| // Copyright 2020 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/wgsl/resolver/resolver.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| |
| #include "src/tint/lang/core/builtin_type.h" |
| #include "src/tint/lang/core/constant/scalar.h" |
| #include "src/tint/lang/core/fluent_types.h" |
| #include "src/tint/lang/core/type/abstract_float.h" |
| #include "src/tint/lang/core/type/abstract_int.h" |
| #include "src/tint/lang/core/type/array.h" |
| #include "src/tint/lang/core/type/atomic.h" |
| #include "src/tint/lang/core/type/builtin_structs.h" |
| #include "src/tint/lang/core/type/depth_multisampled_texture.h" |
| #include "src/tint/lang/core/type/depth_texture.h" |
| #include "src/tint/lang/core/type/external_texture.h" |
| #include "src/tint/lang/core/type/memory_view.h" |
| #include "src/tint/lang/core/type/multisampled_texture.h" |
| #include "src/tint/lang/core/type/pointer.h" |
| #include "src/tint/lang/core/type/reference.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/sampler.h" |
| #include "src/tint/lang/core/type/storage_texture.h" |
| #include "src/tint/lang/wgsl/ast/alias.h" |
| #include "src/tint/lang/wgsl/ast/assignment_statement.h" |
| #include "src/tint/lang/wgsl/ast/attribute.h" |
| #include "src/tint/lang/wgsl/ast/bitcast_expression.h" |
| #include "src/tint/lang/wgsl/ast/break_statement.h" |
| #include "src/tint/lang/wgsl/ast/call_statement.h" |
| #include "src/tint/lang/wgsl/ast/continue_statement.h" |
| #include "src/tint/lang/wgsl/ast/disable_validation_attribute.h" |
| #include "src/tint/lang/wgsl/ast/discard_statement.h" |
| #include "src/tint/lang/wgsl/ast/for_loop_statement.h" |
| #include "src/tint/lang/wgsl/ast/id_attribute.h" |
| #include "src/tint/lang/wgsl/ast/if_statement.h" |
| #include "src/tint/lang/wgsl/ast/internal_attribute.h" |
| #include "src/tint/lang/wgsl/ast/interpolate_attribute.h" |
| #include "src/tint/lang/wgsl/ast/loop_statement.h" |
| #include "src/tint/lang/wgsl/ast/return_statement.h" |
| #include "src/tint/lang/wgsl/ast/switch_statement.h" |
| #include "src/tint/lang/wgsl/ast/traverse_expressions.h" |
| #include "src/tint/lang/wgsl/ast/unary_op_expression.h" |
| #include "src/tint/lang/wgsl/ast/variable_decl_statement.h" |
| #include "src/tint/lang/wgsl/ast/while_statement.h" |
| #include "src/tint/lang/wgsl/ast/workgroup_attribute.h" |
| #include "src/tint/lang/wgsl/intrinsic/ctor_conv.h" |
| #include "src/tint/lang/wgsl/intrinsic/dialect.h" |
| #include "src/tint/lang/wgsl/resolver/incomplete_type.h" |
| #include "src/tint/lang/wgsl/resolver/uniformity.h" |
| #include "src/tint/lang/wgsl/resolver/unresolved_identifier.h" |
| #include "src/tint/lang/wgsl/sem/array.h" |
| #include "src/tint/lang/wgsl/sem/break_if_statement.h" |
| #include "src/tint/lang/wgsl/sem/builtin_enum_expression.h" |
| #include "src/tint/lang/wgsl/sem/call.h" |
| #include "src/tint/lang/wgsl/sem/for_loop_statement.h" |
| #include "src/tint/lang/wgsl/sem/function.h" |
| #include "src/tint/lang/wgsl/sem/function_expression.h" |
| #include "src/tint/lang/wgsl/sem/if_statement.h" |
| #include "src/tint/lang/wgsl/sem/index_accessor_expression.h" |
| #include "src/tint/lang/wgsl/sem/load.h" |
| #include "src/tint/lang/wgsl/sem/loop_statement.h" |
| #include "src/tint/lang/wgsl/sem/materialize.h" |
| #include "src/tint/lang/wgsl/sem/member_accessor_expression.h" |
| #include "src/tint/lang/wgsl/sem/module.h" |
| #include "src/tint/lang/wgsl/sem/statement.h" |
| #include "src/tint/lang/wgsl/sem/struct.h" |
| #include "src/tint/lang/wgsl/sem/switch_statement.h" |
| #include "src/tint/lang/wgsl/sem/type_expression.h" |
| #include "src/tint/lang/wgsl/sem/value_constructor.h" |
| #include "src/tint/lang/wgsl/sem/value_conversion.h" |
| #include "src/tint/lang/wgsl/sem/variable.h" |
| #include "src/tint/lang/wgsl/sem/while_statement.h" |
| #include "src/tint/utils/containers/reverse.h" |
| #include "src/tint/utils/containers/transform.h" |
| #include "src/tint/utils/containers/vector.h" |
| #include "src/tint/utils/macros/compiler.h" |
| #include "src/tint/utils/macros/defer.h" |
| #include "src/tint/utils/macros/scoped_assignment.h" |
| #include "src/tint/utils/math/math.h" |
| #include "src/tint/utils/text/string.h" |
| #include "src/tint/utils/text/string_stream.h" |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| |
| namespace tint::resolver { |
| namespace { |
| |
| using CtorConvIntrinsic = wgsl::intrinsic::CtorConv; |
| using OverloadFlag = core::intrinsic::OverloadFlag; |
| |
| constexpr int64_t kMaxArrayElementCount = 65536; |
| constexpr uint32_t kMaxStatementDepth = 127; |
| constexpr size_t kMaxNestDepthOfCompositeType = 255; |
| |
| } // namespace |
| |
| Resolver::Resolver(ProgramBuilder* builder, const wgsl::AllowedFeatures& allowed_features) |
| : b(*builder), |
| diagnostics_(builder->Diagnostics()), |
| const_eval_(builder->constants, diagnostics_), |
| intrinsic_table_{builder->Types(), builder->Symbols()}, |
| sem_(builder), |
| validator_(builder, |
| sem_, |
| enabled_extensions_, |
| allowed_features_, |
| atomic_composite_info_, |
| valid_type_storage_layouts_), |
| allowed_features_(allowed_features) {} |
| |
| Resolver::~Resolver() = default; |
| |
| bool Resolver::Resolve() { |
| if (diagnostics_.contains_errors()) { |
| return false; |
| } |
| |
| b.Sem().Reserve(b.LastAllocatedNodeID()); |
| |
| // Pre-allocate the marked bitset with the total number of AST nodes. |
| marked_.Resize(b.ASTNodes().Count()); |
| |
| if (!DependencyGraph::Build(b.AST(), diagnostics_, dependencies_)) { |
| return false; |
| } |
| |
| bool result = ResolveInternal(); |
| |
| if (TINT_UNLIKELY(!result && !diagnostics_.contains_errors())) { |
| AddICE("resolving failed, but no error was raised", {}); |
| return false; |
| } |
| |
| if (!validator_.Enables(b.AST().Enables())) { |
| return false; |
| } |
| |
| // Create the semantic module. Don't be tempted to std::move() these, they're used below. |
| auto* mod = b.create<sem::Module>(dependencies_.ordered_globals, enabled_extensions_); |
| ApplyDiagnosticSeverities(mod); |
| b.Sem().SetModule(mod); |
| |
| const bool disable_uniformity_analysis = |
| enabled_extensions_.Contains(wgsl::Extension::kChromiumDisableUniformityAnalysis); |
| if (result && !disable_uniformity_analysis) { |
| // Run the uniformity analysis, which requires a complete semantic module. |
| if (!AnalyzeUniformity(b, dependencies_)) { |
| return false; |
| } |
| } |
| |
| return result; |
| } |
| |
| bool Resolver::ResolveInternal() { |
| Mark(&b.AST()); |
| |
| // Process all module-scope declarations in dependency order. |
| Vector<const ast::DiagnosticControl*, 4> diagnostic_controls; |
| for (auto* decl : dependencies_.ordered_globals) { |
| Mark(decl); |
| if (!Switch<bool>( |
| decl, // |
| [&](const ast::DiagnosticDirective* d) { |
| diagnostic_controls.Push(&d->control); |
| return DiagnosticControl(d->control); |
| }, |
| [&](const ast::Enable* e) { return Enable(e); }, |
| [&](const ast::Requires* r) { return Requires(r); }, |
| [&](const ast::TypeDecl* td) { return TypeDecl(td); }, |
| [&](const ast::Function* func) { return Function(func); }, |
| [&](const ast::Variable* var) { return GlobalVariable(var); }, |
| [&](const ast::ConstAssert* ca) { return ConstAssert(ca); }, // |
| TINT_ICE_ON_NO_MATCH)) { |
| return false; |
| } |
| } |
| |
| if (!AllocateOverridableConstantIds()) { |
| return false; |
| } |
| |
| SetShadows(); |
| |
| if (!validator_.DiagnosticControls(diagnostic_controls, "directive")) { |
| return false; |
| } |
| |
| if (!validator_.PipelineStages(entry_points_)) { |
| return false; |
| } |
| |
| if (!validator_.ModuleScopeVarUsages(entry_points_)) { |
| return false; |
| } |
| |
| bool result = true; |
| for (auto* node : b.ASTNodes().Objects()) { |
| if (TINT_UNLIKELY(!marked_[node->node_id.value])) { |
| StringStream err; |
| err << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" |
| << "Pointer: " << node; |
| AddICE(err.str(), node->source); |
| result = false; |
| } |
| } |
| |
| return result; |
| } |
| |
| sem::Variable* Resolver::Variable(const ast::Variable* v, bool is_global) { |
| Mark(v->name); |
| |
| return Switch( |
| v, // |
| [&](const ast::Var* var) { return Var(var, is_global); }, |
| [&](const ast::Let* let) { return Let(let); }, |
| [&](const ast::Override* override) { return Override(override); }, |
| [&](const ast::Const* const_) { return Const(const_, is_global); }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| sem::Variable* Resolver::Let(const ast::Let* v) { |
| auto* sem = b.create<sem::LocalVariable>(v, current_statement_); |
| sem->SetStage(core::EvaluationStage::kRuntime); |
| b.Sem().Add(v, sem); |
| |
| // If the variable has a declared type, resolve it. |
| if (v->type) { |
| auto* ty = Type(v->type); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| sem->SetType(ty); |
| } |
| |
| for (auto* attribute : v->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'let' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| if (TINT_UNLIKELY(!v->initializer)) { |
| AddError("'let' declaration must have an initializer", v->source); |
| return nullptr; |
| } |
| |
| auto* rhs = Load(Materialize(ValueExpression(v->initializer), sem->Type())); |
| if (TINT_UNLIKELY(!rhs)) { |
| return nullptr; |
| } |
| sem->SetInitializer(rhs); |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!sem->Type()) { |
| sem->SetType(rhs->Type()->UnwrapRef()); // Implicit load of RHS |
| } |
| |
| if (TINT_UNLIKELY(rhs && !validator_.VariableInitializer(v, sem->Type(), rhs))) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(core::AddressSpace::kUndefined, |
| const_cast<core::type::Type*>(sem->Type()), v->source)) { |
| AddNote("while instantiating 'let' " + v->name->symbol.Name(), v->source); |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Override(const ast::Override* v) { |
| auto* sem = b.create<sem::GlobalVariable>(v); |
| b.Sem().Add(v, sem); |
| sem->SetStage(core::EvaluationStage::kOverride); |
| |
| on_transitively_reference_global_.Push([&](const sem::GlobalVariable* ref) { |
| if (ref->Declaration()->Is<ast::Override>()) { |
| sem->AddTransitivelyReferencedOverride(ref); |
| } |
| }); |
| TINT_DEFER(on_transitively_reference_global_.Pop()); |
| |
| // If the variable has a declared type, resolve it. |
| const core::type::Type* ty = nullptr; |
| if (v->type) { |
| ty = Type(v->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| // Does the variable have an initializer? |
| const sem::ValueExpression* init = nullptr; |
| if (v->initializer) { |
| // Note: RHS must be a const or override expression, which excludes references. |
| // So there's no need to load or unwrap references here. |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kOverride, |
| "override initializer"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| init = Materialize(ValueExpression(v->initializer), ty); |
| if (TINT_UNLIKELY(!init)) { |
| return nullptr; |
| } |
| sem->SetInitializer(init); |
| |
| // If the variable has no declared type, infer it from the initializer |
| if (!ty) { |
| ty = init->Type(); |
| } |
| } else if (!ty) { |
| AddError("override declaration requires a type or initializer", v->source); |
| return nullptr; |
| } |
| sem->SetType(ty); |
| |
| if (init && !validator_.VariableInitializer(v, ty, init)) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(core::AddressSpace::kUndefined, |
| const_cast<core::type::Type*>(ty), v->source)) { |
| AddNote("while instantiating 'override' " + v->name->symbol.Name(), v->source); |
| return nullptr; |
| } |
| |
| for (auto* attribute : v->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::IdAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@id"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@id must be an i32 or u32 value", attr->source); |
| return false; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@id value must be non-negative", attr->source); |
| return false; |
| } |
| if (value > std::numeric_limits<decltype(OverrideId::value)>::max()) { |
| AddError( |
| "@id value must be between 0 and " + |
| std::to_string(std::numeric_limits<decltype(OverrideId::value)>::max()), |
| attr->source); |
| return false; |
| } |
| |
| auto o = OverrideId{static_cast<decltype(OverrideId::value)>(value)}; |
| sem->Attributes().override_id = o; |
| |
| // Track the constant IDs that are specified in the shader. |
| override_ids_.Add(o, sem); |
| return true; |
| }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'override' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Const(const ast::Const* c, bool is_global) { |
| sem::Variable* sem = nullptr; |
| sem::GlobalVariable* global = nullptr; |
| if (is_global) { |
| global = b.create<sem::GlobalVariable>(c); |
| sem = global; |
| } else { |
| sem = b.create<sem::LocalVariable>(c, current_statement_); |
| } |
| b.Sem().Add(c, sem); |
| |
| for (auto* attribute : c->attributes) { |
| Mark(attribute); |
| bool ok = Switch(attribute, // |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "'const' declaration"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| if (TINT_UNLIKELY(!c->initializer)) { |
| AddError("'const' declaration must have an initializer", c->source); |
| return nullptr; |
| } |
| |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "const initializer"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| const auto* init = ValueExpression(c->initializer); |
| if (TINT_UNLIKELY(!init)) { |
| return nullptr; |
| } |
| |
| // Note: RHS must be a const expression, which excludes references. |
| // So there's no need to load or unwrap references here. |
| |
| // If the variable has a declared type, resolve it. |
| const core::type::Type* ty = nullptr; |
| if (c->type) { |
| ty = Type(c->type); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| } |
| |
| if (ty) { |
| // If an explicit type was specified, materialize to that type |
| init = Materialize(init, ty); |
| if (TINT_UNLIKELY(!init)) { |
| return nullptr; |
| } |
| } else { |
| // If no type was specified, infer it from the RHS |
| ty = init->Type(); |
| } |
| |
| sem->SetInitializer(init); |
| sem->SetStage(core::EvaluationStage::kConstant); |
| sem->SetConstantValue(init->ConstantValue()); |
| sem->SetType(ty); |
| |
| if (!validator_.VariableInitializer(c, ty, init)) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(core::AddressSpace::kUndefined, |
| const_cast<core::type::Type*>(ty), c->source)) { |
| AddNote("while instantiating 'const' " + c->name->symbol.Name(), c->source); |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Var(const ast::Var* var, bool is_global) { |
| sem::Variable* sem = nullptr; |
| sem::GlobalVariable* global = nullptr; |
| if (is_global) { |
| global = b.create<sem::GlobalVariable>(var); |
| sem = global; |
| } else { |
| sem = b.create<sem::LocalVariable>(var, current_statement_); |
| } |
| sem->SetStage(core::EvaluationStage::kRuntime); |
| b.Sem().Add(var, sem); |
| |
| if (is_global) { |
| on_transitively_reference_global_.Push([&](const sem::GlobalVariable* ref) { |
| if (ref->Declaration()->Is<ast::Override>()) { |
| global->AddTransitivelyReferencedOverride(ref); |
| } |
| }); |
| } |
| TINT_DEFER({ |
| if (is_global) { |
| on_transitively_reference_global_.Pop(); |
| } |
| }); |
| |
| // If the variable has a declared type, resolve it. |
| const core::type::Type* storage_ty = nullptr; |
| if (auto ty = var->type) { |
| storage_ty = Type(ty); |
| if (TINT_UNLIKELY(!storage_ty)) { |
| return nullptr; |
| } |
| } |
| |
| // Does the variable have a initializer? |
| if (var->initializer) { |
| ExprEvalStageConstraint constraint{ |
| is_global ? core::EvaluationStage::kOverride : core::EvaluationStage::kRuntime, |
| "var initializer", |
| }; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* init = Load(Materialize(ValueExpression(var->initializer), storage_ty)); |
| if (TINT_UNLIKELY(!init)) { |
| return nullptr; |
| } |
| sem->SetInitializer(init); |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!storage_ty) { |
| storage_ty = init->Type(); |
| } |
| } |
| |
| if (!storage_ty) { |
| AddError("var declaration requires a type or initializer", var->source); |
| return nullptr; |
| } |
| |
| if (var->declared_address_space) { |
| auto space = AddressSpaceExpression(var->declared_address_space); |
| if (TINT_UNLIKELY(!space)) { |
| return nullptr; |
| } |
| sem->SetAddressSpace(space->Value()); |
| } else { |
| // No declared address space. Infer from usage / type. |
| if (!is_global) { |
| sem->SetAddressSpace(core::AddressSpace::kFunction); |
| } else if (storage_ty->UnwrapRef()->is_handle()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a address space attribute. The |
| // address space will always be handle. |
| sem->SetAddressSpace(core::AddressSpace::kHandle); |
| } |
| } |
| |
| if (!is_global && sem->AddressSpace() != core::AddressSpace::kFunction && |
| validator_.IsValidationEnabled(var->attributes, |
| ast::DisabledValidation::kIgnoreAddressSpace)) { |
| AddError("function-scope 'var' declaration must use 'function' address space", var->source); |
| return nullptr; |
| } |
| |
| if (var->declared_access) { |
| auto expr = AccessExpression(var->declared_access); |
| if (!expr) { |
| return nullptr; |
| } |
| sem->SetAccess(expr->Value()); |
| } else { |
| sem->SetAccess(DefaultAccessForAddressSpace(sem->AddressSpace())); |
| } |
| |
| sem->SetType(b.create<core::type::Reference>(sem->AddressSpace(), storage_ty, sem->Access())); |
| |
| if (sem->Initializer() && |
| !validator_.VariableInitializer(var, storage_ty, sem->Initializer())) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(sem->AddressSpace(), |
| const_cast<core::type::Type*>(sem->Type()), |
| var->type ? var->type->source : var->source)) { |
| AddNote("while instantiating 'var' " + var->name->symbol.Name(), var->source); |
| return nullptr; |
| } |
| |
| if (is_global) { |
| bool has_io_address_space = sem->AddressSpace() == core::AddressSpace::kIn || |
| sem->AddressSpace() == core::AddressSpace::kOut; |
| |
| std::optional<uint32_t> group, binding; |
| for (auto* attribute : var->attributes) { |
| Mark(attribute); |
| enum Status { kSuccess, kErrored, kInvalid }; |
| auto res = Switch( |
| attribute, // |
| [&](const ast::BindingAttribute* attr) { |
| auto value = BindingAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| binding = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::GroupAttribute* attr) { |
| auto value = GroupAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| group = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::LocationAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| auto value = LocationAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| global->Attributes().location = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::BlendSrcAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| auto value = BlendSrcAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| global->Attributes().index = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::ColorAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| auto value = ColorAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| global->Attributes().color = value.Get(); |
