arrayStride;
uint64_t bufferSize = mVertexBufferSizes[usedSlotVertex];
if (arrayStride == 0) {
DAWN_INVALID_IF(vertexBuffer.usedBytesInStride > bufferSize,
"Bound vertex buffer size (%u) at slot %u with an arrayStride of 0 "
"is smaller than the required size for all attributes (%u)",
bufferSize, static_cast<uint8_t>(usedSlotVertex),
vertexBuffer.usedBytesInStride);
} else {
DAWN_ASSERT(strideCount != 0u);
uint64_t requiredSize = (strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
// firstVertex and vertexCount are in uint32_t,
// arrayStride must not be larger than kMaxVertexBufferArrayStride, which is
// currently 2048, and vertexBuffer.lastStride = max(attribute.offset +
// sizeof(attribute.format)) with attribute.offset being no larger than
// kMaxVertexBufferArrayStride, so by doing checks in uint64_t we avoid
// overflows.
DAWN_INVALID_IF(
requiredSize > bufferSize,
"Vertex range (first: %u, count: %u) requires a larger buffer (%u) than "
"the "
"bound buffer size (%u) of the vertex buffer at slot %u with stride %u.",
firstVertex, vertexCount, requiredSize, bufferSize,
static_cast<uint8_t>(usedSlotVertex), arrayStride);
}
}
return {};
}
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForInstanceBuffer(
uint32_t instanceCount,
uint32_t firstInstance) {
uint64_t strideCount = static_cast<uint64_t>(firstInstance) + instanceCount;
if (strideCount == 0) {
// All instance step mode buffers are always in range if stride count is zero
return {};
}
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>& vertexBufferSlotsUsedAsInstanceBuffer =
lastRenderPipeline->GetVertexBufferSlotsUsedAsInstanceBuffer();
for (auto usedSlotInstance : IterateBitSet(vertexBufferSlotsUsedAsInstanceBuffer)) {
const VertexBufferInfo& vertexBuffer =
lastRenderPipeline->GetVertexBuffer(usedSlotInstance);
uint64_t arrayStride = vertexBuffer.arrayStride;
uint64_t bufferSize = mVertexBufferSizes[usedSlotInstance];
if (arrayStride == 0) {
DAWN_INVALID_IF(vertexBuffer.usedBytesInStride > bufferSize,
"Bound vertex buffer size (%u) at slot %u with an arrayStride of 0 "
"is smaller than the required size for all attributes (%u)",
bufferSize, static_cast<uint8_t>(usedSlotInstance),
vertexBuffer.usedBytesInStride);
} else {
DAWN_ASSERT(strideCount != 0u);
uint64_t requiredSize = (strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
// firstInstance and instanceCount are in uint32_t,
// arrayStride must not be larger than kMaxVertexBufferArrayStride, which is
// currently 2048, and vertexBuffer.lastStride = max(attribute.offset +
// sizeof(attribute.format)) with attribute.offset being no larger than
// kMaxVertexBufferArrayStride, so by doing checks in uint64_t we avoid
// overflows.
DAWN_INVALID_IF(
requiredSize > bufferSize,
"Instance range (first: %u, count: %u) requires a larger buffer (%u) than "
"the "
"bound buffer size (%u) of the vertex buffer at slot %u with stride %u.",
firstInstance, instanceCount, requiredSize, bufferSize,
static_cast<uint8_t>(usedSlotInstance), arrayStride);
}
}
return {};
}
MaybeError CommandBufferStateTracker::ValidateIndexBufferInRange(uint32_t indexCount,
uint32_t firstIndex) {
// Validate the range of index buffer
// firstIndex and indexCount are in uint32_t, while IndexFormatSize is 2 (for
// wgpu::IndexFormat::Uint16) or 4 (for wgpu::IndexFormat::Uint32), so by doing checks in
// uint64_t we avoid overflows.