| return kSuccess; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return BuiltinAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return InterpolateAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](const ast::InvariantAttribute* attr) { |
| if (!has_io_address_space) { |
| return kInvalid; |
| } |
| return InvariantAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InternalAttribute* attr) { |
| return InternalAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](Default) { return kInvalid; }); |
| |
| switch (res) { |
| case kSuccess: |
| break; |
| case kErrored: |
| return nullptr; |
| case kInvalid: |
| ErrorInvalidAttribute(attribute, "module-scope 'var'"); |
| return nullptr; |
| } |
| } |
| |
| if (group && binding) { |
| global->Attributes().binding_point = BindingPoint{group.value(), binding.value()}; |
| } |
| |
| } else { |
| for (auto* attribute : var->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, |
| [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "function-scope 'var'"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } |
| |
| return sem; |
| } |
| |
| sem::Parameter* Resolver::Parameter(const ast::Parameter* param, |
| const ast::Function* func, |
| uint32_t index) { |
| Mark(param->name); |
| |
| auto* sem = b.create<sem::Parameter>(param, index); |
| b.Sem().Add(param, sem); |
| |
| auto add_note = [&] { |
| AddNote("while instantiating parameter " + param->name->symbol.Name(), param->source); |
| }; |
| |
| if (func->IsEntryPoint()) { |
| std::optional<uint32_t> group, binding; |
| for (auto* attribute : param->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::LocationAttribute* attr) { |
| auto value = LocationAttribute(attr); |
| if (TINT_UNLIKELY(value != Success)) { |
| return false; |
| } |
| sem->Attributes().location = value.Get(); |
| return true; |
| }, |
| [&](const ast::ColorAttribute* attr) { |
| auto value = ColorAttribute(attr); |
| if (TINT_UNLIKELY(value != Success)) { |
| return false; |
| } |
| sem->Attributes().color = value.Get(); |
| return true; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| return BuiltinAttribute(attr) == Success; |
| }, |
| [&](const ast::InvariantAttribute* attr) -> bool { |
| return InvariantAttribute(attr); |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| return InterpolateAttribute(attr) == Success; |
| }, |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](const ast::GroupAttribute* attr) { |
| if (validator_.IsValidationEnabled( |
| param->attributes, ast::DisabledValidation::kEntryPointParameter)) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| } |
| auto value = GroupAttribute(attr); |
| if (TINT_UNLIKELY(value != Success)) { |
| return false; |
| } |
| group = value.Get(); |
| return true; |
| }, |
| [&](const ast::BindingAttribute* attr) -> bool { |
| if (validator_.IsValidationEnabled( |
| param->attributes, ast::DisabledValidation::kEntryPointParameter)) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| } |
| auto value = BindingAttribute(attr); |
| if (TINT_UNLIKELY(value != Success)) { |
| return false; |
| } |
| binding = value.Get(); |
| return true; |
| }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| if (group && binding) { |
| sem->Attributes().binding_point = BindingPoint{group.value(), binding.value()}; |
| } |
| } else { |
| for (auto* attribute : param->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::InternalAttribute* attr) -> bool { return InternalAttribute(attr); }, |
| [&](Default) { |
| if (attribute->IsAnyOf<ast::LocationAttribute, ast::BuiltinAttribute, |
| ast::InvariantAttribute, ast::InterpolateAttribute>()) { |
| ErrorInvalidAttribute(attribute, "non-entry point function parameters"); |
| } else { |
| ErrorInvalidAttribute(attribute, "function parameters"); |
| } |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(param->attributes)) { |
| return nullptr; |
| } |
| |
| core::type::Type* ty = Type(param->type); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| sem->SetType(ty); |
| |
| if (!ApplyAddressSpaceUsageToType(core::AddressSpace::kUndefined, ty, param->type->source)) { |
| add_note(); |
| return nullptr; |
| } |
| |
| if (auto* ptr = ty->As<core::type::Pointer>()) { |
| // For MSL, we push module-scope variables into the entry point as pointer |
| // parameters, so we also need to handle their store type. |
| if (!ApplyAddressSpaceUsageToType(ptr->AddressSpace(), |
| const_cast<core::type::Type*>(ptr->StoreType()), |
| param->source)) { |
| add_note(); |
| return nullptr; |
| } |
| } |
| |
| if (!validator_.Parameter(sem)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| core::Access Resolver::DefaultAccessForAddressSpace(core::AddressSpace address_space) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| switch (address_space) { |
| case core::AddressSpace::kStorage: |
| case core::AddressSpace::kUniform: |
| case core::AddressSpace::kHandle: |
| return core::Access::kRead; |
| default: |
| break; |
| } |
| return core::Access::kReadWrite; |
| } |
| |
| bool Resolver::AllocateOverridableConstantIds() { |
| constexpr size_t kLimit = std::numeric_limits<decltype(OverrideId::value)>::max(); |
| // The next pipeline constant ID to try to allocate. |
| OverrideId next_id; |
| bool ids_exhausted = false; |
| |
| auto increment_next_id = [&] { |
| if (next_id.value == kLimit) { |
| ids_exhausted = true; |
| } else { |
| next_id.value = next_id.value + 1; |
| } |
| }; |
| |
| // Allocate constant IDs in global declaration order, so that they are |
| // deterministic. |
| // TODO(crbug.com/tint/1192): If a transform changes the order or removes an |
| // unused constant, the allocation may change on the next Resolver pass. |
| for (auto* decl : b.AST().GlobalDeclarations()) { |
| auto* override = decl->As<ast::Override>(); |
| if (!override) { |
| continue; |
| } |
| |
| auto* sem = sem_.Get(override); |
| |
| OverrideId id; |
| if (auto sem_id = sem->Attributes().override_id) { |
| id = *sem_id; |
| } else { |
| // No ID was specified, so allocate the next available ID. |
| while (!ids_exhausted && override_ids_.Contains(next_id)) { |
| increment_next_id(); |
| } |
| if (ids_exhausted) { |
| AddError( |
| "number of 'override' variables exceeded limit of " + std::to_string(kLimit), |
| decl->source); |
| return false; |
| } |
| id = next_id; |
| increment_next_id(); |
| } |
| |
| const_cast<sem::GlobalVariable*>(sem)->Attributes().override_id = id; |
| } |
| return true; |
| } |
| |
| void Resolver::SetShadows() { |
| for (auto& it : dependencies_.shadows) { |
| CastableBase* shadowed = sem_.Get(it.value); |
| if (TINT_UNLIKELY(!shadowed)) { |
| StringStream err; |
| err << "AST node '" << it.value->TypeInfo().name << "' had no semantic info\n" |
| << "Pointer: " << it.value; |
| AddICE(err.str(), it.value->source); |
| } |
| |
| Switch( |
| sem_.Get(it.key.Value()), // |
| [&](sem::LocalVariable* local) { local->SetShadows(shadowed); }, |
| [&](sem::Parameter* param) { param->SetShadows(shadowed); }); |
| } |
| } |
| |
| sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* v) { |
| auto* sem = As<sem::GlobalVariable>(Variable(v, /* is_global */ true)); |
| if (!sem) { |
| return nullptr; |
| } |
| |
| if (!validator_.NoDuplicateAttributes(v->attributes)) { |
| return nullptr; |
| } |
| |
| if (!validator_.GlobalVariable(sem, override_ids_)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Statement* Resolver::ConstAssert(const ast::ConstAssert* assertion) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "const assertion"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| auto* expr = ValueExpression(assertion->condition); |
| if (!expr) { |
| return nullptr; |
| } |
| auto* cond = expr->ConstantValue(); |
| if (auto* ty = cond->Type(); !ty->Is<core::type::Bool>()) { |
| AddError("const assertion condition must be a bool, got '" + ty->FriendlyName() + "'", |
| assertion->condition->source); |
| return nullptr; |
| } |
| if (!cond->ValueAs<bool>()) { |
| AddError("const assertion failed", assertion->source); |
| return nullptr; |
| } |
| auto* sem = b.create<sem::Statement>(assertion, current_compound_statement_, current_function_); |
| b.Sem().Add(assertion, sem); |
| return sem; |
| } |
| |
| sem::Function* Resolver::Function(const ast::Function* decl) { |
| Mark(decl->name); |
| |
| auto* func = b.create<sem::Function>(decl); |
| b.Sem().Add(decl, func); |
| TINT_SCOPED_ASSIGNMENT(current_function_, func); |
| |
| on_transitively_reference_global_.Push([&](const sem::GlobalVariable* ref) { // |
| func->AddDirectlyReferencedGlobal(ref); |
| }); |
| TINT_DEFER(on_transitively_reference_global_.Pop()); |
| |
| validator_.DiagnosticFilters().Push(); |
| TINT_DEFER(validator_.DiagnosticFilters().Pop()); |
| |
| for (auto* attribute : decl->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, |
| [&](const ast::DiagnosticAttribute* attr) { return DiagnosticAttribute(attr); }, |
| [&](const ast::StageAttribute* attr) { return StageAttribute(attr); }, |
| [&](const ast::MustUseAttribute* attr) { return MustUseAttribute(attr); }, |
| [&](const ast::WorkgroupAttribute* attr) { |
| auto value = WorkgroupAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| func->SetWorkgroupSize(value.Get()); |
| return true; |
| }, |
| [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "functions"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| if (!validator_.NoDuplicateAttributes(decl->attributes)) { |
| return nullptr; |
| } |
| |
| // Resolve all the parameters |
| uint32_t parameter_index = 0; |
| Hashmap<Symbol, Source, 8> parameter_names; |
| for (auto* param : decl->params) { |
| Mark(param); |
| |
| { // Check the parameter name is unique for the function |
| if (auto added = parameter_names.Add(param->name->symbol, param->source); !added) { |
| auto name = param->name->symbol.Name(); |
| AddError("redefinition of parameter '" + name + "'", param->source); |
| AddNote("previous definition is here", added.value); |
| return nullptr; |
| } |
| } |
| |
| auto* p = Parameter(param, decl, parameter_index++); |
| if (!p) { |
| return nullptr; |
| } |
| |
| func->AddParameter(p); |
| |
| auto* p_ty = const_cast<core::type::Type*>(p->Type()); |
| if (auto* str = p_ty->As<core::type::Struct>()) { |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(core::type::PipelineStageUsage::kVertexInput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(core::type::PipelineStageUsage::kFragmentInput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(core::type::PipelineStageUsage::kComputeInput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| } |
| |
| // Resolve the return type |
| core::type::Type* return_type = nullptr; |
| if (auto ty = decl->return_type) { |
| return_type = Type(ty); |
| if (!return_type) { |
| return nullptr; |
| } |
| } else { |
| return_type = b.create<core::type::Void>(); |
| } |
| func->SetReturnType(return_type); |
| |
| if (decl->IsEntryPoint()) { |
| // Determine if the return type has a location |
| bool permissive = validator_.IsValidationDisabled( |
| decl->attributes, ast::DisabledValidation::kEntryPointParameter) || |
| validator_.IsValidationDisabled( |
| decl->attributes, ast::DisabledValidation::kFunctionParameter); |
| for (auto* attribute : decl->return_type_attributes) { |
| Mark(attribute); |
| enum Status { kSuccess, kErrored, kInvalid }; |
| auto res = Switch( |
| attribute, // |
| [&](const ast::LocationAttribute* attr) { |
| auto value = LocationAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| func->SetReturnLocation(value.Get()); |
| return kSuccess; |
| }, |
| [&](const ast::BlendSrcAttribute* attr) { |
| auto value = BlendSrcAttribute(attr); |
| if (value != Success) { |
| return kErrored; |
| } |
| func->SetReturnIndex(value.Get()); |
| return kSuccess; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| return BuiltinAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](const ast::InternalAttribute* attr) { |
| return InternalAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| return InterpolateAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](const ast::InvariantAttribute* attr) { |
| return InvariantAttribute(attr) ? kSuccess : kErrored; |
| }, |
| [&](const ast::BindingAttribute* attr) { |
| if (!permissive) { |
| return kInvalid; |
| } |
| return BindingAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](const ast::GroupAttribute* attr) { |
| if (!permissive) { |
| return kInvalid; |
| } |
| return GroupAttribute(attr) == Success ? kSuccess : kErrored; |
| }, |
| [&](Default) { return kInvalid; }); |
| |
| switch (res) { |
| case kSuccess: |
| break; |
| case kErrored: |
| return nullptr; |
| case kInvalid: |
| ErrorInvalidAttribute(attribute, "entry point return types"); |
| return nullptr; |
| } |
| } |
| } else { |
| for (auto* attribute : decl->return_type_attributes) { |
| Mark(attribute); |
| bool ok = Switch(attribute, // |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, |
| "non-entry point function return types"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| } |
| |
| if (auto* str = return_type->As<core::type::Struct>()) { |
| if (!ApplyAddressSpaceUsageToType(core::AddressSpace::kUndefined, str, decl->source)) { |
| AddNote("while instantiating return type for " + decl->name->symbol.Name(), |
| decl->source); |
| return nullptr; |
| } |
| |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(core::type::PipelineStageUsage::kVertexOutput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(core::type::PipelineStageUsage::kFragmentOutput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(core::type::PipelineStageUsage::kComputeOutput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| |
| ApplyDiagnosticSeverities(func); |
| |
| if (decl->IsEntryPoint()) { |
| entry_points_.Push(func); |
| } |
| |
| if (decl->body) { |
| Mark(decl->body); |
| if (TINT_UNLIKELY(current_compound_statement_)) { |
| StringStream err; |
| err << "Resolver::Function() called with a current compound statement"; |
| AddICE(err.str(), decl->body->source); |
| return nullptr; |
| } |
| auto* body = StatementScope(decl->body, b.create<sem::FunctionBlockStatement>(func), |
| [&] { return Statements(decl->body->statements); }); |
| if (!body) { |
| return nullptr; |
| } |
| func->Behaviors() = body->Behaviors(); |
| if (func->Behaviors().Contains(sem::Behavior::kReturn)) { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // We assign a behavior to each function: it is its body’s behavior |
| // (treating the body as a regular statement), with any "Return" replaced |
| // by "Next". |
| func->Behaviors().Remove(sem::Behavior::kReturn); |
| func->Behaviors().Add(sem::Behavior::kNext); |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) { |
| return nullptr; |
| } |
| |
| auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() |
| : ast::PipelineStage::kNone; |
| if (!validator_.Function(func, stage)) { |
| return nullptr; |
| } |
| |
| // If this is an entry point, mark all transitively called functions as being |
| // used by this entry point. |
| if (decl->IsEntryPoint()) { |
| for (auto* f : func->TransitivelyCalledFunctions()) { |
| const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func); |
| } |
| } |
| |
| return func; |
| } |
| |
| bool Resolver::Statements(VectorRef<const ast::Statement*> stmts) { |
| sem::Behaviors behaviors{sem::Behavior::kNext}; |
| |
| bool reachable = true; |
| for (auto* stmt : stmts) { |
| Mark(stmt); |
| auto* sem = Statement(stmt); |
| if (!sem) { |
| return false; |
| } |
| // s1 s2:(B1∖{Next}) ∪ B2 |
| sem->SetIsReachable(reachable); |
| if (reachable) { |
| behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); |
| } |
| reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); |
| } |
| |
| current_statement_->Behaviors() = behaviors; |
| |
| if (!validator_.Statements(stmts)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Statement* Resolver::Statement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| // Compound statements. These create their own sem::CompoundStatement |
| // bindings. |
| [&](const ast::BlockStatement* s) { return BlockStatement(s); }, |
| [&](const ast::ForLoopStatement* s) { return ForLoopStatement(s); }, |
| [&](const ast::LoopStatement* s) { return LoopStatement(s); }, |
| [&](const ast::WhileStatement* s) { return WhileStatement(s); }, |
| [&](const ast::IfStatement* s) { return IfStatement(s); }, |
| [&](const ast::SwitchStatement* s) { return SwitchStatement(s); }, |
| |
| // Non-Compound statements |
| [&](const ast::AssignmentStatement* s) { return AssignmentStatement(s); }, |
| [&](const ast::BreakStatement* s) { return BreakStatement(s); }, |
| [&](const ast::BreakIfStatement* s) { return BreakIfStatement(s); }, |
| [&](const ast::CallStatement* s) { return CallStatement(s); }, |
| [&](const ast::CompoundAssignmentStatement* s) { return CompoundAssignmentStatement(s); }, |
| [&](const ast::ContinueStatement* s) { return ContinueStatement(s); }, |
| [&](const ast::DiscardStatement* s) { return DiscardStatement(s); }, |
| [&](const ast::IncrementDecrementStatement* s) { return IncrementDecrementStatement(s); }, |
| [&](const ast::ReturnStatement* s) { return ReturnStatement(s); }, |
| [&](const ast::VariableDeclStatement* s) { return VariableDeclStatement(s); }, |
| [&](const ast::ConstAssert* s) { return ConstAssert(s); }, |
| |
| // Error cases |
| [&](const ast::CaseStatement*) { |
| AddError("case statement can only be used inside a switch statement", stmt->source); |
| return nullptr; |
| }, |
| [&](Default) { |
| AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); |
| return nullptr; |
| }); |
| } |
| |
| sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt, |
| const core::type::Type* ty) { |
| auto* sem = b.create<sem::CaseStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Selectors().reserve(stmt->selectors.Length()); |
| for (auto* sel : stmt->selectors) { |
| Mark(sel); |
| |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "case selector"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| const core::constant::Value* const_value = nullptr; |
| if (!sel->IsDefault()) { |
| // The sem statement was created in the switch when attempting to determine the |
| // common type. |
| auto* materialized = Materialize(sem_.GetVal(sel->expr), ty); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("case selector must be an i32 or u32 value", sel->source); |
| return false; |
| } |
| const_value = materialized->ConstantValue(); |
| if (!const_value) { |
| AddError("case selector must be a constant expression", sel->source); |
| return false; |
| } |
| } |
| |
| sem->Selectors().emplace_back(b.create<sem::CaseSelector>(sel, const_value)); |
| } |
| |
| Mark(stmt->body); |
| auto* body = BlockStatement(stmt->body); |
| if (!body) { |
| return false; |
| } |
| sem->SetBlock(body); |
| sem->Behaviors() = body->Behaviors(); |
| return true; |
| }); |
| } |
| |
| sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { |
| auto* sem = b.create<sem::IfStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| sem->Behaviors() = cond->Behaviors(); |
| sem->Behaviors().Remove(sem::Behavior::kNext); |
| |
| Mark(stmt->body); |
| auto* body = b.create<sem::BlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| sem->Behaviors().Add(body->Behaviors()); |
| |
| if (stmt->else_statement) { |
| Mark(stmt->else_statement); |
| auto* else_sem = Statement(stmt->else_statement); |
| if (!else_sem) { |
| return false; |
| } |
| sem->Behaviors().Add(else_sem->Behaviors()); |
| } else { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // if statements without an else branch are treated as if they had an |
| // empty else branch (which adds Next to their behavior) |
| sem->Behaviors().Add(sem::Behavior::kNext); |
| } |
| |
| return validator_.IfStatement(sem); |
| }); |
| } |
| |
| sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { |
| auto* sem = b.create<sem::BlockStatement>(stmt->As<ast::BlockStatement>(), |
| current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); |
| } |
| |
| sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { |
| auto* sem = b.create<sem::LoopStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->body); |
| |
| auto* body = b.create<sem::LoopBlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| return StatementScope(stmt->body, body, [&] { |
| if (!Statements(stmt->body->statements)) { |
| return false; |
| } |
| auto& behaviors = sem->Behaviors(); |
| behaviors = body->Behaviors(); |
| |
| if (stmt->continuing) { |
| Mark(stmt->continuing); |
| auto* continuing = StatementScope( |
| stmt->continuing, |
| b.create<sem::LoopContinuingBlockStatement>( |
| stmt->continuing, current_compound_statement_, current_function_), |
| [&] { return Statements(stmt->continuing->statements); }); |
| if (!continuing) { |
| return false; |
| } |
| behaviors.Add(continuing->Behaviors()); |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.LoopStatement(sem); |
| }); |
| }); |
| } |
| |
| sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { |
| auto* sem = |
| b.create<sem::ForLoopStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| if (auto* initializer = stmt->initializer) { |
| Mark(initializer); |
| auto* init = Statement(initializer); |
| if (!init) { |
| return false; |
| } |
| behaviors.Add(init->Behaviors()); |
| } |
| |
| if (auto* cond_expr = stmt->condition) { |
| auto* cond = Load(ValueExpression(cond_expr)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| } |
| |
| if (auto* continuing = stmt->continuing) { |
| Mark(continuing); |
| auto* cont = Statement(continuing); |
| if (!cont) { |
| return false; |
| } |
| behaviors.Add(cont->Behaviors()); |
| } |
| |
| Mark(stmt->body); |
| |
| auto* body = b.create<sem::LoopBlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.ForLoopStatement(sem); |
| }); |
| } |
| |
| sem::WhileStatement* Resolver::WhileStatement(const ast::WhileStatement* stmt) { |
| auto* sem = b.create<sem::WhileStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| |
| Mark(stmt->body); |
| |
| auto* body = b.create<sem::LoopBlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| // Always consider the while as having a 'next' behaviour because it has |
| // a condition. We don't check if the condition will terminate but it isn't |
| // valid to have an infinite loop in a WGSL program, so a non-terminating |
| // condition is already an invalid program. |
| behaviors.Add(sem::Behavior::kNext); |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.WhileStatement(sem); |
| }); |
| } |
| |
| sem::Expression* Resolver::Expression(const ast::Expression* root) { |
| Vector<const ast::Expression*, 64> sorted; |
| constexpr size_t kMaxExpressionDepth = 512U; |
| bool failed = false; |
| if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>( |
| root, [&](const ast::Expression* expr, size_t depth) { |
| if (depth > kMaxExpressionDepth) { |
| AddError( |
| "reached max expression depth of " + std::to_string(kMaxExpressionDepth), |
| expr->source); |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| if (!Mark(expr)) { |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| if (auto* binary = expr->As<ast::BinaryExpression>(); |
| binary && binary->IsLogical()) { |
| // Store potential const-eval short-circuit pair |
| logical_binary_lhs_to_parent_.Add(binary->lhs, binary); |
| } |
| sorted.Push(expr); |
| return ast::TraverseAction::Descend; |
| })) { |
| AddError("TraverseExpressions failed", root->source); |
| return nullptr; |
| } |
| |
| if (failed) { |
| return nullptr; |
| } |
| |
| for (auto* expr : tint::Reverse(sorted)) { |
| auto* sem_expr = Switch( |
| expr, // |
| [&](const ast::IndexAccessorExpression* array) { return IndexAccessor(array); }, |
| [&](const ast::BinaryExpression* bin_op) { return Binary(bin_op); }, |
| [&](const ast::BitcastExpression* bitcast) { return Bitcast(bitcast); }, |
| [&](const ast::CallExpression* call) { return Call(call); }, |
| [&](const ast::IdentifierExpression* ident) { return Identifier(ident); }, |
| [&](const ast::LiteralExpression* literal) { return Literal(literal); }, |
| [&](const ast::MemberAccessorExpression* member) { return MemberAccessor(member); }, |
| [&](const ast::UnaryOpExpression* unary) { return UnaryOp(unary); }, |
| [&](const ast::PhonyExpression*) { |
| return b.create<sem::ValueExpression>(expr, b.create<core::type::Void>(), |
| core::EvaluationStage::kRuntime, |
| current_statement_, |
| /* constant_value */ nullptr, |
| /* has_side_effects */ false); |
| }, // |
| TINT_ICE_ON_NO_MATCH); |
| if (!sem_expr) { |
| return nullptr; |
| } |
| |
| auto* val = sem_expr->As<sem::ValueExpression>(); |
| |
| if (val) { |
| if (auto* constraint = expr_eval_stage_constraint_.constraint) { |
| if (!validator_.EvaluationStage(val, expr_eval_stage_constraint_.stage, |
| constraint)) { |
| return nullptr; |
| } |
| } |
| } |
| |
| b.Sem().Add(expr, sem_expr); |
| if (expr == root) { |
| return sem_expr; |
| } |
| |
| // If we just processed the lhs of a constexpr logical binary expression, mark the rhs for |
| // short-circuiting. |
| if (val && val->ConstantValue()) { |
| if (auto binary = logical_binary_lhs_to_parent_.Get(expr)) { |
| const bool lhs_is_true = val->ConstantValue()->ValueAs<bool>(); |
| if (((*binary)->IsLogicalAnd() && !lhs_is_true) || |
| ((*binary)->IsLogicalOr() && lhs_is_true)) { |
| // Mark entire expression tree to not const-evaluate |
| auto r = ast::TraverseExpressions( // |
| (*binary)->rhs, [&](const ast::Expression* e) { |
| skip_const_eval_.Add(e); |
| return ast::TraverseAction::Descend; |
| }); |
| if (!r) { |
| AddError("TraverseExpressions failed", root->source); |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| AddICE("Expression() did not find root node", root->source); |
| return nullptr; |
| } |
| |
| sem::ValueExpression* Resolver::ValueExpression(const ast::Expression* expr) { |
| return sem_.AsValueExpression(Expression(expr)); |
| } |
| |
| sem::TypeExpression* Resolver::TypeExpression(const ast::Expression* expr) { |
| return sem_.AsTypeExpression(Expression(expr)); |
| } |
| |
| sem::FunctionExpression* Resolver::FunctionExpression(const ast::Expression* expr) { |
| return sem_.AsFunctionExpression(Expression(expr)); |
| } |
| |
| core::type::Type* Resolver::Type(const ast::Expression* ast) { |
| Vector<const sem::GlobalVariable*, 4> referenced_overrides; |
| on_transitively_reference_global_.Push([&](const sem::GlobalVariable* ref) { |
| if (ref->Declaration()->Is<ast::Override>()) { |
| referenced_overrides.Push(ref); |
| } |
| }); |
| TINT_DEFER(on_transitively_reference_global_.Pop()); |
| |
| auto* type_expr = TypeExpression(ast); |
| if (TINT_UNLIKELY(!type_expr)) { |
| return nullptr; |
| } |
| |
| auto* type = const_cast<core::type::Type*>(type_expr->Type()); |
| if (TINT_UNLIKELY(!type)) { |
| return nullptr; |
| } |
| |
| if (auto* arr = type->As<sem::Array>()) { |
| for (auto* ref : referenced_overrides) { |
| arr->AddTransitivelyReferencedOverride(ref); |
| } |
| } |
| |
| return type; |
| } |
| |
| sem::BuiltinEnumExpression<core::AddressSpace>* Resolver::AddressSpaceExpression( |
| const ast::Expression* expr) { |
| auto address_space_expr = sem_.AsAddressSpace(Expression(expr)); |
| if (TINT_UNLIKELY(!address_space_expr)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY( |
| address_space_expr->Value() == core::AddressSpace::kPixelLocal && |
| !enabled_extensions_.Contains(wgsl::Extension::kChromiumExperimentalPixelLocal))) { |
| StringStream err; |
| err << "'pixel_local' address space requires the '" |
| << wgsl::Extension::kChromiumExperimentalPixelLocal << "' extension enabled"; |
| AddError(err.str(), expr->source); |
| return nullptr; |
| } |
| return address_space_expr; |
| } |
| |
| sem::BuiltinEnumExpression<core::BuiltinValue>* Resolver::BuiltinValueExpression( |
| const ast::Expression* expr) { |
| return sem_.AsBuiltinValue(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<core::TexelFormat>* Resolver::TexelFormatExpression( |
| const ast::Expression* expr) { |
| return sem_.AsTexelFormat(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<core::Access>* Resolver::AccessExpression(const ast::Expression* expr) { |
| return sem_.AsAccess(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<core::InterpolationSampling>* Resolver::InterpolationSampling( |
| const ast::Expression* expr) { |
| return sem_.AsInterpolationSampling(Expression(expr)); |
| } |
| |
| sem::BuiltinEnumExpression<core::InterpolationType>* Resolver::InterpolationType( |
| const ast::Expression* expr) { |
| return sem_.AsInterpolationType(Expression(expr)); |
| } |
| |
| void Resolver::RegisterStore(const sem::ValueExpression* expr) { |
| Switch( |
| expr->RootIdentifier(), |
| [&](const sem::GlobalVariable* global) { |
| alias_analysis_infos_[current_function_].module_scope_writes.Add(global, expr); |
| }, |
| [&](const sem::Parameter* param) { |
| alias_analysis_infos_[current_function_].parameter_writes.Add(param); |
| }); |
| } |
| |
| void Resolver::RegisterLoad(const sem::ValueExpression* expr) { |
| Switch( |
| expr->RootIdentifier(), |
| [&](const sem::GlobalVariable* global) { |
| alias_analysis_infos_[current_function_].module_scope_reads.Add(global, expr); |
| }, |
| [&](const sem::Parameter* param) { |
| alias_analysis_infos_[current_function_].parameter_reads.Add(param); |
| }); |
| } |
| |
| bool Resolver::AliasAnalysis(const sem::Call* call) { |
| auto* target = call->Target()->As<sem::Function>(); |
| if (!target) { |
| return true; |
| } |
| if (validator_.IsValidationDisabled(target->Declaration()->attributes, |
| ast::DisabledValidation::kIgnorePointerAliasing)) { |
| return true; |
| } |
| |
| // Helper to generate an aliasing error diagnostic. |
| struct Alias { |
| const sem::ValueExpression* expr; // the "other expression" |
| enum { Argument, ModuleScope } type; // the type of the "other" expression |
| std::string access; // the access performed for the "other" expression |
| }; |
| auto make_error = [&](const sem::ValueExpression* arg, Alias&& var) { |
| AddError("invalid aliased pointer argument", arg->Declaration()->source); |
| switch (var.type) { |
| case Alias::Argument: |
| AddNote("aliases with another argument passed here", |
| var.expr->Declaration()->source); |
| break; |
| case Alias::ModuleScope: { |
| auto* func = var.expr->Stmt()->Function(); |
| auto func_name = func->Declaration()->name->symbol.Name(); |
| AddNote( |
| "aliases with module-scope variable " + var.access + " in '" + func_name + "'", |
| var.expr->Declaration()->source); |
| break; |
| } |
| } |
| return false; |
| }; |
| |
| auto& args = call->Arguments(); |
| auto& target_info = alias_analysis_infos_[target]; |
| auto& caller_info = alias_analysis_infos_[current_function_]; |
| |
| // Track the set of root identifiers that are read and written by arguments passed in this |
| // call. |
| Hashmap<const sem::Variable*, const sem::ValueExpression*, 4> arg_reads; |
| Hashmap<const sem::Variable*, const sem::ValueExpression*, 4> arg_writes; |
| for (size_t i = 0; i < args.Length(); i++) { |
| auto* arg = args[i]; |
| if (!arg->Type()->Is<core::type::Pointer>()) { |
| continue; |
| } |
| |
| auto* root = arg->RootIdentifier(); |
| if (target_info.parameter_writes.Contains(target->Parameters()[i])) { |
| // Arguments that are written to can alias with any other argument or module-scope |
| // variable access. |
| if (auto write = arg_writes.Get(root)) { |
| return make_error(arg, {*write, Alias::Argument, "write"}); |
| } |
| if (auto read = arg_reads.Get(root)) { |
| return make_error(arg, {*read, Alias::Argument, "read"}); |
| } |
| if (auto read = target_info.module_scope_reads.Get(root)) { |
| return make_error(arg, {*read, Alias::ModuleScope, "read"}); |
| } |
| if (auto write = target_info.module_scope_writes.Get(root)) { |
| return make_error(arg, {*write, Alias::ModuleScope, "write"}); |
| } |
| arg_writes.Add(root, arg); |
| |
| // Propagate the write access to the caller. |
| Switch( |
| root, |
| [&](const sem::GlobalVariable* global) { |
| caller_info.module_scope_writes.Add(global, arg); |
| }, |
| [&](const sem::Parameter* param) { caller_info.parameter_writes.Add(param); }); |
| } else if (target_info.parameter_reads.Contains(target->Parameters()[i])) { |
| // Arguments that are read from can alias with arguments or module-scope variables |
| // that are written to. |
| if (auto write = arg_writes.Get(root)) { |
| return make_error(arg, {*write, Alias::Argument, "write"}); |
| } |
| if (auto write = target_info.module_scope_writes.Get(root)) { |
| return make_error(arg, {*write, Alias::ModuleScope, "write"}); |
| } |
| arg_reads.Add(root, arg); |
| |
| // Propagate the read access to the caller. |
| Switch( |
| root, |
| [&](const sem::GlobalVariable* global) { |
| caller_info.module_scope_reads.Add(global, arg); |
| }, |
| [&](const sem::Parameter* param) { caller_info.parameter_reads.Add(param); }); |
| } |
| } |
| |
| // Propagate module-scope variable uses to the caller. |
| for (auto read : target_info.module_scope_reads) { |
| caller_info.module_scope_reads.Add(read.key, read.value); |
| } |
| for (auto write : target_info.module_scope_writes) { |
| caller_info.module_scope_writes.Add(write.key, write.value); |
| } |
| |
| return true; |
| } |
| |
| const core::type::Type* Resolver::ConcreteType(const core::type::Type* ty, |
| const core::type::Type* target_ty, |
| const Source& source) { |
| auto i32 = [&] { return b.create<core::type::I32>(); }; |
| auto f32 = [&] { return b.create<core::type::F32>(); }; |
| auto i32v = [&](uint32_t width) { return b.create<core::type::Vector>(i32(), width); }; |
| auto f32v = [&](uint32_t width) { return b.create<core::type::Vector>(f32(), width); }; |
| auto f32m = [&](uint32_t columns, uint32_t rows) { |
| return b.create<core::type::Matrix>(f32v(rows), columns); |
| }; |
| |
| return Switch( |
| ty, // |
| [&](const core::type::AbstractInt*) { return target_ty ? target_ty : i32(); }, |
| [&](const core::type::AbstractFloat*) { return target_ty ? target_ty : f32(); }, |
| [&](const core::type::Vector* v) { |
| return Switch( |
| v->type(), // |
| [&](const core::type::AbstractInt*) { |
| return target_ty ? target_ty : i32v(v->Width()); |
| }, |
| [&](const core::type::AbstractFloat*) { |
| return target_ty ? target_ty : f32v(v->Width()); |
| }); |
| }, |
| [&](const core::type::Matrix* m) { |
| return Switch(m->type(), // |
| [&](const core::type::AbstractFloat*) { |
| return target_ty ? target_ty : f32m(m->columns(), m->rows()); |
| }); |
| }, |
| [&](const sem::Array* a) -> const core::type::Type* { |
| const core::type::Type* target_el_ty = nullptr; |
| if (auto* target_arr_ty = As<sem::Array>(target_ty)) { |
| target_el_ty = target_arr_ty->ElemType(); |
| } |
| if (auto* el_ty = ConcreteType(a->ElemType(), target_el_ty, source)) { |
| return Array(source, source, source, el_ty, a->Count(), /* explicit_stride */ 0); |
| } |
| return nullptr; |
| }, |
| [&](const core::type::Struct* s) -> const core::type::Type* { |
| if (auto tys = s->ConcreteTypes(); !tys.IsEmpty()) { |
| return target_ty ? target_ty : tys[0]; |
| } |
| return nullptr; |
| }); |
| } |
| |
| const sem::ValueExpression* Resolver::Load(const sem::ValueExpression* expr) { |
| if (!expr) { |
| // Allow for Load(ValueExpression(blah)), where failures pass through Load() |
| return nullptr; |
| } |
| |
| if (!expr->Type()->Is<core::type::Reference>()) { |
| // Expression is not a reference type, so cannot be loaded. Just return expr. |
| return expr; |
| } |
| |
| auto* load = b.create<sem::Load>(expr, current_statement_); |
| load->Behaviors() = expr->Behaviors(); |
| b.Sem().Replace(expr->Declaration(), load); |
| |
| // Register the load for the alias analysis. |
| RegisterLoad(expr); |
| |
| return load; |
| } |
| |
| const sem::ValueExpression* Resolver::Materialize( |
| const sem::ValueExpression* expr, |
| const core::type::Type* target_type /* = nullptr */) { |
| if (!expr) { |
| // Allow for Materialize(ValueExpression(blah)), where failures pass through Materialize() |
| return nullptr; |
| } |
| |
| auto* decl = expr->Declaration(); |
| |
| auto* concrete_ty = ConcreteType(expr->Type(), target_type, decl->source); |
| if (!concrete_ty) { |
| return expr; // Does not require materialization |
| } |
| |
| auto* src_ty = expr->Type(); |
| if (!validator_.Materialize(concrete_ty, src_ty, decl->source)) { |
| return nullptr; |
| } |
| |
| const core::constant::Value* materialized_val = nullptr; |
| if (!skip_const_eval_.Contains(decl)) { |
| auto expr_val = expr->ConstantValue(); |
| if (TINT_UNLIKELY(!expr_val)) { |
| StringStream err; |
| err << decl->source << "Materialize(" << decl->TypeInfo().name |
| << ") called on expression with no constant value"; |
| AddICE(err.str(), expr->Declaration()->source); |
| return nullptr; |
| } |
| |
| auto val = const_eval_.Convert(concrete_ty, expr_val, decl->source); |
| if (val != Success) { |
| // Convert() has already failed and raised an diagnostic error. |
| return nullptr; |
| } |
| materialized_val = val.Get(); |
| if (TINT_UNLIKELY(!materialized_val)) { |
| StringStream err; |
| err << decl->source << "ConvertValue(" << expr_val->Type()->FriendlyName() << " -> " |
| << concrete_ty->FriendlyName() << ") returned invalid value"; |
| AddICE(err.str(), expr->Declaration()->source); |
| return nullptr; |
| } |
| } |
| |
| auto* m = b.create<sem::Materialize>(expr, current_statement_, concrete_ty, materialized_val); |
| m->Behaviors() = expr->Behaviors(); |
| b.Sem().Replace(decl, m); |
| return m; |
| } |
| |
| template <size_t N> |
| bool Resolver::MaybeMaterializeAndLoadArguments(Vector<const sem::ValueExpression*, N>& args, |
| const sem::CallTarget* target) { |