DAWN_INVALID_IF(
(static_cast<uint64_t>(firstIndex) + indexCount) * IndexFormatSize(mIndexFormat) >
mIndexBufferSize,
"Index range (first: %u, count: %u, format: %s) does not fit in index buffer size "
"(%u).",
firstIndex, indexCount, mIndexFormat, mIndexBufferSize);
return {};
}
MaybeError CommandBufferStateTracker::ValidateOperation(ValidationAspects requiredAspects) {
// Fast return-true path if everything is good
ValidationAspects missingAspects = requiredAspects & ~mAspects;
if (missingAspects.none()) {
return {};
}
// Generate an error immediately if a non-lazy aspect is missing as computing lazy aspects
// requires the pipeline to be set.
DAWN_TRY(CheckMissingAspects(missingAspects & ~kLazyAspects));
RecomputeLazyAspects(missingAspects);
DAWN_TRY(CheckMissingAspects(requiredAspects & ~mAspects));
// Validation for kMaxBindGroupsPlusVertexBuffers is skipped because it is not necessary so far.
static_assert(kMaxBindGroups + kMaxVertexBuffers <= kMaxBindGroupsPlusVertexBuffers);
return {};
}
void CommandBufferStateTracker::RecomputeLazyAspects(ValidationAspects aspects) {
ASSERT(mAspects[VALIDATION_ASPECT_PIPELINE]);
ASSERT((aspects & ~kLazyAspects).none());
if (aspects[VALIDATION_ASPECT_BIND_GROUPS]) {
bool matches = true;
for (BindGroupIndex i : IterateBitSet(mLastPipelineLayout->GetBindGroupLayoutsMask())) {
if (mBindgroups[i] == nullptr ||
mLastPipelineLayout->GetBindGroupLayout(i) != mBindgroups[i]->GetLayout() ||
FindFirstUndersizedBuffer(mBindgroups[i]->GetUnverifiedBufferSizes(),
(*mMinBufferSizes)[i])
.has_value()) {
matches = false;
break;
}
}
if (matches) {
// Continue checking if there is writable storage buffer binding aliasing or not
if (FindStorageBufferBindingAliasing<bool>(mLastPipelineLayout, mBindgroups,
mDynamicOffsets)) {
matches = false;
}
}
if (matches) {
mAspects.set(VALIDATION_ASPECT_BIND_GROUPS);
}
}
if (aspects[VALIDATION_ASPECT_VERTEX_BUFFERS]) {
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>& requiredVertexBuffers =
lastRenderPipeline->GetVertexBufferSlotsUsed();
if (IsSubset(requiredVertexBuffers, mVertexBufferSlotsUsed)) {
mAspects.set(VALIDATION_ASPECT_VERTEX_BUFFERS);
}
}
if (aspects[VALIDATION_ASPECT_INDEX_BUFFER] && mIndexBufferSet) {
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
if (!IsStripPrimitiveTopology(lastRenderPipeline->GetPrimitiveTopology()) ||
mIndexFormat == lastRenderPipeline->GetStripIndexFormat()) {
mAspects.set(VALIDATION_ASPECT_INDEX_BUFFER);
}
}
}
MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspects) {
if (!aspects.any()) {
return {};
}
DAWN_INVALID_IF(aspects[VALIDATION_ASPECT_PIPELINE], "No pipeline set.");
if (aspects[VALIDATION_ASPECT_INDEX_BUFFER]) {
DAWN_INVALID_IF(!mIndexBufferSet, "Index buffer was not set.");
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
wgpu::IndexFormat pipelineIndexFormat = lastRenderPipeline->GetStripIndexFormat();
if (IsStripPrimitiveTopology(lastRenderPipeline->GetPrimitiveTopology())) {
DAWN_INVALID_IF(
pipelineIndexFormat == wgpu::IndexFormat::Undefined,
"%s has a strip primitive topology (%s) but a strip index format of %s, which "
"prevents it for being used for indexed draw calls.",
lastRenderPipeline, lastRenderPipeline->GetPrimitiveTopology(),
pipelineIndexFormat);
DAWN_INVALID_IF(
mIndexFormat != pipelineIndexFormat,
"Strip index format (%s) of %s does not match index buffer format (%s).",
pipelineIndexFormat, lastRenderPipeline, mIndexFormat);
}
// The chunk of code above should be similar to the one in |RecomputeLazyAspects|.