| for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { |
| const auto* param_ty = target->Parameters()[i]->Type(); |
| if (ShouldMaterializeArgument(param_ty)) { |
| auto* materialized = Materialize(args[i], param_ty); |
| if (!materialized) { |
| return false; |
| } |
| args[i] = materialized; |
| } |
| if (!param_ty->Is<core::type::Reference>()) { |
| auto* load = Load(args[i]); |
| if (!load) { |
| return false; |
| } |
| args[i] = load; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ShouldMaterializeArgument(const core::type::Type* parameter_ty) const { |
| const auto* param_el_ty = parameter_ty->DeepestElement(); |
| return param_el_ty && !param_el_ty->Is<core::type::AbstractNumeric>(); |
| } |
| |
| bool Resolver::Convert(const core::constant::Value*& c, |
| const core::type::Type* target_ty, |
| const Source& source) { |
| auto r = const_eval_.Convert(target_ty, c, source); |
| if (r != Success) { |
| return false; |
| } |
| c = r.Get(); |
| return true; |
| } |
| |
| template <size_t N> |
| tint::Result<Vector<const core::constant::Value*, N>> Resolver::ConvertArguments( |
| const Vector<const sem::ValueExpression*, N>& args, |
| const sem::CallTarget* target) { |
| auto const_args = tint::Transform(args, [](auto* arg) { return arg->ConstantValue(); }); |
| for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { |
| if (!Convert(const_args[i], target->Parameters()[i]->Type(), |
| args[i]->Declaration()->source)) { |
| return Failure{}; |
| } |
| } |
| return const_args; |
| } |
| |
| sem::ValueExpression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) { |
| auto* idx = Load(Materialize(sem_.GetVal(expr->index))); |
| if (!idx) { |
| return nullptr; |
| } |
| const auto* obj = sem_.GetVal(expr->object); |
| if (idx->Stage() != core::EvaluationStage::kConstant) { |
| // If the index is non-constant, then the resulting expression is non-constant, so we'll |
| // have to materialize the object. For example, consider: |
| // vec2(1, 2)[runtime-index] |
| obj = Materialize(obj); |
| } |
| if (!obj) { |
| return nullptr; |
| } |
| auto* object_ty = obj->Type(); |
| auto* const memory_view = object_ty->As<core::type::MemoryView>(); |
| const core::type::Type* storage_ty = object_ty->UnwrapRef(); |
| if (memory_view) { |
| if (memory_view->Is<core::type::Pointer>() && |
| !allowed_features_.features.count(wgsl::LanguageFeature::kPointerCompositeAccess)) { |
| AddError( |
| "pointer composite access requires the pointer_composite_access language feature, " |
| "which is not allowed in the current environment", |
| expr->source); |
| return nullptr; |
| } |
| storage_ty = memory_view->StoreType(); |
| } |
| |
| auto* ty = Switch( |
| storage_ty, // |
| [&](const sem::Array* arr) { return arr->ElemType(); }, |
| [&](const core::type::Vector* vec) { return vec->type(); }, |
| [&](const core::type::Matrix* mat) { |
| return b.create<core::type::Vector>(mat->type(), mat->rows()); |
| }, |
| [&](Default) { |
| AddError("cannot index type '" + sem_.TypeNameOf(storage_ty) + "'", expr->source); |
| return nullptr; |
| }); |
| if (ty == nullptr) { |
| return nullptr; |
| } |
| |
| auto* idx_ty = idx->Type()->UnwrapRef(); |
| if (!idx_ty->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'", |
| idx->Declaration()->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a memory view, we return a reference. |
| if (memory_view) { |
| ty = |
| b.create<core::type::Reference>(memory_view->AddressSpace(), ty, memory_view->Access()); |
| } |
| |
| const core::constant::Value* val = nullptr; |
| auto stage = core::EarliestStage(obj->Stage(), idx->Stage()); |
| if (stage == core::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } else { |
| if (auto* idx_val = idx->ConstantValue()) { |
| auto res = const_eval_.Index(obj->ConstantValue(), obj->Type(), idx_val, |
| idx->Declaration()->source); |
| if (res != Success) { |
| return nullptr; |
| } |
| val = res.Get(); |
| } |
| } |
| bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects(); |
| auto* sem = b.create<sem::IndexAccessorExpression>(expr, ty, stage, obj, idx, |
| current_statement_, std::move(val), |
| has_side_effects, obj->RootIdentifier()); |
| sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); |
| return sem; |
| } |
| |
| sem::ValueExpression* Resolver::Bitcast(const ast::BitcastExpression* expr) { |
| auto* inner = Load(Materialize(sem_.GetVal(expr->expr))); |
| if (!inner) { |
| return nullptr; |
| } |
| auto* ty = Type(expr->type); |
| if (!ty) { |
| return nullptr; |
| } |
| if (!validator_.Bitcast(expr, ty)) { |
| return nullptr; |
| } |
| |
| auto stage = inner->Stage(); |
| if (stage == core::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } |
| |
| const core::constant::Value* value = nullptr; |
| if (stage == core::EvaluationStage::kConstant) { |
| auto r = const_eval_.Bitcast(ty, inner->ConstantValue(), expr->source); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| } |
| |
| auto* sem = b.create<sem::ValueExpression>(expr, ty, stage, current_statement_, |
| std::move(value), inner->HasSideEffects()); |
| sem->Behaviors() = inner->Behaviors(); |
| return sem; |
| } |
| |
| sem::Call* Resolver::Call(const ast::CallExpression* expr) { |
| // A CallExpression can resolve to one of: |
| // * A function call. |
| // * A builtin call. |
| // * A value constructor. |
| // * A value conversion. |
| auto* target = sem_.Get(expr->target); |
| if (TINT_UNLIKELY(!target)) { |
| return nullptr; |
| } |
| |
| // Resolve all of the arguments, their types and the set of behaviors. |
| Vector<const sem::ValueExpression*, 8> args; |
| args.Reserve(expr->args.Length()); |
| auto args_stage = core::EvaluationStage::kConstant; |
| sem::Behaviors arg_behaviors; |
| for (size_t i = 0; i < expr->args.Length(); i++) { |
| auto* arg = sem_.GetVal(expr->args[i]); |
| if (!arg) { |
| return nullptr; |
| } |
| args.Push(arg); |
| args_stage = core::EarliestStage(args_stage, arg->Stage()); |
| arg_behaviors.Add(arg->Behaviors()); |
| } |
| arg_behaviors.Remove(sem::Behavior::kNext); |
| |
| // Did any arguments have side effects? |
| bool has_side_effects = |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| |
| // ctor_or_conv is a helper for building either a sem::ValueConstructor or |
| // sem::ValueConversion call for a CtorConvIntrinsic with an optional template argument type. |
| auto ctor_or_conv = [&](CtorConvIntrinsic ty, |
| const core::type::Type* template_arg) -> sem::Call* { |
| auto arg_tys = tint::Transform(args, [](auto* arg) { return arg->Type()->UnwrapRef(); }); |
| auto match = intrinsic_table_.Lookup(ty, template_arg, arg_tys, args_stage); |
| if (match != Success) { |
| AddError(match.Failure(), expr->source); |
| return nullptr; |
| } |
| |
| auto overload_stage = match->const_eval_fn ? core::EvaluationStage::kConstant |
| : core::EvaluationStage::kRuntime; |
| |
| sem::CallTarget* target_sem = nullptr; |
| |
| // Is this overload a constructor or conversion? |
| if (match->info->flags.Contains(OverloadFlag::kIsConstructor)) { |
| // Type constructor |
| target_sem = constructors_.GetOrAdd(match.Get(), [&] { |
| auto params = Transform(match->parameters, [&](auto& p, size_t i) { |
| return b.create<sem::Parameter>(nullptr, static_cast<uint32_t>(i), p.type, |
| p.usage); |
| }); |
| return b.create<sem::ValueConstructor>(match->return_type, std::move(params), |
| overload_stage); |
| }); |
| } else { |
| // Type conversion |
| target_sem = converters_.GetOrAdd(match.Get(), [&] { |
| auto* param = b.create<sem::Parameter>(nullptr, 0u, match->parameters[0].type, |
| match->parameters[0].usage); |
| return b.create<sem::ValueConversion>(match->return_type, param, overload_stage); |
| }); |
| } |
| |
| if (!MaybeMaterializeAndLoadArguments(args, target_sem)) { |
| return nullptr; |
| } |
| |
| const core::constant::Value* value = nullptr; |
| auto stage = core::EarliestStage(overload_stage, args_stage); |
| if (stage == core::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == core::EvaluationStage::kConstant) { |
| auto const_args = ConvertArguments(args, target_sem); |
| if (const_args != Success) { |
| return nullptr; |
| } |
| auto const_eval_fn = match->const_eval_fn; |
| auto r = (const_eval_.*const_eval_fn)(target_sem->ReturnType(), const_args.Get(), |
| expr->source); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| } |
| return b.create<sem::Call>(expr, target_sem, stage, std::move(args), current_statement_, |
| value, has_side_effects); |
| }; |
| |
| // arr_or_str_init is a helper for building a sem::ValueConstructor for an array or structure |
| // constructor call target. |
| auto arr_or_str_init = [&](const core::type::Type* ty, |
| const sem::CallTarget* call_target) -> sem::Call* { |
| auto stage = args_stage; // The evaluation stage of the call |
| const core::constant::Value* value = nullptr; // The constant value for the call |
| if (stage == core::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == core::EvaluationStage::kConstant) { |
| auto const_args = ConvertArguments(args, call_target); |
| if (const_args != Success) { |
| return nullptr; |
| } |
| auto r = const_eval_.ArrayOrStructCtor(ty, std::move(const_args.Get())); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| if (!value) { |
| // Constant evaluation failed. |
| // Can happen for expressions that will fail validation (later). |
| // Use the kRuntime EvaluationStage, as kConstant will trigger an assertion in |
| // the sem::ValueExpression constructor, which checks that kConstant is paired |
| // with a constant value. |
| stage = core::EvaluationStage::kRuntime; |
| } |
| } |
| |
| return b.create<sem::Call>(expr, call_target, stage, std::move(args), current_statement_, |
| value, has_side_effects); |
| }; |
| |
| auto ty_init_or_conv = [&](const core::type::Type* type) { |
| return Switch( |
| type, // |
| [&](const core::type::I32*) { return ctor_or_conv(CtorConvIntrinsic::kI32, nullptr); }, |
| [&](const core::type::U32*) { return ctor_or_conv(CtorConvIntrinsic::kU32, nullptr); }, |
| [&](const core::type::F16*) { |
| return validator_.CheckF16Enabled(expr->source) |
| ? ctor_or_conv(CtorConvIntrinsic::kF16, nullptr) |
| : nullptr; |
| }, |
| [&](const core::type::F32*) { return ctor_or_conv(CtorConvIntrinsic::kF32, nullptr); }, |
| [&](const core::type::Bool*) { |
| return ctor_or_conv(CtorConvIntrinsic::kBool, nullptr); |
| }, |
| [&](const core::type::Vector* v) { |
| if (v->Packed()) { |
| TINT_ASSERT(v->Width() == 3u); |
| return ctor_or_conv(CtorConvIntrinsic::kPackedVec3, v->type()); |
| } |
| return ctor_or_conv(wgsl::intrinsic::VectorCtorConv(v->Width()), v->type()); |
| }, |
| [&](const core::type::Matrix* m) { |
| return ctor_or_conv(wgsl::intrinsic::MatrixCtorConv(m->columns(), m->rows()), |
| m->type()); |
| }, |
| [&](const sem::Array* arr) -> sem::Call* { |
| auto* call_target = array_ctors_.GetOrAdd( |
| ArrayConstructorSig{{arr, args.Length(), args_stage}}, |
| [&]() -> sem::ValueConstructor* { |
| auto params = tint::Transform(args, [&](auto, size_t i) { |
| return b.create<sem::Parameter>(nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| arr->ElemType()); |
| }); |
| return b.create<sem::ValueConstructor>(arr, std::move(params), args_stage); |
| }); |
| |
| if (TINT_UNLIKELY(!MaybeMaterializeAndLoadArguments(args, call_target))) { |
| return nullptr; |
| } |
| |
| if (TINT_UNLIKELY(!validator_.ArrayConstructor(expr, arr))) { |
| return nullptr; |
| } |
| |
| return arr_or_str_init(arr, call_target); |
| }, |
| [&](const core::type::Struct* str) -> sem::Call* { |
| auto* call_target = struct_ctors_.GetOrAdd( |
| StructConstructorSig{{str, args.Length(), args_stage}}, |
| [&]() -> sem::ValueConstructor* { |
| Vector<sem::Parameter*, 8> params; |
| params.Resize(std::min(args.Length(), str->Members().Length())); |
| for (size_t i = 0, n = params.Length(); i < n; i++) { |
| params[i] = |
| b.create<sem::Parameter>(nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| str->Members()[i]->Type()); // type |
| } |
| return b.create<sem::ValueConstructor>(str, std::move(params), args_stage); |
| }); |
| |
| if (TINT_UNLIKELY(!MaybeMaterializeAndLoadArguments(args, call_target))) { |
| return nullptr; |
| } |
| |
| if (TINT_UNLIKELY(!validator_.StructureInitializer(expr, str))) { |
| return nullptr; |
| } |
| |
| return arr_or_str_init(str, call_target); |
| }, |
| [&](Default) { |
| AddError("type is not constructible", expr->source); |
| return nullptr; |
| }); |
| }; |
| |
| auto incomplete_type = [&](const IncompleteType* t) -> sem::Call* { |
| // A type without template arguments. |
| // Examples: vec3(...), array(...) |
| switch (t->builtin) { |
| case core::BuiltinType::kVec2: |
| return ctor_or_conv(CtorConvIntrinsic::kVec2, nullptr); |
| case core::BuiltinType::kVec3: |
| return ctor_or_conv(CtorConvIntrinsic::kVec3, nullptr); |
| case core::BuiltinType::kVec4: |
| return ctor_or_conv(CtorConvIntrinsic::kVec4, nullptr); |
| case core::BuiltinType::kMat2X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x2, nullptr); |
| case core::BuiltinType::kMat2X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x3, nullptr); |
| case core::BuiltinType::kMat2X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat2x4, nullptr); |
| case core::BuiltinType::kMat3X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x2, nullptr); |
| case core::BuiltinType::kMat3X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x3, nullptr); |
| case core::BuiltinType::kMat3X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat3x4, nullptr); |
| case core::BuiltinType::kMat4X2: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x2, nullptr); |
| case core::BuiltinType::kMat4X3: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x3, nullptr); |
| case core::BuiltinType::kMat4X4: |
| return ctor_or_conv(CtorConvIntrinsic::kMat4x4, nullptr); |
| case core::BuiltinType::kArray: { |
| auto el_count = |
| b.create<core::type::ConstantArrayCount>(static_cast<uint32_t>(args.Length())); |
| auto arg_tys = |
| tint::Transform(args, [](auto* arg) { return arg->Type()->UnwrapRef(); }); |
| auto el_ty = core::type::Type::Common(arg_tys); |
| if (TINT_UNLIKELY(!el_ty)) { |
| AddError("cannot infer common array element type from constructor arguments", |
| expr->source); |
| Hashset<const core::type::Type*, 8> types; |
| for (size_t i = 0; i < args.Length(); i++) { |
| if (types.Add(args[i]->Type())) { |
| AddNote("argument " + std::to_string(i) + " is of type '" + |
| sem_.TypeNameOf(args[i]->Type()) + "'", |
| args[i]->Declaration()->source); |
| } |
| } |
| return nullptr; |
| } |
| auto* arr = Array(expr->source, expr->source, expr->source, el_ty, el_count, |
| /* explicit_stride */ 0); |
| if (TINT_UNLIKELY(!arr)) { |
| return nullptr; |
| } |
| return ty_init_or_conv(arr); |
| } |
| default: { |
| TINT_ICE() << "unhandled IncompleteType builtin: " << t->builtin; |
| return nullptr; |
| } |
| } |
| }; |
| |
| auto* call = Switch( |
| target, // |
| [&](const sem::FunctionExpression* fn_expr) { |
| return FunctionCall(expr, const_cast<sem::Function*>(fn_expr->Function()), |
| std::move(args), arg_behaviors); |
| }, |
| [&](const sem::TypeExpression* ty_expr) { |
| return Switch( |
| ty_expr->Type(), // |
| [&](const IncompleteType* t) -> sem::Call* { |
| auto* ctor = incomplete_type(t); |
| if (TINT_UNLIKELY(!ctor)) { |
| return nullptr; |
| } |
| // Replace incomplete type with resolved type |
| const_cast<sem::TypeExpression*>(ty_expr)->SetType(ctor->Type()); |
| return ctor; |
| }, |
| [&](Default) { return ty_init_or_conv(ty_expr->Type()); }); |
| }, |
| [&](const sem::BuiltinEnumExpression<wgsl::BuiltinFn>* fn_expr) { |
| return BuiltinCall(expr, fn_expr->Value(), args); |
| }, |
| [&](Default) { |
| sem_.ErrorUnexpectedExprKind(target, "call target"); |
| return nullptr; |
| }); |
| |
| if (!call) { |
| return nullptr; |
| } |
| |
| return validator_.Call(call, current_statement_) ? call : nullptr; |
| } |
| |
| template <size_t N> |
| sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr, |
| wgsl::BuiltinFn fn, |
| Vector<const sem::ValueExpression*, N>& args) { |
| auto arg_stage = core::EvaluationStage::kConstant; |
| for (auto* arg : args) { |
| arg_stage = core::EarliestStage(arg_stage, arg->Stage()); |
| } |
| |
| auto arg_tys = tint::Transform(args, [](auto* arg) { return arg->Type()->UnwrapRef(); }); |
| auto overload = intrinsic_table_.Lookup(fn, arg_tys, arg_stage); |
| if (overload != Success) { |
| AddError(overload.Failure(), expr->source); |
| return nullptr; |
| } |
| |
| // De-duplicate builtins that are identical. |
| auto* target = builtins_.GetOrAdd(std::make_pair(overload.Get(), fn), [&] { |
| auto params = Transform(overload->parameters, [&](auto& p, size_t i) { |
| return b.create<sem::Parameter>(nullptr, static_cast<uint32_t>(i), p.type, p.usage); |
| }); |
| sem::PipelineStageSet supported_stages; |
| auto flags = overload->info->flags; |
| if (flags.Contains(OverloadFlag::kSupportsVertexPipeline)) { |
| supported_stages.Add(ast::PipelineStage::kVertex); |
| } |
| if (flags.Contains(OverloadFlag::kSupportsFragmentPipeline)) { |
| supported_stages.Add(ast::PipelineStage::kFragment); |
| } |
| if (flags.Contains(OverloadFlag::kSupportsComputePipeline)) { |
| supported_stages.Add(ast::PipelineStage::kCompute); |
| } |
| auto eval_stage = overload->const_eval_fn ? core::EvaluationStage::kConstant |
| : core::EvaluationStage::kRuntime; |
| return b.create<sem::BuiltinFn>( |
| fn, overload->return_type, std::move(params), eval_stage, supported_stages, |
| flags.Contains(OverloadFlag::kIsDeprecated), flags.Contains(OverloadFlag::kMustUse)); |
| }); |
| |
| if (fn == wgsl::BuiltinFn::kTintMaterialize) { |
| args[0] = Materialize(args[0]); |
| if (!args[0]) { |
| return nullptr; |
| } |
| } else { |
| // Materialize arguments if the parameter type is not abstract |
| if (!MaybeMaterializeAndLoadArguments(args, target)) { |
| return nullptr; |
| } |
| } |
| |
| if (target->IsDeprecated()) { |
| AddWarning("use of deprecated builtin", expr->source); |
| } |
| |
| // If the builtin is @const, and all arguments have constant values, evaluate the builtin |
| // now. |
| const core::constant::Value* value = nullptr; |
| auto stage = core::EarliestStage(arg_stage, target->Stage()); |
| if (stage == core::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == core::EvaluationStage::kConstant) { |
| auto const_args = ConvertArguments(args, target); |
| if (const_args != Success) { |
| return nullptr; |
| } |
| auto const_eval_fn = overload->const_eval_fn; |
| auto r = (const_eval_.*const_eval_fn)(target->ReturnType(), const_args.Get(), expr->source); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| } |
| |
| bool has_side_effects = |
| target->HasSideEffects() || |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| auto* call = b.create<sem::Call>(expr, target, stage, std::move(args), current_statement_, |
| value, has_side_effects); |
| |
| if (current_function_) { |
| current_function_->AddDirectlyCalledBuiltin(target); |
| current_function_->AddDirectCall(call); |
| } |
| |
| if (!validator_.RequiredFeaturesForBuiltinFn(call)) { |
| return nullptr; |
| } |
| |
| if (IsTexture(fn)) { |
| if (!validator_.TextureBuiltinFn(call)) { |
| return nullptr; |
| } |
| CollectTextureSamplerPairs(target, call->Arguments()); |
| } |
| |
| switch (fn) { |
| case wgsl::BuiltinFn::kWorkgroupUniformLoad: |
| if (!validator_.WorkgroupUniformLoad(call)) { |
| return nullptr; |
| } |
| RegisterLoad(args[0]); |
| break; |
| |
| case wgsl::BuiltinFn::kSubgroupBroadcast: |
| if (!validator_.SubgroupBroadcast(call)) { |
| return nullptr; |
| } |
| break; |
| |
| case wgsl::BuiltinFn::kAtomicLoad: |
| RegisterLoad(args[0]); |
| break; |
| |
| case wgsl::BuiltinFn::kAtomicStore: |
| RegisterStore(args[0]); |
| break; |
| |
| case wgsl::BuiltinFn::kAtomicAdd: |
| case wgsl::BuiltinFn::kAtomicSub: |
| case wgsl::BuiltinFn::kAtomicMax: |
| case wgsl::BuiltinFn::kAtomicMin: |
| case wgsl::BuiltinFn::kAtomicAnd: |
| case wgsl::BuiltinFn::kAtomicOr: |
| case wgsl::BuiltinFn::kAtomicXor: |
| case wgsl::BuiltinFn::kAtomicExchange: |
| case wgsl::BuiltinFn::kAtomicCompareExchangeWeak: |
| RegisterLoad(args[0]); |
| RegisterStore(args[0]); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (!validator_.BuiltinCall(call)) { |
| return nullptr; |
| } |
| |
| return call; |
| } |
| |
| core::type::Type* Resolver::BuiltinType(core::BuiltinType builtin_ty, |
| const ast::Identifier* ident) { |
| auto check_no_tmpl_args = [&](core::type::Type* ty) -> core::type::Type* { |
| return TINT_LIKELY(CheckNotTemplated("type", ident)) ? ty : nullptr; |
| }; |
| |
| switch (builtin_ty) { |
| case core::BuiltinType::kBool: |
| return check_no_tmpl_args(b.create<core::type::Bool>()); |
| case core::BuiltinType::kI32: |
| return check_no_tmpl_args(I32()); |
| case core::BuiltinType::kU32: |
| return check_no_tmpl_args(U32()); |
| case core::BuiltinType::kF16: |
| return check_no_tmpl_args(F16(ident)); |
| case core::BuiltinType::kF32: |
| return check_no_tmpl_args(b.create<core::type::F32>()); |
| case core::BuiltinType::kVec2: |
| return VecT(ident, builtin_ty, 2); |
| case core::BuiltinType::kVec3: |
| return VecT(ident, builtin_ty, 3); |
| case core::BuiltinType::kVec4: |
| return VecT(ident, builtin_ty, 4); |
| case core::BuiltinType::kMat2X2: |
| return MatT(ident, builtin_ty, 2, 2); |
| case core::BuiltinType::kMat2X3: |
| return MatT(ident, builtin_ty, 2, 3); |
| case core::BuiltinType::kMat2X4: |
| return MatT(ident, builtin_ty, 2, 4); |
| case core::BuiltinType::kMat3X2: |
| return MatT(ident, builtin_ty, 3, 2); |
| case core::BuiltinType::kMat3X3: |
| return MatT(ident, builtin_ty, 3, 3); |
| case core::BuiltinType::kMat3X4: |
| return MatT(ident, builtin_ty, 3, 4); |
| case core::BuiltinType::kMat4X2: |
| return MatT(ident, builtin_ty, 4, 2); |
| case core::BuiltinType::kMat4X3: |
| return MatT(ident, builtin_ty, 4, 3); |
| case core::BuiltinType::kMat4X4: |
| return MatT(ident, builtin_ty, 4, 4); |
| case core::BuiltinType::kMat2X2F: |
| return check_no_tmpl_args(Mat(ident, F32(), 2u, 2u)); |
| case core::BuiltinType::kMat2X3F: |
| return check_no_tmpl_args(Mat(ident, F32(), 2u, 3u)); |
| case core::BuiltinType::kMat2X4F: |
| return check_no_tmpl_args(Mat(ident, F32(), 2u, 4u)); |
| case core::BuiltinType::kMat3X2F: |
| return check_no_tmpl_args(Mat(ident, F32(), 3u, 2u)); |
| case core::BuiltinType::kMat3X3F: |
| return check_no_tmpl_args(Mat(ident, F32(), 3u, 3u)); |
| case core::BuiltinType::kMat3X4F: |
| return check_no_tmpl_args(Mat(ident, F32(), 3u, 4u)); |
| case core::BuiltinType::kMat4X2F: |
| return check_no_tmpl_args(Mat(ident, F32(), 4u, 2u)); |
| case core::BuiltinType::kMat4X3F: |
| return check_no_tmpl_args(Mat(ident, F32(), 4u, 3u)); |
| case core::BuiltinType::kMat4X4F: |
| return check_no_tmpl_args(Mat(ident, F32(), 4u, 4u)); |
| case core::BuiltinType::kMat2X2H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 2u, 2u)); |
| case core::BuiltinType::kMat2X3H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 2u, 3u)); |
| case core::BuiltinType::kMat2X4H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 2u, 4u)); |
| case core::BuiltinType::kMat3X2H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 3u, 2u)); |
| case core::BuiltinType::kMat3X3H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 3u, 3u)); |
| case core::BuiltinType::kMat3X4H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 3u, 4u)); |
| case core::BuiltinType::kMat4X2H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 4u, 2u)); |
| case core::BuiltinType::kMat4X3H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 4u, 3u)); |
| case core::BuiltinType::kMat4X4H: |
| return check_no_tmpl_args(Mat(ident, F16(ident), 4u, 4u)); |
| case core::BuiltinType::kVec2F: |
| return check_no_tmpl_args(Vec(ident, F32(), 2u)); |
| case core::BuiltinType::kVec3F: |
| return check_no_tmpl_args(Vec(ident, F32(), 3u)); |
| case core::BuiltinType::kVec4F: |
| return check_no_tmpl_args(Vec(ident, F32(), 4u)); |
| case core::BuiltinType::kVec2H: |
| return check_no_tmpl_args(Vec(ident, F16(ident), 2u)); |
| case core::BuiltinType::kVec3H: |
| return check_no_tmpl_args(Vec(ident, F16(ident), 3u)); |
| case core::BuiltinType::kVec4H: |
| return check_no_tmpl_args(Vec(ident, F16(ident), 4u)); |
| case core::BuiltinType::kVec2I: |
| return check_no_tmpl_args(Vec(ident, I32(), 2u)); |
| case core::BuiltinType::kVec3I: |
| return check_no_tmpl_args(Vec(ident, I32(), 3u)); |
| case core::BuiltinType::kVec4I: |
| return check_no_tmpl_args(Vec(ident, I32(), 4u)); |
| case core::BuiltinType::kVec2U: |
| return check_no_tmpl_args(Vec(ident, U32(), 2u)); |
| case core::BuiltinType::kVec3U: |
| return check_no_tmpl_args(Vec(ident, U32(), 3u)); |
| case core::BuiltinType::kVec4U: |
| return check_no_tmpl_args(Vec(ident, U32(), 4u)); |
| case core::BuiltinType::kArray: |
| return Array(ident); |
| case core::BuiltinType::kAtomic: |
| return Atomic(ident); |
| case core::BuiltinType::kPtr: |
| return Ptr(ident); |
| case core::BuiltinType::kSampler: |
| return check_no_tmpl_args( |
| b.create<core::type::Sampler>(core::type::SamplerKind::kSampler)); |
| case core::BuiltinType::kSamplerComparison: |
| return check_no_tmpl_args( |
| b.create<core::type::Sampler>(core::type::SamplerKind::kComparisonSampler)); |
| case core::BuiltinType::kTexture1D: |
| return SampledTexture(ident, core::type::TextureDimension::k1d); |
| case core::BuiltinType::kTexture2D: |
| return SampledTexture(ident, core::type::TextureDimension::k2d); |
| case core::BuiltinType::kTexture2DArray: |
| return SampledTexture(ident, core::type::TextureDimension::k2dArray); |
| case core::BuiltinType::kTexture3D: |
| return SampledTexture(ident, core::type::TextureDimension::k3d); |
| case core::BuiltinType::kTextureCube: |
| return SampledTexture(ident, core::type::TextureDimension::kCube); |
| case core::BuiltinType::kTextureCubeArray: |
| return SampledTexture(ident, core::type::TextureDimension::kCubeArray); |
| case core::BuiltinType::kTextureDepth2D: |
| return check_no_tmpl_args( |
| b.create<core::type::DepthTexture>(core::type::TextureDimension::k2d)); |
| case core::BuiltinType::kTextureDepth2DArray: |
| return check_no_tmpl_args( |
| b.create<core::type::DepthTexture>(core::type::TextureDimension::k2dArray)); |
| case core::BuiltinType::kTextureDepthCube: |
| return check_no_tmpl_args( |
| b.create<core::type::DepthTexture>(core::type::TextureDimension::kCube)); |
| case core::BuiltinType::kTextureDepthCubeArray: |
| return check_no_tmpl_args( |
| b.create<core::type::DepthTexture>(core::type::TextureDimension::kCubeArray)); |
| case core::BuiltinType::kTextureDepthMultisampled2D: |
| return check_no_tmpl_args( |
| b.create<core::type::DepthMultisampledTexture>(core::type::TextureDimension::k2d)); |
| case core::BuiltinType::kTextureExternal: |
| return check_no_tmpl_args(b.create<core::type::ExternalTexture>()); |
| case core::BuiltinType::kTextureMultisampled2D: |
| return MultisampledTexture(ident, core::type::TextureDimension::k2d); |
| case core::BuiltinType::kTextureStorage1D: |
| return StorageTexture(ident, core::type::TextureDimension::k1d); |
| case core::BuiltinType::kTextureStorage2D: |
| return StorageTexture(ident, core::type::TextureDimension::k2d); |
| case core::BuiltinType::kTextureStorage2DArray: |
| return StorageTexture(ident, core::type::TextureDimension::k2dArray); |
| case core::BuiltinType::kTextureStorage3D: |
| return StorageTexture(ident, core::type::TextureDimension::k3d); |
| case core::BuiltinType::kPackedVec3: |
| return PackedVec3T(ident); |
| case core::BuiltinType::kAtomicCompareExchangeResultI32: |
| return core::type::CreateAtomicCompareExchangeResult(b.Types(), b.Symbols(), I32()); |
| case core::BuiltinType::kAtomicCompareExchangeResultU32: |
| return core::type::CreateAtomicCompareExchangeResult(b.Types(), b.Symbols(), U32()); |
| case core::BuiltinType::kFrexpResultAbstract: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), AF()); |
| case core::BuiltinType::kFrexpResultF16: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), F16(ident)); |
| case core::BuiltinType::kFrexpResultF32: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), F32()); |
| case core::BuiltinType::kFrexpResultVec2Abstract: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, AF(), 2)); |
| case core::BuiltinType::kFrexpResultVec2F16: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 2)); |
| case core::BuiltinType::kFrexpResultVec2F32: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F32(), 2)); |
| case core::BuiltinType::kFrexpResultVec3Abstract: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, AF(), 3)); |
| case core::BuiltinType::kFrexpResultVec3F16: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 3)); |
| case core::BuiltinType::kFrexpResultVec3F32: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F32(), 3)); |
| case core::BuiltinType::kFrexpResultVec4Abstract: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, AF(), 4)); |
| case core::BuiltinType::kFrexpResultVec4F16: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 4)); |
| case core::BuiltinType::kFrexpResultVec4F32: |
| return core::type::CreateFrexpResult(b.Types(), b.Symbols(), Vec(ident, F32(), 4)); |
| case core::BuiltinType::kModfResultAbstract: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), AF()); |
| case core::BuiltinType::kModfResultF16: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), F16(ident)); |
| case core::BuiltinType::kModfResultF32: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), F32()); |
| case core::BuiltinType::kModfResultVec2Abstract: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, AF(), 2)); |
| case core::BuiltinType::kModfResultVec2F16: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 2)); |
| case core::BuiltinType::kModfResultVec2F32: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F32(), 2)); |
| case core::BuiltinType::kModfResultVec3Abstract: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, AF(), 3)); |
| case core::BuiltinType::kModfResultVec3F16: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 3)); |
| case core::BuiltinType::kModfResultVec3F32: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F32(), 3)); |
| case core::BuiltinType::kModfResultVec4Abstract: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, AF(), 4)); |
| case core::BuiltinType::kModfResultVec4F16: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F16(ident), 4)); |
| case core::BuiltinType::kModfResultVec4F32: |
| return core::type::CreateModfResult(b.Types(), b.Symbols(), Vec(ident, F32(), 4)); |
| case core::BuiltinType::kUndefined: |
| break; |
| } |
| |
| auto name = ident->symbol.Name(); |
| StringStream err; |
| err << " unhandled builtin type '" << name << "'"; |
| AddICE(err.str(), ident->source); |
| return nullptr; |
| } |
| |
| core::type::AbstractFloat* Resolver::AF() { |
| return b.create<core::type::AbstractFloat>(); |
| } |
| |
| core::type::F32* Resolver::F32() { |
| return b.create<core::type::F32>(); |
| } |
| |
| core::type::I32* Resolver::I32() { |
| return b.create<core::type::I32>(); |
| } |
| |
| core::type::U32* Resolver::U32() { |
| return b.create<core::type::U32>(); |
| } |
| |
| core::type::F16* Resolver::F16(const ast::Identifier* ident) { |
| return validator_.CheckF16Enabled(ident->source) ? b.create<core::type::F16>() : nullptr; |
| } |
| |
| core::type::Vector* Resolver::Vec(const ast::Identifier* ident, core::type::Type* el, uint32_t n) { |
| if (TINT_UNLIKELY(!el)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(!validator_.Vector(el, ident->source))) { |
| return nullptr; |
| } |
| return b.create<core::type::Vector>(el, n); |
| } |
| |
| core::type::Type* Resolver::VecT(const ast::Identifier* ident, |
| core::BuiltinType builtin, |
| uint32_t n) { |
| auto* tmpl_ident = ident->As<ast::TemplatedIdentifier>(); |
| if (!tmpl_ident) { |
| // 'vecN' has no template arguments, so return an incomplete type. |
| return b.create<IncompleteType>(builtin); |
| } |
| |
| if (TINT_UNLIKELY(!CheckTemplatedIdentifierArgs(tmpl_ident, 1))) { |
| return nullptr; |
| } |
| |
| auto* ty = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| |
| return Vec(ident, const_cast<core::type::Type*>(ty), n); |
| } |
| |
| core::type::Matrix* Resolver::Mat(const ast::Identifier* ident, |
| core::type::Type* el, |
| uint32_t num_columns, |
| uint32_t num_rows) { |
| if (TINT_UNLIKELY(!el)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(!validator_.Matrix(el, ident->source))) { |
| return nullptr; |
| } |
| auto* column = Vec(ident, el, num_rows); |
| if (!column) { |
| return nullptr; |
| } |
| return b.create<core::type::Matrix>(column, num_columns); |
| } |
| |
| core::type::Type* Resolver::MatT(const ast::Identifier* ident, |
| core::BuiltinType builtin, |
| uint32_t num_columns, |
| uint32_t num_rows) { |
| auto* tmpl_ident = ident->As<ast::TemplatedIdentifier>(); |
| if (!tmpl_ident) { |
| // 'vecN' has no template arguments, so return an incomplete type. |
| return b.create<IncompleteType>(builtin); |
| } |
| |
| if (TINT_UNLIKELY(!CheckTemplatedIdentifierArgs(tmpl_ident, 1))) { |
| return nullptr; |
| } |
| |
| auto* el_ty = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!el_ty)) { |
| return nullptr; |
| } |
| |
| return Mat(ident, const_cast<core::type::Type*>(el_ty), num_columns, num_rows); |
| } |
| |
| core::type::Type* Resolver::Array(const ast::Identifier* ident) { |
| auto* tmpl_ident = ident->As<ast::TemplatedIdentifier>(); |
| if (!tmpl_ident) { |
| // 'array' has no template arguments, so return an incomplete type. |
| return b.create<IncompleteType>(core::BuiltinType::kArray); |
| } |
| |
| if (TINT_UNLIKELY(!CheckTemplatedIdentifierArgs(tmpl_ident, 1, 2))) { |
| return nullptr; |
| } |
| auto* ast_el_ty = tmpl_ident->arguments[0]; |
| auto* ast_count = (tmpl_ident->arguments.Length() > 1) ? tmpl_ident->arguments[1] : nullptr; |
| |
| auto* el_ty = sem_.GetType(ast_el_ty); |
| if (!el_ty) { |
| return nullptr; |
| } |
| |
| const core::type::ArrayCount* el_count = |
| ast_count ? ArrayCount(ast_count) : b.create<core::type::RuntimeArrayCount>(); |
| if (!el_count) { |
| return nullptr; |
| } |
| |
| // Look for explicit stride via @stride(n) attribute |
| uint32_t explicit_stride = 0; |
| if (!ArrayAttributes(tmpl_ident->attributes, el_ty, explicit_stride)) { |
| return nullptr; |
| } |
| |
| auto* out = Array(tmpl_ident->source, // |
| ast_el_ty->source, // |
| ast_count ? ast_count->source : ident->source, // |
| el_ty, el_count, explicit_stride); |
| if (!out) { |
| return nullptr; |
| } |
| |
| if (el_ty->Is<core::type::Atomic>()) { |
| atomic_composite_info_.Add(out, &ast_el_ty->source); |
| } else { |
| if (auto found = atomic_composite_info_.Get(el_ty)) { |
| atomic_composite_info_.Add(out, *found); |
| } |
| } |
| |
| return out; |
| } |
| |
| core::type::Atomic* Resolver::Atomic(const ast::Identifier* ident) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 1); // atomic<type> |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* el_ty = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!el_ty)) { |
| return nullptr; |
| } |
| |
| auto* out = b.create<core::type::Atomic>(el_ty); |
| if (TINT_UNLIKELY(!validator_.Atomic(tmpl_ident, out))) { |
| return nullptr; |
| } |
| return out; |
| } |
| |
| core::type::Pointer* Resolver::Ptr(const ast::Identifier* ident) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 2, 3); // ptr<address, type [, access]> |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto address_space = sem_.GetAddressSpace(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(address_space == core::AddressSpace::kUndefined)) { |
| return nullptr; |
| } |
| |
| auto* store_ty = const_cast<core::type::Type*>(sem_.GetType(tmpl_ident->arguments[1])); |
| if (TINT_UNLIKELY(!store_ty)) { |
| return nullptr; |
| } |
| |
| core::Access access = core::Access::kUndefined; |
| if (tmpl_ident->arguments.Length() > 2) { |
| access = sem_.GetAccess(tmpl_ident->arguments[2]); |
| if (TINT_UNLIKELY(access == core::Access::kUndefined)) { |
| return nullptr; |
| } |
| } else { |
| access = DefaultAccessForAddressSpace(address_space); |
| } |
| |
| auto* out = b.create<core::type::Pointer>(address_space, store_ty, access); |
| if (TINT_UNLIKELY(!validator_.Pointer(tmpl_ident, out))) { |
| return nullptr; |
| } |
| |
| if (!ApplyAddressSpaceUsageToType(address_space, store_ty, tmpl_ident->arguments[1]->source)) { |
| AddNote("while instantiating " + out->FriendlyName(), ident->source); |
| return nullptr; |
| } |
| return out; |
| } |
| |
| core::type::SampledTexture* Resolver::SampledTexture(const ast::Identifier* ident, |
| core::type::TextureDimension dim) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 1); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* ty_expr = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty_expr)) { |
| return nullptr; |
| } |
| |
| auto* out = b.create<core::type::SampledTexture>(dim, ty_expr); |
| return validator_.SampledTexture(out, ident->source) ? out : nullptr; |
| } |
| |
| core::type::MultisampledTexture* Resolver::MultisampledTexture(const ast::Identifier* ident, |
| core::type::TextureDimension dim) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 1); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* ty_expr = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!ty_expr)) { |
| return nullptr; |
| } |
| |
| auto* out = b.create<core::type::MultisampledTexture>(dim, ty_expr); |
| return validator_.MultisampledTexture(out, ident->source) ? out : nullptr; |
| } |
| |
| core::type::StorageTexture* Resolver::StorageTexture(const ast::Identifier* ident, |
| core::type::TextureDimension dim) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 2); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto format = sem_.GetTexelFormat(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(format == core::TexelFormat::kUndefined)) { |