// It returns the first invalid state found. We shouldn't be able to reach this line
// because to have invalid aspects one of the above conditions must have failed earlier.
// If this is reached, make sure lazy aspects and the error checks above are consistent.
UNREACHABLE();
return DAWN_VALIDATION_ERROR("Index buffer is invalid.");
}
if (aspects[VALIDATION_ASPECT_VERTEX_BUFFERS]) {
// Try to be helpful by finding one missing vertex buffer to surface in the error message.
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers> missingVertexBuffers =
GetRenderPipeline()->GetVertexBufferSlotsUsed() & ~mVertexBufferSlotsUsed;
ASSERT(missingVertexBuffers.any());
VertexBufferSlot firstMissing = ityp::Sub(GetHighestBitIndexPlusOne(missingVertexBuffers),
VertexBufferSlot(uint8_t(1)));
return DAWN_VALIDATION_ERROR("Vertex buffer slot %u required by %s was not set.",
uint8_t(firstMissing), GetRenderPipeline());
}
if (aspects[VALIDATION_ASPECT_BIND_GROUPS]) {
for (BindGroupIndex i : IterateBitSet(mLastPipelineLayout->GetBindGroupLayoutsMask())) {
ASSERT(HasPipeline());
DAWN_INVALID_IF(mBindgroups[i] == nullptr, "No bind group set at group index %u.",
static_cast<uint32_t>(i));
BindGroupLayoutBase* requiredBGL = mLastPipelineLayout->GetFrontendBindGroupLayout(i);
BindGroupLayoutBase* currentBGL = mBindgroups[i]->GetFrontendLayout();
DAWN_INVALID_IF(
requiredBGL->GetPipelineCompatibilityToken() != PipelineCompatibilityToken(0) &&
currentBGL->GetPipelineCompatibilityToken() !=
requiredBGL->GetPipelineCompatibilityToken(),
"The current pipeline (%s) was created with a default layout, and is not "
"compatible with the %s set at group index %u which uses a %s that was not "
"created by the pipeline. Either use the bind group layout returned by calling "
"getBindGroupLayout(%u) on the pipeline when creating the bind group, or "
"provide an explicit pipeline layout when creating the pipeline.",
mLastPipeline, mBindgroups[i], static_cast<uint32_t>(i), currentBGL,
static_cast<uint32_t>(i));
DAWN_INVALID_IF(
requiredBGL->GetPipelineCompatibilityToken() == PipelineCompatibilityToken(0) &&
currentBGL->GetPipelineCompatibilityToken() != PipelineCompatibilityToken(0),
"%s set at group index %u uses a %s which was created as part of the default "
"layout "
"for a different pipeline than the current one (%s), and as a result is not "
"compatible. Use an explicit bind group layout when creating bind groups and "
"an explicit pipeline layout when creating pipelines to share bind groups "
"between pipelines.",
mBindgroups[i], static_cast<uint32_t>(i), currentBGL, mLastPipeline);
DAWN_INVALID_IF(
requiredBGL->GetInternalBindGroupLayout() !=
currentBGL->GetInternalBindGroupLayout(),
"Bind group layout %s of pipeline layout %s does not match layout %s of bind "
"group %s set at group index %u.",
requiredBGL, mLastPipelineLayout, currentBGL, mBindgroups[i],
static_cast<uint32_t>(i));
std::optional<uint32_t> packedIndex = FindFirstUndersizedBuffer(
mBindgroups[i]->GetUnverifiedBufferSizes(), (*mMinBufferSizes)[i]);
if (packedIndex.has_value()) {
// Find the binding index for this packed index.