| return nullptr; |
| } |
| |
| auto access = sem_.GetAccess(tmpl_ident->arguments[1]); |
| if (TINT_UNLIKELY(access == core::Access::kUndefined)) { |
| return nullptr; |
| } |
| |
| auto* subtype = core::type::StorageTexture::SubtypeFor(format, b.Types()); |
| auto* tex = b.create<core::type::StorageTexture>(dim, format, access, subtype); |
| if (!validator_.StorageTexture(tex, ident->source)) { |
| return nullptr; |
| } |
| |
| return tex; |
| } |
| |
| core::type::Vector* Resolver::PackedVec3T(const ast::Identifier* ident) { |
| auto* tmpl_ident = TemplatedIdentifier(ident, 1); |
| if (TINT_UNLIKELY(!tmpl_ident)) { |
| return nullptr; |
| } |
| |
| auto* el_ty = sem_.GetType(tmpl_ident->arguments[0]); |
| if (TINT_UNLIKELY(!el_ty)) { |
| return nullptr; |
| } |
| |
| if (TINT_UNLIKELY(!validator_.Vector(el_ty, ident->source))) { |
| return nullptr; |
| } |
| return b.create<core::type::Vector>(el_ty, 3u, true); |
| } |
| |
| const ast::TemplatedIdentifier* Resolver::TemplatedIdentifier(const ast::Identifier* ident, |
| size_t min_args, |
| size_t max_args /* = use min 0 */) { |
| auto* tmpl_ident = ident->As<ast::TemplatedIdentifier>(); |
| if (!tmpl_ident) { |
| if (TINT_UNLIKELY(min_args != 0)) { |
| AddError("expected '<' for '" + ident->symbol.Name() + "'", |
| Source{ident->source.range.end}); |
| } |
| return nullptr; |
| } |
| return CheckTemplatedIdentifierArgs(tmpl_ident, min_args, max_args) ? tmpl_ident : nullptr; |
| } |
| |
| bool Resolver::CheckTemplatedIdentifierArgs(const ast::TemplatedIdentifier* ident, |
| size_t min_args, |
| size_t max_args /* = use min 0 */) { |
| if (max_args == 0) { |
| max_args = min_args; |
| } |
| if (min_args == max_args) { |
| if (TINT_UNLIKELY(ident->arguments.Length() != min_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires " + std::to_string(min_args) + |
| " template arguments", |
| ident->source); |
| return false; |
| } |
| } else { |
| if (TINT_UNLIKELY(ident->arguments.Length() < min_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires at least " + |
| std::to_string(min_args) + " template arguments", |
| ident->source); |
| return false; |
| } |
| if (TINT_UNLIKELY(ident->arguments.Length() > max_args)) { |
| AddError("'" + ident->symbol.Name() + "' requires at most " + std::to_string(max_args) + |
| " template arguments", |
| ident->source); |
| return false; |
| } |
| } |
| return ident; |
| } |
| |
| size_t Resolver::NestDepth(const core::type::Type* ty) const { |
| return Switch( |
| ty, // |
| [](const core::type::Vector*) { return size_t{1}; }, |
| [](const core::type::Matrix*) { return size_t{2}; }, |
| [&](Default) { |
| if (auto d = nest_depth_.Get(ty)) { |
| return *d; |
| } |
| return size_t{0}; |
| }); |
| } |
| |
| void Resolver::CollectTextureSamplerPairs(const sem::BuiltinFn* builtin, |
| VectorRef<const sem::ValueExpression*> args) const { |
| // Collect a texture/sampler pair for this builtin. |
| const auto& signature = builtin->Signature(); |
| int texture_index = signature.IndexOf(core::ParameterUsage::kTexture); |
| if (TINT_UNLIKELY(texture_index == -1)) { |
| StringStream err; |
| err << "texture builtin without texture parameter"; |
| AddICE(err.str(), {}); |
| return; |
| } |
| if (auto* user = |
| args[static_cast<size_t>(texture_index)]->UnwrapLoad()->As<sem::VariableUser>()) { |
| auto* texture = user->Variable(); |
| if (!texture->Type()->UnwrapRef()->Is<core::type::StorageTexture>()) { |
| int sampler_index = signature.IndexOf(core::ParameterUsage::kSampler); |
| const sem::Variable* sampler = sampler_index != -1 |
| ? args[static_cast<size_t>(sampler_index)] |
| ->UnwrapLoad() |
| ->As<sem::VariableUser>() |
| ->Variable() |
| : nullptr; |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| } |
| } |
| |
| sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr, |
| sem::Function* target, |
| VectorRef<const sem::ValueExpression*> args_in, |
| sem::Behaviors arg_behaviors) { |
| Vector<const sem::ValueExpression*, 8> args = std::move(args_in); |
| if (!MaybeMaterializeAndLoadArguments(args, target)) { |
| return nullptr; |
| } |
| |
| // TODO(crbug.com/tint/1420): For now, assume all function calls have side effects. |
| bool has_side_effects = true; |
| auto* call = b.create<sem::Call>(expr, target, core::EvaluationStage::kRuntime, std::move(args), |
| current_statement_, |
| /* constant_value */ nullptr, has_side_effects); |
| |
| target->AddCallSite(call); |
| |
| call->Behaviors() = arg_behaviors + target->Behaviors(); |
| |
| if (!validator_.FunctionCall(call, current_statement_)) { |
| return nullptr; |
| } |
| |
| if (current_function_) { |
| // Note: Requires called functions to be resolved first. |
| // This is currently guaranteed as functions must be declared before |
| // use. |
| current_function_->AddTransitivelyCalledFunction(target); |
| current_function_->AddDirectCall(call); |
| for (auto* transitive_call : target->TransitivelyCalledFunctions()) { |
| current_function_->AddTransitivelyCalledFunction(transitive_call); |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : target->TransitivelyReferencedGlobals()) { |
| current_function_->AddTransitivelyReferencedGlobal(var); |
| } |
| |
| if (!AliasAnalysis(call)) { |
| return nullptr; |
| } |
| |
| // Note: Validation *must* be performed before calling this method. |
| CollectTextureSamplerPairs(target, call->Arguments()); |
| } |
| |
| return call; |
| } |
| |
| void Resolver::CollectTextureSamplerPairs(sem::Function* func, |
| VectorRef<const sem::ValueExpression*> args) const { |
| // Map all texture/sampler pairs from the target function to the |
| // current function. These can only be global or parameter |
| // variables. Resolve any parameter variables to the corresponding |
| // argument passed to the current function. Leave global variables |
| // as-is. Then add the mapped pair to the current function's list of |
| // texture/sampler pairs. |
| |
| Hashset<const sem::Variable*, 4> texture_sampler_set; |
| |
| for (sem::VariablePair pair : func->TextureSamplerPairs()) { |
| const sem::Variable* texture = pair.first; |
| const sem::Variable* sampler = pair.second; |
| if (auto* param = As<sem::Parameter>(texture)) { |
| texture = args[param->Index()]->UnwrapLoad()->As<sem::VariableUser>()->Variable(); |
| texture_sampler_set.Add(texture); |
| } |
| if (auto* param = As<sem::Parameter>(sampler)) { |
| sampler = args[param->Index()]->UnwrapLoad()->As<sem::VariableUser>()->Variable(); |
| texture_sampler_set.Add(sampler); |
| } |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| |
| // Add any possible texture/sampler not essentially passed to builtins from the function param. |
| // This could be unused texture/sampler or texture/sampler passed to builtins that are emulated. |
| |
| const auto& signature = func->Signature(); |
| |
| for (size_t i = 0; i < signature.parameters.Length(); i++) { |
| auto* param = signature.parameters[i]; |
| if (param->Type()->Is<core::type::Texture>()) { |
| auto* user = args[i]->UnwrapLoad()->As<sem::VariableUser>(); |
| auto* texture = user->Variable(); |
| if (!texture_sampler_set.Contains(texture)) { |
| current_function_->AddTextureSamplerPair(texture, nullptr); |
| func->AddTextureSamplerPair(param, nullptr); |
| texture_sampler_set.Add(texture); |
| } |
| } else if (param->Type()->Is<core::type::Sampler>()) { |
| auto* user = args[i]->UnwrapLoad()->As<sem::VariableUser>(); |
| auto* sampler = user->Variable(); |
| if (!texture_sampler_set.Contains(sampler)) { |
| current_function_->AddTextureSamplerPair(nullptr, sampler); |
| func->AddTextureSamplerPair(nullptr, param); |
| texture_sampler_set.Add(sampler); |
| } |
| } |
| } |
| } |
| |
| sem::ValueExpression* Resolver::Literal(const ast::LiteralExpression* literal) { |
| auto* ty = Switch( |
| literal, |
| [&](const ast::IntLiteralExpression* i) -> core::type::Type* { |
| switch (i->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| return b.create<core::type::AbstractInt>(); |
| case ast::IntLiteralExpression::Suffix::kI: |
| return b.create<core::type::I32>(); |
| case ast::IntLiteralExpression::Suffix::kU: |
| return b.create<core::type::U32>(); |
| } |
| TINT_UNREACHABLE() << "Unhandled integer literal suffix: " << i->suffix; |
| return nullptr; |
| }, |
| [&](const ast::FloatLiteralExpression* f) -> core::type::Type* { |
| switch (f->suffix) { |
| case ast::FloatLiteralExpression::Suffix::kNone: |
| return b.create<core::type::AbstractFloat>(); |
| case ast::FloatLiteralExpression::Suffix::kF: |
| return b.create<core::type::F32>(); |
| case ast::FloatLiteralExpression::Suffix::kH: |
| return validator_.CheckF16Enabled(literal->source) ? b.create<core::type::F16>() |
| : nullptr; |
| } |
| TINT_UNREACHABLE() << "Unhandled float literal suffix: " << f->suffix; |
| return nullptr; |
| }, |
| [&](const ast::BoolLiteralExpression*) { return b.create<core::type::Bool>(); }, // |
| TINT_ICE_ON_NO_MATCH); |
| |
| if (ty == nullptr) { |
| return nullptr; |
| } |
| |
| const core::constant::Value* val = nullptr; |
| auto stage = core::EvaluationStage::kConstant; |
| if (skip_const_eval_.Contains(literal)) { |
| stage = core::EvaluationStage::kNotEvaluated; |
| } |
| if (stage == core::EvaluationStage::kConstant) { |
| val = Switch( |
| literal, |
| [&](const ast::BoolLiteralExpression* lit) { return b.constants.Get(lit->value); }, |
| [&](const ast::IntLiteralExpression* lit) -> const core::constant::Value* { |
| switch (lit->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| return b.constants.Get(AInt(lit->value)); |
| case ast::IntLiteralExpression::Suffix::kI: |
| return b.constants.Get(i32(lit->value)); |
| case ast::IntLiteralExpression::Suffix::kU: |
| return b.constants.Get(u32(lit->value)); |
| } |
| return nullptr; |
| }, |
| [&](const ast::FloatLiteralExpression* lit) -> const core::constant::Value* { |
| switch (lit->suffix) { |
| case ast::FloatLiteralExpression::Suffix::kNone: |
| return b.constants.Get(AFloat(lit->value)); |
| case ast::FloatLiteralExpression::Suffix::kF: |
| return b.constants.Get(f32(lit->value)); |
| case ast::FloatLiteralExpression::Suffix::kH: |
| return b.constants.Get(f16(lit->value)); |
| } |
| return nullptr; |
| }); |
| } |
| return b.create<sem::ValueExpression>(literal, ty, stage, current_statement_, std::move(val), |
| /* has_side_effects */ false); |
| } |
| |
| sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { |
| auto* ident = expr->identifier; |
| Mark(ident); |
| |
| auto resolved = dependencies_.resolved_identifiers.Get(ident); |
| if (!resolved) { |
| StringStream err; |
| err << "identifier '" << ident->symbol.Name() << "' was not resolved"; |
| AddICE(err.str(), expr->source); |
| return nullptr; |
| } |
| |
| if (auto* ast_node = resolved->Node()) { |
| auto* resolved_node = sem_.Get(ast_node); |
| return Switch( |
| resolved_node, // |
| [&](sem::Variable* variable) -> sem::VariableUser* { |
| if (!TINT_LIKELY(CheckNotTemplated("variable", ident))) { |
| return nullptr; |
| } |
| |
| auto stage = variable->Stage(); |
| const core::constant::Value* value = variable->ConstantValue(); |
| if (skip_const_eval_.Contains(expr)) { |
| // This expression is short-circuited by an ancestor expression. |
| // Do not const-eval. |
| stage = core::EvaluationStage::kNotEvaluated; |
| value = nullptr; |
| } |
| auto* user = |
| b.create<sem::VariableUser>(expr, stage, current_statement_, value, variable); |
| |
| if (current_statement_) { |
| // If identifier is part of a loop continuing block, make sure it |
| // doesn't refer to a variable that is bypassed by a continue statement |
| // in the loop's body block. |
| if (auto* continuing_block = |
| current_statement_ |
| ->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| auto* loop_block = |
| continuing_block->FindFirstParent<sem::LoopBlockStatement>(); |
| if (loop_block->FirstContinue()) { |
| // If our identifier is in loop_block->decls, make sure its index is |
| // less than first_continue |
| auto symbol = ident->symbol; |
| if (auto decl = loop_block->Decls().Get(symbol)) { |
| if (decl->order >= loop_block->NumDeclsAtFirstContinue()) { |
| AddError("continue statement bypasses declaration of '" + |
| symbol.Name() + "'", |
| loop_block->FirstContinue()->source); |
| AddNote("identifier '" + symbol.Name() + "' declared here", |
| decl->variable->Declaration()->source); |
| AddNote("identifier '" + symbol.Name() + |
| "' referenced in continuing block here", |
| expr->source); |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| if (auto* global = variable->As<sem::GlobalVariable>()) { |
| for (auto& fn : on_transitively_reference_global_) { |
| fn(global); |
| } |
| if (!current_function_ && variable->Declaration()->Is<ast::Var>()) { |
| // Use of a module-scope 'var' outside of a function. |
| std::string desc = "var '" + ident->symbol.Name() + "' "; |
| AddError(desc + "cannot be referenced at module-scope", expr->source); |
| AddNote(desc + "declared here", variable->Declaration()->source); |
| return nullptr; |
| } |
| } |
| |
| variable->AddUser(user); |
| return user; |
| }, |
| [&](const core::type::Type* ty) -> sem::TypeExpression* { |
| // User declared types cannot be templated. |
| if (!TINT_LIKELY(CheckNotTemplated("type", ident))) { |
| return nullptr; |
| } |
| |
| // Notify callers of all transitively referenced globals. |
| if (auto* arr = ty->As<sem::Array>()) { |
| for (auto& fn : on_transitively_reference_global_) { |
| for (auto* ref : arr->TransitivelyReferencedOverrides()) { |
| fn(ref); |
| } |
| } |
| } |
| |
| return b.create<sem::TypeExpression>(expr, current_statement_, ty); |
| }, |
| [&](const sem::Function* fn) -> sem::FunctionExpression* { |
| if (!TINT_LIKELY(CheckNotTemplated("function", ident))) { |
| return nullptr; |
| } |
| return b.create<sem::FunctionExpression>(expr, current_statement_, fn); |
| }); |
| } |
| |
| if (auto builtin_ty = resolved->BuiltinType(); builtin_ty != core::BuiltinType::kUndefined) { |
| auto* ty = BuiltinType(builtin_ty, ident); |
| if (!ty) { |
| return nullptr; |
| } |
| return b.create<sem::TypeExpression>(expr, current_statement_, ty); |
| } |
| |
| if (auto fn = resolved->BuiltinFn(); fn != wgsl::BuiltinFn::kNone) { |
| return CheckNotTemplated("builtin function", ident) |
| ? b.create<sem::BuiltinEnumExpression<wgsl::BuiltinFn>>(expr, current_statement_, |
| fn) |
| : nullptr; |
| } |
| |
| if (auto access = resolved->Access(); access != core::Access::kUndefined) { |
| return CheckNotTemplated("access", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::Access>>(expr, current_statement_, |
| access) |
| : nullptr; |
| } |
| |
| if (auto addr = resolved->AddressSpace(); addr != core::AddressSpace::kUndefined) { |
| return CheckNotTemplated("address space", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::AddressSpace>>( |
| expr, current_statement_, addr) |
| : nullptr; |
| } |
| |
| if (auto builtin = resolved->BuiltinValue(); builtin != core::BuiltinValue::kUndefined) { |
| return CheckNotTemplated("builtin value", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::BuiltinValue>>( |
| expr, current_statement_, builtin) |
| : nullptr; |
| } |
| |
| if (auto i_smpl = resolved->InterpolationSampling(); |
| i_smpl != core::InterpolationSampling::kUndefined) { |
| return CheckNotTemplated("interpolation sampling", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::InterpolationSampling>>( |
| expr, current_statement_, i_smpl) |
| : nullptr; |
| } |
| |
| if (auto i_type = resolved->InterpolationType(); |
| i_type != core::InterpolationType::kUndefined) { |
| return CheckNotTemplated("interpolation type", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::InterpolationType>>( |
| expr, current_statement_, i_type) |
| : nullptr; |
| } |
| |
| if (auto fmt = resolved->TexelFormat(); fmt != core::TexelFormat::kUndefined) { |
| return CheckNotTemplated("texel format", ident) |
| ? b.create<sem::BuiltinEnumExpression<core::TexelFormat>>( |
| expr, current_statement_, fmt) |
| : nullptr; |
| } |
| |
| if (resolved->Unresolved()) { |
| return b.create<UnresolvedIdentifier>(expr, current_statement_); |
| } |
| |
| TINT_UNREACHABLE() << "unhandled resolved identifier: " << resolved->String(); |
| return nullptr; |
| } |
| |
| sem::ValueExpression* Resolver::MemberAccessor(const ast::MemberAccessorExpression* expr) { |
| auto* object = sem_.GetVal(expr->object); |
| if (!object) { |
| return nullptr; |
| } |
| |
| auto* object_ty = object->Type(); |
| |
| auto* const memory_view = object_ty->As<core::type::MemoryView>(); |
| const core::type::Type* storage_ty = object_ty->UnwrapRef(); |
| if (memory_view) { |
| if (memory_view->Is<core::type::Pointer>() && |
| !allowed_features_.features.count(wgsl::LanguageFeature::kPointerCompositeAccess)) { |
| AddError( |
| "pointer composite access requires the pointer_composite_access language feature, " |
| "which is not allowed in the current environment", |
| expr->source); |
| return nullptr; |
| } |
| storage_ty = memory_view->StoreType(); |
| } |
| |
| auto* root_ident = object->RootIdentifier(); |
| |
| const core::type::Type* ty = nullptr; |
| |
| // Object may be a side-effecting expression (e.g. function call). |
| bool has_side_effects = object->HasSideEffects(); |
| |
| Mark(expr->member); |
| |
| return Switch( |
| storage_ty, // |
| [&](const core::type::Struct* str) -> sem::ValueExpression* { |
| auto symbol = expr->member->symbol; |
| |
| const core::type::StructMember* member = nullptr; |
| for (auto* m : str->Members()) { |
| if (m->Name() == symbol) { |
| member = m; |
| break; |
| } |
| } |
| |
| if (member == nullptr) { |
| AddError("struct member " + symbol.Name() + " not found", expr->source); |
| return nullptr; |
| } |
| |
| ty = member->Type(); |
| |
| // If we're extracting from a memory view, we return a reference. |
| if (memory_view) { |
| ty = b.create<core::type::Reference>(memory_view->AddressSpace(), ty, |
| memory_view->Access()); |
| } |
| |
| const core::constant::Value* val = nullptr; |
| if (auto* obj_val = object->ConstantValue()) { |
| val = obj_val->Index(static_cast<size_t>(member->Index())); |
| } |
| return b.create<sem::StructMemberAccess>(expr, ty, current_statement_, val, object, |
| member, has_side_effects, root_ident); |
| }, |
| |
| [&](const core::type::Vector* vec) -> sem::ValueExpression* { |
| std::string s = expr->member->symbol.Name(); |
| auto size = s.size(); |
| Vector<uint32_t, 4> swizzle; |
| swizzle.Reserve(s.size()); |
| |
| for (auto c : s) { |
| switch (c) { |
| case 'x': |
| case 'r': |
| swizzle.Push(0u); |
| break; |
| case 'y': |
| case 'g': |
| swizzle.Push(1u); |
| break; |
| case 'z': |
| case 'b': |
| swizzle.Push(2u); |
| break; |
| case 'w': |
| case 'a': |
| swizzle.Push(3u); |
| break; |
| default: |
| AddError( |
| "invalid vector swizzle character", |
| expr->member->source.Begin() + static_cast<uint32_t>(swizzle.Length())); |
| return nullptr; |
| } |
| |
| if (swizzle.Back() >= vec->Width()) { |
| AddError("invalid vector swizzle member", expr->member->source); |
| return nullptr; |
| } |
| } |
| |
| if (size < 1 || size > 4) { |
| AddError("invalid vector swizzle size", expr->member->source); |
| return nullptr; |
| } |
| |
| // All characters are valid, check if they're being mixed |
| auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; |
| auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; |
| if (!std::all_of(s.begin(), s.end(), is_rgba) && |
| !std::all_of(s.begin(), s.end(), is_xyzw)) { |
| AddError("invalid mixing of vector swizzle characters rgba with xyzw", |
| expr->member->source); |
| return nullptr; |
| } |
| |
| const sem::ValueExpression* obj_expr = object; |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ty = vec->type(); |
| // If we're extracting from a memory view, we return a reference. |
| if (memory_view) { |
| ty = b.create<core::type::Reference>(memory_view->AddressSpace(), ty, |
| memory_view->Access()); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of |
| // the swizzle. |
| ty = b.create<core::type::Vector>(vec->type(), static_cast<uint32_t>(size)); |
| |
| // The load rule is invoked before the swizzle, if necessary. |
| obj_expr = Load(object); |
| } |
| const core::constant::Value* val = nullptr; |
| if (auto* obj_val = object->ConstantValue()) { |
| auto res = const_eval_.Swizzle(ty, obj_val, swizzle); |
| if (res != Success) { |
| return nullptr; |
| } |
| val = res.Get(); |
| } |
| return b.create<sem::Swizzle>(expr, ty, current_statement_, val, obj_expr, |
| std::move(swizzle), has_side_effects, root_ident); |
| }, |
| |
| [&](Default) { |
| AddError("invalid member accessor expression. Expected vector or struct, got '" + |
| sem_.TypeNameOf(storage_ty) + "'", |
| expr->member->source); |
| return nullptr; |
| }); |
| } |
| |
| sem::ValueExpression* Resolver::Binary(const ast::BinaryExpression* expr) { |
| const auto* lhs = sem_.GetVal(expr->lhs); |
| const auto* rhs = sem_.GetVal(expr->rhs); |
| if (!lhs || !rhs) { |
| return nullptr; |
| } |
| |
| // Load arguments if they are references |
| lhs = Load(lhs); |
| if (!lhs) { |
| return nullptr; |
| } |
| rhs = Load(rhs); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| auto stage = core::EarliestStage(lhs->Stage(), rhs->Stage()); |
| auto overload = intrinsic_table_.Lookup(expr->op, lhs->Type()->UnwrapRef(), |
| rhs->Type()->UnwrapRef(), stage, false); |
| if (overload != Success) { |
| AddError(overload.Failure(), expr->source); |
| return nullptr; |
| } |
| |
| auto* res_ty = overload->return_type; |
| |
| // Parameter types |
| auto* lhs_ty = overload->parameters[0].type; |
| auto* rhs_ty = overload->parameters[1].type; |
| if (ShouldMaterializeArgument(lhs_ty)) { |
| lhs = Materialize(lhs, lhs_ty); |
| if (!lhs) { |
| return nullptr; |
| } |
| } |
| if (ShouldMaterializeArgument(rhs_ty)) { |
| rhs = Materialize(rhs, rhs_ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| } |
| |
| const core::constant::Value* value = nullptr; |
| if (skip_const_eval_.Contains(expr)) { |
| // This expression is short-circuited by an ancestor expression. |
| // Do not const-eval. |
| stage = core::EvaluationStage::kNotEvaluated; |
| } else if (lhs->Stage() == core::EvaluationStage::kConstant && |
| rhs->Stage() == core::EvaluationStage::kNotEvaluated) { |
| // Short-circuiting binary expression. Use the LHS value and stage. |
| value = lhs->ConstantValue(); |
| stage = core::EvaluationStage::kConstant; |
| } else if (stage == core::EvaluationStage::kConstant) { |
| // Both LHS and RHS have expressions that are constant evaluation stage. |
| auto const_eval_fn = overload->const_eval_fn; |
| if (const_eval_fn) { // Do we have a @const operator? |
| // Yes. Perform any required abstract argument values implicit conversions to the |
| // overload parameter types, and const-eval. |
| Vector const_args{lhs->ConstantValue(), rhs->ConstantValue()}; |
| // Implicit conversion (e.g. AInt -> AFloat) |
| if (!Convert(const_args[0], lhs_ty, lhs->Declaration()->source)) { |
| return nullptr; |
| } |
| if (!Convert(const_args[1], rhs_ty, rhs->Declaration()->source)) { |
| return nullptr; |
| } |
| auto r = (const_eval_.*const_eval_fn)(res_ty, const_args, expr->source); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| } else { |
| // The arguments have constant values, but the operator cannot be const-evaluated. |
| // This can only be evaluated at runtime. |
| stage = core::EvaluationStage::kRuntime; |
| } |
| } |
| |
| bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects(); |
| auto* sem = b.create<sem::ValueExpression>(expr, res_ty, stage, current_statement_, value, |
| has_side_effects); |
| sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); |
| |
| return sem; |
| } |
| |
| sem::ValueExpression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { |
| const auto* expr = sem_.GetVal(unary->expr); |
| if (!expr) { |
| return nullptr; |
| } |
| auto* expr_ty = expr->Type(); |
| |
| const core::type::Type* ty = nullptr; |
| const sem::Variable* root_ident = nullptr; |
| const core::constant::Value* value = nullptr; |
| auto stage = core::EvaluationStage::kRuntime; |
| |
| switch (unary->op) { |
| case core::UnaryOp::kAddressOf: |
| if (auto* ref = expr_ty->As<core::type::Reference>()) { |
| if (ref->StoreType()->UnwrapRef()->is_handle()) { |
| AddError("cannot take the address of expression in handle address space", |
| unary->expr->source); |
| return nullptr; |
| } |
| |
| auto* array = unary->expr->As<ast::IndexAccessorExpression>(); |
| auto* member = unary->expr->As<ast::MemberAccessorExpression>(); |
| if ((array && sem_.TypeOf(array->object)->UnwrapRef()->Is<core::type::Vector>()) || |
| (member && |
| sem_.TypeOf(member->object)->UnwrapRef()->Is<core::type::Vector>())) { |
| AddError("cannot take the address of a vector component", unary->expr->source); |
| return nullptr; |
| } |
| |
| ty = b.create<core::type::Pointer>(ref->AddressSpace(), ref->StoreType(), |
| ref->Access()); |
| |
| root_ident = expr->RootIdentifier(); |
| } else { |
| AddError("cannot take the address of expression", unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case core::UnaryOp::kIndirection: |
| if (auto* ptr = expr_ty->As<core::type::Pointer>()) { |
| ty = b.create<core::type::Reference>(ptr->AddressSpace(), ptr->StoreType(), |
| ptr->Access()); |
| root_ident = expr->RootIdentifier(); |
| } else { |
| AddError("cannot dereference expression of type '" + sem_.TypeNameOf(expr_ty) + "'", |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| default: { |
| stage = expr->Stage(); |
| auto overload = intrinsic_table_.Lookup(unary->op, expr_ty->UnwrapRef(), stage); |
| if (overload != Success) { |
| AddError(overload.Failure(), unary->source); |
| return nullptr; |
| } |
| ty = overload->return_type; |
| auto* param_ty = overload->parameters[0].type; |
| if (ShouldMaterializeArgument(param_ty)) { |
| expr = Materialize(expr, param_ty); |
| if (!expr) { |
| return nullptr; |
| } |
| } |
| |
| // Load expr if it is a reference |
| expr = Load(expr); |
| if (!expr) { |
| return nullptr; |
| } |
| |
| stage = expr->Stage(); |
| if (stage == core::EvaluationStage::kConstant) { |
| if (auto const_eval_fn = overload->const_eval_fn) { |
| auto r = (const_eval_.*const_eval_fn)(ty, Vector{expr->ConstantValue()}, |
| expr->Declaration()->source); |
| if (r != Success) { |
| return nullptr; |
| } |
| value = r.Get(); |
| } else { |
| stage = core::EvaluationStage::kRuntime; |
| } |
| } |
| break; |
| } |
| } |
| |
| auto* sem = b.create<sem::ValueExpression>(unary, ty, stage, current_statement_, value, |
| expr->HasSideEffects(), root_ident); |
| sem->Behaviors() = expr->Behaviors(); |
| return sem; |
| } |
| |
| tint::Result<uint32_t> Resolver::LocationAttribute(const ast::LocationAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@location value"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return Failure{}; |
| } |
| |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@location must be an i32 or u32 value", attr->source); |
| return Failure{}; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@location value must be non-negative", attr->source); |
| return Failure{}; |
| } |
| |
| return static_cast<uint32_t>(value); |
| } |
| |
| tint::Result<uint32_t> Resolver::ColorAttribute(const ast::ColorAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@color value"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return Failure{}; |
| } |
| |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@color must be an i32 or u32 value", attr->source); |
| return Failure{}; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@color value must be non-negative", attr->source); |
| return Failure{}; |
| } |
| |
| return static_cast<uint32_t>(value); |
| } |
| tint::Result<uint32_t> Resolver::BlendSrcAttribute(const ast::BlendSrcAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@blend_src value"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return Failure{}; |
| } |
| |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@location must be an i32 or u32 value", attr->source); |
| return Failure{}; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value != 0 && value != 1) { |
| AddError("@blend_src value must be zero or one", attr->source); |
| return Failure{}; |
| } |
| |
| return static_cast<uint32_t>(value); |
| } |
| |
| tint::Result<uint32_t> Resolver::BindingAttribute(const ast::BindingAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@binding"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return Failure{}; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@binding must be an i32 or u32 value", attr->source); |
| return Failure{}; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@binding value must be non-negative", attr->source); |
| return Failure{}; |
| } |
| return static_cast<uint32_t>(value); |
| } |
| |
| tint::Result<uint32_t> Resolver::GroupAttribute(const ast::GroupAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@group"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return Failure{}; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@group must be an i32 or u32 value", attr->source); |
| return Failure{}; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| auto value = const_value->ValueAs<AInt>(); |
| if (value < 0) { |
| AddError("@group value must be non-negative", attr->source); |
| return Failure{}; |
| } |
| return static_cast<uint32_t>(value); |
| } |
| |
| tint::Result<sem::WorkgroupSize> Resolver::WorkgroupAttribute(const ast::WorkgroupAttribute* attr) { |
| // Set work-group size defaults. |
| sem::WorkgroupSize ws; |
| for (size_t i = 0; i < 3; i++) { |
| ws[i] = 1; |
| } |
| |
| auto values = attr->Values(); |
| Vector<const sem::ValueExpression*, 3> args; |
| Vector<const core::type::Type*, 3> arg_tys; |
| |
| constexpr const char* kErrBadExpr = |
| "workgroup_size argument must be a constant or override-expression of type " |
| "abstract-integer, i32 or u32"; |
| |
| for (size_t i = 0; i < 3; i++) { |
| // Each argument to this attribute can either be a literal, an identifier for a |
| // module-scope constants, a const-expression, or nullptr if not specified. |
| auto* value = values[i]; |
| if (!value) { |
| break; |
| } |
| const auto* expr = ValueExpression(value); |
| if (!expr) { |
| return Failure{}; |
| } |
| auto* ty = expr->Type(); |
| if (!ty->IsAnyOf<core::type::I32, core::type::U32, core::type::AbstractInt>()) { |
| AddError(kErrBadExpr, value->source); |
| return Failure{}; |
| } |
| |
| if (expr->Stage() != core::EvaluationStage::kConstant && |
| expr->Stage() != core::EvaluationStage::kOverride) { |
| AddError(kErrBadExpr, value->source); |
| return Failure{}; |
| } |
| |
| args.Push(expr); |
| arg_tys.Push(ty); |
| } |
| |
| auto* common_ty = core::type::Type::Common(arg_tys); |
| if (!common_ty) { |
| AddError("workgroup_size arguments must be of the same type, either i32 or u32", |
| attr->source); |
| return Failure{}; |
| } |
| |
| // If all arguments are abstract-integers, then materialize to i32. |
| if (common_ty->Is<core::type::AbstractInt>()) { |
| common_ty = b.create<core::type::I32>(); |
| } |
| |
| for (size_t i = 0; i < args.Length(); i++) { |
| auto* materialized = Materialize(args[i], common_ty); |
| if (!materialized) { |
| return Failure{}; |
| } |
| if (auto* value = materialized->ConstantValue()) { |
| if (value->ValueAs<AInt>() < 1) { |
| AddError("workgroup_size argument must be at least 1", values[i]->source); |
| return Failure{}; |
| } |
| ws[i] = value->ValueAs<u32>(); |
| } else { |
| ws[i] = std::nullopt; |
| } |
| } |
| |
| uint64_t total_size = static_cast<uint64_t>(ws[0].value_or(1)); |
| for (size_t i = 1; i < 3; i++) { |
| total_size *= static_cast<uint64_t>(ws[i].value_or(1)); |
| if (total_size > 0xffffffff) { |
| AddError("total workgroup grid size cannot exceed 0xffffffff", values[i]->source); |
| return Failure{}; |
| } |
| } |
| |
| return ws; |
| } |
| |
| tint::Result<tint::core::BuiltinValue> Resolver::BuiltinAttribute( |
| const ast::BuiltinAttribute* attr) { |
| auto* builtin_expr = BuiltinValueExpression(attr->builtin); |
| if (!builtin_expr) { |
| return Failure{}; |
| } |
| // Apply the resolved tint::sem::BuiltinEnumExpression<tint::core::BuiltinValue> to the |
| // attribute. |
| b.Sem().Add(attr, builtin_expr); |
| return builtin_expr->Value(); |
| } |
| |
| bool Resolver::DiagnosticAttribute(const ast::DiagnosticAttribute* attr) { |
| return DiagnosticControl(attr->control); |
| } |
| |
| bool Resolver::StageAttribute(const ast::StageAttribute*) { |
| return true; |
| } |
| |
| bool Resolver::MustUseAttribute(const ast::MustUseAttribute*) { |
| return true; |
| } |
| |
| bool Resolver::InvariantAttribute(const ast::InvariantAttribute*) { |
| return true; |
| } |
| |
| bool Resolver::StrideAttribute(const ast::StrideAttribute*) { |
| return true; |
| } |
| |
| tint::Result<core::Interpolation> Resolver::InterpolateAttribute( |
| const ast::InterpolateAttribute* attr) { |
| core::Interpolation out; |
| auto* type = InterpolationType(attr->type); |
| if (!type) { |
| return Failure{}; |
| } |
| out.type = type->Value(); |
| if (attr->sampling) { |
| auto* sampling = InterpolationSampling(attr->sampling); |
| if (!sampling) { |
| return Failure{}; |
| } |
| out.sampling = sampling->Value(); |
| } |
| return out; |
| } |
| |
| bool Resolver::InternalAttribute(const ast::InternalAttribute* attr) { |
| for (auto* dep : attr->dependencies) { |
| if (!Expression(dep)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::DiagnosticControl(const ast::DiagnosticControl& control) { |
| Mark(control.rule_name); |
| Mark(control.rule_name->name); |
| auto name = control.rule_name->name->symbol.Name(); |
| |
| if (control.rule_name->category) { |
| Mark(control.rule_name->category); |
| if (control.rule_name->category->symbol.Name() == "chromium") { |
| auto rule = wgsl::ParseChromiumDiagnosticRule(name); |
| if (rule != wgsl::ChromiumDiagnosticRule::kUndefined) { |
| validator_.DiagnosticFilters().Set(rule, control.severity); |
| } else { |
| StringStream ss; |
| ss << "unrecognized diagnostic rule 'chromium." << name << "'\n"; |
| tint::SuggestAlternativeOptions opts; |
| opts.prefix = "chromium."; |
| tint::SuggestAlternatives(name, wgsl::kChromiumDiagnosticRuleStrings, ss, opts); |
| AddWarning(ss.str(), control.rule_name->source); |
| } |
| } |
| return true; |
| } |
| |
| auto rule = wgsl::ParseCoreDiagnosticRule(name); |
| if (rule != wgsl::CoreDiagnosticRule::kUndefined) { |
| validator_.DiagnosticFilters().Set(rule, control.severity); |
| } else { |
| StringStream ss; |
| ss << "unrecognized diagnostic rule '" << name << "'\n"; |
| tint::SuggestAlternatives(name, wgsl::kCoreDiagnosticRuleStrings, ss); |
| AddWarning(ss.str(), control.rule_name->source); |
| } |
| return true; |
| } |
| |
| bool Resolver::Enable(const ast::Enable* enable) { |
| for (auto* ext : enable->extensions) { |
| Mark(ext); |
| enabled_extensions_.Add(ext->name); |
| if (!allowed_features_.extensions.count(ext->name)) { |
| StringStream ss; |
| ss << "extension '" << ext->name << "' is not allowed in the current environment"; |
| AddError(ss.str(), ext->source); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::Requires(const ast::Requires* req) { |
| for (auto feature : req->features) { |
| if (!allowed_features_.features.count(feature)) { |
| StringStream ss; |
| ss << "language feature '" << wgsl::ToString(feature) |
| << "' is not allowed in the current environment"; |
| AddError(ss.str(), req->source); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| core::type::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { |
| Mark(named_type->name); |
| |
| core::type::Type* result = nullptr; |
| if (auto* alias = named_type->As<ast::Alias>()) { |
| result = Alias(alias); |
| } else if (auto* str = named_type->As<ast::Struct>()) { |
| result = Structure(str); |
| } else { |
| TINT_UNREACHABLE() << "Unhandled TypeDecl"; |
| } |
| |
| if (!result) { |
| return nullptr; |
| } |
| |
| b.Sem().Add(named_type, result); |
| return result; |
| } |
| |
| const core::type::ArrayCount* Resolver::ArrayCount(const ast::Expression* count_expr) { |
| // Evaluate the constant array count expression. |
| const auto* count_sem = Materialize(sem_.GetVal(count_expr)); |
| if (!count_sem) { |
| return nullptr; |
| } |
| |
| switch (count_sem->Stage()) { |
| case core::EvaluationStage::kNotEvaluated: |
| // Happens in expressions like: |
| // false && array<T, N>()[i] |
| // The end result will not be used, so just make N=1. |
| return b.create<core::type::ConstantArrayCount>(static_cast<uint32_t>(1)); |
| |
| case core::EvaluationStage::kOverride: { |
| // array count is an override expression. |
| // Is the count a named 'override'? |
| if (auto* user = count_sem->UnwrapMaterialize()->As<sem::VariableUser>()) { |
| if (auto* global = user->Variable()->As<sem::GlobalVariable>()) { |
| return b.create<sem::NamedOverrideArrayCount>(global); |
| } |
| } |
| return b.create<sem::UnnamedOverrideArrayCount>(count_sem); |
| } |
| |
| case core::EvaluationStage::kConstant: { |
| auto* count_val = count_sem->ConstantValue(); |
| if (auto* ty = count_val->Type(); !ty->is_integer_scalar()) { |
| AddError( |
| "array count must evaluate to a constant integer expression, but is type '" + |
| ty->FriendlyName() + "'", |
| count_expr->source); |
| return nullptr; |
| } |
| |
| int64_t count = count_val->ValueAs<AInt>(); |
| if (count < 1) { |
| AddError("array count (" + std::to_string(count) + ") must be greater than 0", |
| count_expr->source); |
| return nullptr; |
| } |
| |
| return b.create<core::type::ConstantArrayCount>(static_cast<uint32_t>(count)); |
| } |
| |
| default: { |
| AddError( |
| "array count must evaluate to a constant integer expression or override variable", |
| count_expr->source); |
| return nullptr; |
| } |
| } |
| } |
| |
| bool Resolver::ArrayAttributes(VectorRef<const ast::Attribute*> attributes, |