BindingIndex bindingIndex{std::numeric_limits<uint32_t>::max()};
mBindgroups[i]->ForEachUnverifiedBufferBindingIndex(
[&](BindingIndex candidateBindingIndex, uint32_t candidatePackedIndex) {
if (candidatePackedIndex == *packedIndex) {
bindingIndex = candidateBindingIndex;
}
});
ASSERT(static_cast<uint32_t>(bindingIndex) != std::numeric_limits<uint32_t>::max());
const auto& bindingInfo = mBindgroups[i]->GetLayout()->GetBindingInfo(bindingIndex);
const BufferBinding& bufferBinding =
mBindgroups[i]->GetBindingAsBufferBinding(bindingIndex);
BindingNumber bindingNumber = bindingInfo.binding;
const BufferBase* buffer = bufferBinding.buffer;
uint64_t bufferSize =
mBindgroups[i]->GetUnverifiedBufferSizes()[packedIndex.value()];
uint64_t minBufferSize = (*mMinBufferSizes)[i][packedIndex.value()];
return DAWN_VALIDATION_ERROR(
"%s bound with size %u at group %u, binding %u is too small. The pipeline (%s) "
"requires a buffer binding which is at least %u bytes.%s",
buffer, bufferSize, static_cast<uint32_t>(i),
static_cast<uint32_t>(bindingNumber), mLastPipeline, minBufferSize,
(bindingInfo.buffer.type == wgpu::BufferBindingType::Uniform
? " This binding is a uniform buffer binding. It is padded to a multiple "
"of 16 bytes, and as a result may be larger than the associated data in "
"the shader source."
: ""));
}
}
auto result = FindStorageBufferBindingAliasing<WritableBindingAliasingResult>(
mLastPipelineLayout, mBindgroups, mDynamicOffsets);
if (std::holds_alternative<BufferAliasing>(result)) {
const auto& a = std::get<BufferAliasing>(result);
return DAWN_VALIDATION_ERROR(
"Writable storage buffer binding aliasing found between %s set at bind group index "
"%u, binding index %u, and %s set at bind group index %u, binding index %u, with "
"overlapping ranges (offset: %u, size: %u) and (offset: %u, size: %u) in %s.",
mBindgroups[a.e0.bindGroupIndex], static_cast<uint32_t>(a.e0.bindGroupIndex),
static_cast<uint32_t>(a.e0.bindingIndex), mBindgroups[a.e1.bindGroupIndex],
static_cast<uint32_t>(a.e1.bindGroupIndex),
static_cast<uint32_t>(a.e1.bindingIndex), a.e0.offset, a.e0.size, a.e1.offset,
a.e1.size,
mBindgroups[a.e0.bindGroupIndex]
->GetBindingAsBufferBinding(a.e0.bindingIndex)
.buffer);
} else {
ASSERT(std::holds_alternative<TextureAliasing>(result));
const auto& a = std::get<TextureAliasing>(result);
return DAWN_VALIDATION_ERROR(
"Writable storage texture binding aliasing found between %s set at bind group "
"index %u, binding index %u, and %s set at bind group index %u, binding index %u, "
"with subresources (base mipmap level: %u, mip level count: %u, base array layer: "
"%u, array layer count: %u) and (base mipmap level: %u, mip level count: %u, base "
"array layer: %u, array layer count: %u) in %s.",
mBindgroups[a.e0.bindGroupIndex], static_cast<uint32_t>(a.e0.bindGroupIndex),
static_cast<uint32_t>(a.e0.bindingIndex), mBindgroups[a.e1.bindGroupIndex],
static_cast<uint32_t>(a.e1.bindGroupIndex),
static_cast<uint32_t>(a.e1.bindingIndex), a.e0.baseMipLevel, a.e0.mipLevelCount,
a.e0.baseArrayLayer, a.e0.arrayLayerCount, a.e1.baseMipLevel, a.e1.mipLevelCount,
a.e1.baseArrayLayer, a.e1.arrayLayerCount,
mBindgroups[a.e0.bindGroupIndex]
->GetBindingAsTextureView(a.e0.bindingIndex)
->GetTexture());
}
// The chunk of code above should be similar to the one in |RecomputeLazyAspects|.
// It returns the first invalid state found. We shouldn't be able to reach this line
// because to have invalid aspects one of the above conditions must have failed earlier.
// If this is reached, make sure lazy aspects and the error checks above are consistent.
UNREACHABLE();
return DAWN_VALIDATION_ERROR("Bind groups are invalid.");
}
UNREACHABLE();
}
void CommandBufferStateTracker::SetComputePipeline(ComputePipelineBase* pipeline) {
SetPipelineCommon(pipeline);
}
void CommandBufferStateTracker::SetRenderPipeline(RenderPipelineBase* pipeline) {
SetPipelineCommon(pipeline);
}
void CommandBufferStateTracker::UnsetBindGroup(BindGroupIndex index) {
mBindgroups[index] = nullptr;
mAspects.reset(VALIDATION_ASPECT_BIND_GROUPS);
}
void CommandBufferStateTracker::SetBindGroup(BindGroupIndex index,
BindGroupBase* bindgroup,
uint32_t dynamicOffsetCount,
const uint32_t* dynamicOffsets) {
mBindgroups[index] = bindgroup;
mDynamicOffsets[index].assign(dynamicOffsets, dynamicOffsets + dynamicOffsetCount);
mAspects.reset(VALIDATION_ASPECT_BIND_GROUPS);
}
void CommandBufferStateTracker::SetIndexBuffer(wgpu::IndexFormat format, uint64_t size) {
mIndexBufferSet = true;
mIndexFormat = format;
mIndexBufferSize = size;
}
void CommandBufferStateTracker::UnsetVertexBuffer(VertexBufferSlot slot) {
mVertexBufferSlotsUsed.set(slot, false);
mVertexBufferSizes[slot] = 0;
mAspects.reset(VALIDATION_ASPECT_VERTEX_BUFFERS);
}
void CommandBufferStateTracker::SetVertexBuffer(VertexBufferSlot slot, uint64_t size) {
mVertexBufferSlotsUsed.set(slot);
mVertexBufferSizes[slot] = size;
}
void CommandBufferStateTracker::SetPipelineCommon(PipelineBase* pipeline) {
mLastPipeline = pipeline;
mLastPipelineLayout = pipeline != nullptr ? pipeline->GetLayout() : nullptr;
mMinBufferSizes = pipeline != nullptr ? &pipeline->GetMinBufferSizes() : nullptr;
mAspects.set(VALIDATION_ASPECT_PIPELINE);
// Reset lazy aspects so they get recomputed on the next operation.
mAspects &= ~kLazyAspects;
}
BindGroupBase* CommandBufferStateTracker::GetBindGroup(BindGroupIndex index) const {
return mBindgroups[index];
}
const std::vector<uint32_t>& CommandBufferStateTracker::GetDynamicOffsets(
BindGroupIndex index) const {
return mDynamicOffsets[index];
}
bool CommandBufferStateTracker::HasPipeline() const {
return mLastPipeline != nullptr;
}
RenderPipelineBase* CommandBufferStateTracker::GetRenderPipeline() const {
ASSERT(HasPipeline() && mLastPipeline->GetType() == ObjectType::RenderPipeline);
return static_cast<RenderPipelineBase*>(mLastPipeline);
}
ComputePipelineBase* CommandBufferStateTracker::GetComputePipeline() const {
ASSERT(HasPipeline() && mLastPipeline->GetType() == ObjectType::ComputePipeline);
return static_cast<ComputePipelineBase*>(mLastPipeline);
}
PipelineLayoutBase* CommandBufferStateTracker::GetPipelineLayout() const {
return mLastPipelineLayout;
}
wgpu::IndexFormat CommandBufferStateTracker::GetIndexFormat() const {
return mIndexFormat;
}
uint64_t CommandBufferStateTracker::GetIndexBufferSize() const {
return mIndexBufferSize;
}
} // namespace dawn::native