| const core::type::Type* el_ty, |
| uint32_t& explicit_stride) { |
| if (!validator_.NoDuplicateAttributes(attributes)) { |
| return false; |
| } |
| |
| for (auto* attribute : attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::StrideAttribute* attr) { |
| // If the element type is not plain, then el_ty->Align() may be 0, in which case we |
| // could get a DBZ in ArrayStrideAttribute(). In this case, validation will error |
| // about the invalid array element type (which is tested later), so this is just a |
| // seatbelt. |
| if (IsPlain(el_ty)) { |
| explicit_stride = attr->stride; |
| if (!validator_.ArrayStrideAttribute(attr, el_ty->Size(), el_ty->Align())) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "array types"); |
| return false; |
| }); |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| sem::Array* Resolver::Array(const Source& array_source, |
| const Source& el_source, |
| const Source& count_source, |
| const core::type::Type* el_ty, |
| const core::type::ArrayCount* el_count, |
| uint32_t explicit_stride) { |
| uint32_t el_align = el_ty->Align(); |
| uint32_t el_size = el_ty->Size(); |
| uint64_t implicit_stride = el_size ? tint::RoundUp<uint64_t>(el_align, el_size) : 0; |
| uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; |
| uint64_t size = 0; |
| |
| if (auto const_count = el_count->As<core::type::ConstantArrayCount>()) { |
| size = const_count->value * stride; |
| if (size > std::numeric_limits<uint32_t>::max()) { |
| StringStream msg; |
| msg << "array byte size (0x" << std::hex << size |
| << ") must not exceed 0xffffffff bytes"; |
| AddError(msg.str(), count_source); |
| return nullptr; |
| } |
| } else if (el_count->Is<core::type::RuntimeArrayCount>()) { |
| size = stride; |
| } |
| auto* out = |
| b.create<sem::Array>(el_ty, el_count, el_align, static_cast<uint32_t>(size), |
| static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride)); |
| |
| // Maximum nesting depth of composite types |
| // https://gpuweb.github.io/gpuweb/wgsl/#limits |
| const size_t nest_depth = 1 + NestDepth(el_ty); |
| if (nest_depth > kMaxNestDepthOfCompositeType) { |
| AddError("array has nesting depth of " + std::to_string(nest_depth) + ", maximum is " + |
| std::to_string(kMaxNestDepthOfCompositeType), |
| array_source); |
| return nullptr; |
| } |
| nest_depth_.Add(out, nest_depth); |
| |
| if (!validator_.Array(out, el_source)) { |
| return nullptr; |
| } |
| |
| return out; |
| } |
| |
| core::type::Type* Resolver::Alias(const ast::Alias* alias) { |
| auto* ty = Type(alias->type); |
| if (TINT_UNLIKELY(!ty)) { |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(!validator_.Alias(alias))) { |
| return nullptr; |
| } |
| return ty; |
| } |
| |
| sem::Struct* Resolver::Structure(const ast::Struct* str) { |
| auto struct_name = [&] { // |
| return str->name->symbol.Name(); |
| }; |
| |
| if (validator_.IsValidationEnabled(str->attributes, |
| ast::DisabledValidation::kIgnoreStructMemberLimit)) { |
| // Maximum number of members in a structure type |
| // https://gpuweb.github.io/gpuweb/wgsl/#limits |
| const size_t kMaxNumStructMembers = 16383; |
| if (str->members.Length() > kMaxNumStructMembers) { |
| AddError("struct '" + struct_name() + "' has " + std::to_string(str->members.Length()) + |
| " members, maximum is " + std::to_string(kMaxNumStructMembers), |
| str->source); |
| return nullptr; |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(str->attributes)) { |
| return nullptr; |
| } |
| |
| for (auto* attribute : str->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "struct declarations"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| Vector<const sem::StructMember*, 8> sem_members; |
| sem_members.Reserve(str->members.Length()); |
| |
| // Calculate the effective size and alignment of each field, and the overall size of the |
| // structure. For size, use the size attribute if provided, otherwise use the default size |
| // for the type. For alignment, use the alignment attribute if provided, otherwise use the |
| // default alignment for the member type. Diagnostic errors are raised if a basic rule is |
| // violated. Validation of storage-class rules requires analyzing the actual variable usage |
| // of the structure, and so is performed as part of the variable validation. |
| uint64_t struct_size = 0; |
| uint64_t struct_align = 1; |
| Hashmap<Symbol, const ast::StructMember*, 8> member_map; |
| |
| size_t members_nest_depth = 0; |
| for (auto* member : str->members) { |
| Mark(member); |
| Mark(member->name); |
| if (auto added = member_map.Add(member->name->symbol, member); !added) { |
| AddError("redefinition of '" + member->name->symbol.Name() + "'", member->source); |
| AddNote("previous definition is here", added.value->source); |
| return nullptr; |
| } |
| |
| // Resolve member type |
| auto type = Type(member->type); |
| if (!type) { |
| return nullptr; |
| } |
| |
| members_nest_depth = std::max(members_nest_depth, NestDepth(type)); |
| |
| // validator_.Validate member type |
| if (!validator_.IsPlain(type)) { |
| AddError(sem_.TypeNameOf(type) + " cannot be used as the type of a structure member", |
| member->source); |
| return nullptr; |
| } |
| |
| uint64_t offset = struct_size; |
| uint64_t align = type->Align(); |
| uint64_t size = type->Size(); |
| |
| if (!validator_.NoDuplicateAttributes(member->attributes)) { |
| return nullptr; |
| } |
| |
| bool has_offset_attr = false; |
| bool has_align_attr = false; |
| bool has_size_attr = false; |
| core::type::StructMemberAttributes attributes; |
| for (auto* attribute : member->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::StructMemberOffsetAttribute* attr) { |
| // Offset attributes are not part of the WGSL spec, but are emitted by the |
| // SPIR-V reader. |
| |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, |
| "@offset value"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return false; |
| } |
| auto const_value = materialized->ConstantValue(); |
| if (!const_value) { |
| AddError("@offset must be constant expression", attr->expr->source); |
| return false; |
| } |
| offset = const_value->ValueAs<uint64_t>(); |
| |
| if (offset < struct_size) { |
| AddError("offsets must be in ascending order", attr->source); |
| return false; |
| } |
| has_offset_attr = true; |
| return true; |
| }, |
| [&](const ast::StructMemberAlignAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@align"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::I32, core::type::U32>()) { |
| AddError("@align must be an i32 or u32 value", attr->source); |
| return false; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| if (!const_value) { |
| AddError("@align must be constant expression", attr->source); |
| return false; |
| } |
| auto value = const_value->ValueAs<AInt>(); |
| |
| if (value <= 0 || !tint::IsPowerOfTwo(value)) { |
| AddError("@align value must be a positive, power-of-two integer", |
| attr->source); |
| return false; |
| } |
| align = u32(value); |
| has_align_attr = true; |
| return true; |
| }, |
| [&](const ast::StructMemberSizeAttribute* attr) { |
| ExprEvalStageConstraint constraint{core::EvaluationStage::kConstant, "@size"}; |
| TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); |
| |
| auto* materialized = Materialize(ValueExpression(attr->expr)); |
| if (!materialized) { |
| return false; |
| } |
| if (!materialized->Type()->IsAnyOf<core::type::U32, core::type::I32>()) { |
| AddError("@size must be an i32 or u32 value", attr->source); |
| return false; |
| } |
| |
| auto const_value = materialized->ConstantValue(); |
| if (!const_value) { |
| AddError("@size must be constant expression", attr->expr->source); |
| return false; |
| } |
| { |
| auto value = const_value->ValueAs<AInt>(); |
| if (value <= 0) { |
| AddError("@size must be a positive integer", attr->source); |
| return false; |
| } |
| } |
| auto value = const_value->ValueAs<uint64_t>(); |
| if (value < size) { |
| AddError("@size must be at least as big as the type's size (" + |
| std::to_string(size) + ")", |
| attr->source); |
| return false; |
| } |
| size = u32(value); |
| has_size_attr = true; |
| return true; |
| }, |
| [&](const ast::LocationAttribute* attr) { |
| auto value = LocationAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| attributes.location = value.Get(); |
| return true; |
| }, |
| [&](const ast::BlendSrcAttribute* attr) { |
| auto value = BlendSrcAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| attributes.blend_src = value.Get(); |
| return true; |
| }, |
| [&](const ast::ColorAttribute* attr) { |
| auto value = ColorAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| attributes.color = value.Get(); |
| return true; |
| }, |
| [&](const ast::BuiltinAttribute* attr) { |
| auto value = BuiltinAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| attributes.builtin = value.Get(); |
| return true; |
| }, |
| [&](const ast::InterpolateAttribute* attr) { |
| auto value = InterpolateAttribute(attr); |
| if (value != Success) { |
| return false; |
| } |
| attributes.interpolation = value.Get(); |
| return true; |
| }, |
| [&](const ast::InvariantAttribute* attr) { |
| if (!InvariantAttribute(attr)) { |
| return false; |
| } |
| attributes.invariant = true; |
| return true; |
| }, |
| [&](const ast::StrideAttribute* attr) { |
| if (validator_.IsValidationEnabled( |
| member->attributes, ast::DisabledValidation::kIgnoreStrideAttribute)) { |
| ErrorInvalidAttribute(attribute, "struct members"); |
| return false; |
| } |
| return StrideAttribute(attr); |
| }, |
| [&](const ast::InternalAttribute* attr) { return InternalAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "struct members"); |
| return false; |
| }); |
| if (!ok) { |
| return nullptr; |
| } |
| } |
| |
| if (has_offset_attr && (has_align_attr || has_size_attr)) { |
| AddError("@offset cannot be used with @align or @size", member->source); |
| return nullptr; |
| } |
| |
| offset = tint::RoundUp(align, offset); |
| if (offset > std::numeric_limits<uint32_t>::max()) { |
| StringStream msg; |
| msg << "struct member offset (0x" << std::hex << offset << ") must not exceed 0x" |
| << std::hex << std::numeric_limits<uint32_t>::max() << " bytes"; |
| AddError(msg.str(), member->source); |
| return nullptr; |
| } |
| |
| auto* sem_member = b.create<sem::StructMember>( |
| member, member->name->symbol, type, static_cast<uint32_t>(sem_members.Length()), |
| static_cast<uint32_t>(offset), static_cast<uint32_t>(align), |
| static_cast<uint32_t>(size), attributes); |
| b.Sem().Add(member, sem_member); |
| sem_members.Push(sem_member); |
| |
| struct_size = offset + size; |
| struct_align = std::max(struct_align, align); |
| } |
| |
| uint64_t size_no_padding = struct_size; |
| struct_size = tint::RoundUp(struct_align, struct_size); |
| |
| if (struct_size > std::numeric_limits<uint32_t>::max()) { |
| StringStream msg; |
| msg << "struct size (0x" << std::hex << struct_size << ") must not exceed 0xffffffff bytes"; |
| AddError(msg.str(), str->source); |
| return nullptr; |
| } |
| if (TINT_UNLIKELY(struct_align > std::numeric_limits<uint32_t>::max())) { |
| AddICE("calculated struct stride exceeds uint32", str->source); |
| return nullptr; |
| } |
| |
| auto* out = b.create<sem::Struct>( |
| str, str->name->symbol, std::move(sem_members), static_cast<uint32_t>(struct_align), |
| static_cast<uint32_t>(struct_size), static_cast<uint32_t>(size_no_padding)); |
| |
| for (size_t i = 0; i < sem_members.Length(); i++) { |
| auto* mem_type = sem_members[i]->Type(); |
| if (mem_type->Is<core::type::Atomic>()) { |
| atomic_composite_info_.Add(out, &sem_members[i]->Declaration()->source); |
| break; |
| } else { |
| if (auto found = atomic_composite_info_.Get(mem_type)) { |
| atomic_composite_info_.Add(out, *found); |
| break; |
| } |
| } |
| |
| const_cast<sem::StructMember*>(sem_members[i])->SetStruct(out); |
| } |
| |
| auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() |
| : ast::PipelineStage::kNone; |
| if (!validator_.Structure(out, stage)) { |
| return nullptr; |
| } |
| |
| // Maximum nesting depth of composite types |
| // https://gpuweb.github.io/gpuweb/wgsl/#limits |
| const size_t nest_depth = 1 + members_nest_depth; |
| if (nest_depth > kMaxNestDepthOfCompositeType) { |
| AddError("struct '" + struct_name() + "' has nesting depth of " + |
| std::to_string(nest_depth) + ", maximum is " + |
| std::to_string(kMaxNestDepthOfCompositeType), |
| str->source); |
| return nullptr; |
| } |
| nest_depth_.Add(out, nest_depth); |
| |
| return out; |
| } |
| |
| sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = current_statement_->Behaviors(); |
| behaviors = sem::Behavior::kReturn; |
| |
| const core::type::Type* value_ty = nullptr; |
| if (auto* value = stmt->value) { |
| const auto* expr = Load(ValueExpression(value)); |
| if (!expr) { |
| return false; |
| } |
| if (auto* ret_ty = current_function_->ReturnType(); !ret_ty->Is<core::type::Void>()) { |
| expr = Materialize(expr, ret_ty); |
| if (!expr) { |
| return false; |
| } |
| } |
| behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); |
| |
| value_ty = expr->Type(); |
| } else { |
| value_ty = b.create<core::type::Void>(); |
| } |
| |
| // Validate after processing the return value expression so that its type |
| // is available for validation. |
| return validator_.Return(stmt, current_function_->ReturnType(), value_ty, |
| current_statement_); |
| }); |
| } |
| |
| sem::SwitchStatement* Resolver::SwitchStatement(const ast::SwitchStatement* stmt) { |
| auto* sem = |
| b.create<sem::SwitchStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| const auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| behaviors = cond->Behaviors() - sem::Behavior::kNext; |
| |
| auto* cond_ty = cond->Type(); |
| |
| // Determine the common type across all selectors and the switch expression |
| // This must materialize to an integer scalar (non-abstract). |
| Vector<const core::type::Type*, 8> types; |
| types.Push(cond_ty); |
| for (auto* case_stmt : stmt->body) { |
| for (auto* sel : case_stmt->selectors) { |
| if (sel->IsDefault()) { |
| continue; |
| } |
| auto* sem_expr = ValueExpression(sel->expr); |
| if (!sem_expr) { |
| return false; |
| } |
| types.Push(sem_expr->Type()->UnwrapRef()); |
| } |
| } |
| auto* common_ty = core::type::Type::Common(types); |
| if (!common_ty || !common_ty->is_integer_scalar()) { |
| // No common type found or the common type was abstract. |
| // Pick i32 and let validation deal with any mismatches. |
| common_ty = b.create<core::type::I32>(); |
| } |
| cond = Materialize(cond, common_ty); |
| if (!cond) { |
| return false; |
| } |
| |
| // Handle switch body attributes. |
| for (auto* attribute : stmt->body_attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, |
| [&](const ast::DiagnosticAttribute* attr) { return DiagnosticAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, "switch body"); |
| return false; |
| }); |
| if (!ok) { |
| return false; |
| } |
| } |
| if (!validator_.NoDuplicateAttributes(stmt->body_attributes)) { |
| return false; |
| } |
| |
| Vector<sem::CaseStatement*, 4> cases; |
| cases.Reserve(stmt->body.Length()); |
| for (auto* case_stmt : stmt->body) { |
| Mark(case_stmt); |
| auto* c = CaseStatement(case_stmt, common_ty); |
| if (!c) { |
| return false; |
| } |
| cases.Push(c); |
| behaviors.Add(c->Behaviors()); |
| sem->Cases().emplace_back(c); |
| |
| ApplyDiagnosticSeverities(c); |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { |
| behaviors.Add(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak); |
| |
| return validator_.SwitchStatement(stmt); |
| }); |
| } |
| |
| sem::Statement* Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->variable); |
| |
| auto* variable = Variable(stmt->variable, /* is_global */ false); |
| if (!variable) { |
| return false; |
| } |
| |
| current_compound_statement_->AddDecl(variable->As<sem::LocalVariable>()); |
| |
| if (auto* ctor = variable->Initializer()) { |
| sem->Behaviors() = ctor->Behaviors(); |
| } |
| |
| return validator_.LocalVariable(variable); |
| }); |
| } |
| |
| sem::Statement* Resolver::AssignmentStatement(const ast::AssignmentStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* lhs = ValueExpression(stmt->lhs); |
| if (!lhs) { |
| return false; |
| } |
| |
| const bool is_phony_assignment = stmt->lhs->Is<ast::PhonyExpression>(); |
| |
| const auto* rhs = ValueExpression(stmt->rhs); |
| if (!rhs) { |
| return false; |
| } |
| |
| if (!is_phony_assignment) { |
| rhs = Materialize(rhs, lhs->Type()->UnwrapRef()); |
| if (!rhs) { |
| return false; |
| } |
| } |
| |
| rhs = Load(rhs); |
| if (!rhs) { |
| return false; |
| } |
| |
| auto& behaviors = sem->Behaviors(); |
| behaviors = rhs->Behaviors(); |
| if (!is_phony_assignment) { |
| behaviors.Add(lhs->Behaviors()); |
| } |
| |
| if (!is_phony_assignment) { |
| RegisterStore(lhs); |
| } |
| |
| return validator_.Assignment(stmt, sem_.TypeOf(stmt->rhs)); |
| }); |
| } |
| |
| sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kBreak; |
| |
| return validator_.BreakStatement(sem, current_statement_); |
| }); |
| } |
| |
| sem::Statement* Resolver::BreakIfStatement(const ast::BreakIfStatement* stmt) { |
| auto* sem = |
| b.create<sem::BreakIfStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* cond = Load(ValueExpression(stmt->condition)); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| sem->Behaviors() = cond->Behaviors(); |
| sem->Behaviors().Add(sem::Behavior::kBreak); |
| |
| return validator_.BreakIfStatement(sem, current_statement_); |
| }); |
| } |
| |
| sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| if (auto* expr = ValueExpression(stmt->expr)) { |
| sem->Behaviors() = expr->Behaviors(); |
| return true; |
| } |
| return false; |
| }); |
| } |
| |
| sem::Statement* Resolver::CompoundAssignmentStatement( |
| const ast::CompoundAssignmentStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* lhs = ValueExpression(stmt->lhs); |
| if (!lhs) { |
| return false; |
| } |
| |
| const auto* rhs = ValueExpression(stmt->rhs); |
| if (!rhs) { |
| return false; |
| } |
| |
| RegisterStore(lhs); |
| |
| sem->Behaviors() = rhs->Behaviors() + lhs->Behaviors(); |
| |
| auto stage = core::EarliestStage(lhs->Stage(), rhs->Stage()); |
| |
| auto overload = intrinsic_table_.Lookup(stmt->op, lhs->Type()->UnwrapRef(), |
| rhs->Type()->UnwrapRef(), stage, true); |
| if (overload != Success) { |
| AddError(overload.Failure(), stmt->source); |
| return false; |
| } |
| |
| // Load or materialize the RHS if necessary. |
| rhs = Load(Materialize(rhs, overload->parameters[1].type)); |
| if (!rhs) { |
| return false; |
| } |
| |
| return validator_.Assignment(stmt, overload->return_type); |
| }); |
| } |
| |
| sem::Statement* Resolver::ContinueStatement(const ast::ContinueStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kContinue; |
| |
| // Set if we've hit the first continue statement in our parent loop |
| if (auto* block = sem->FindFirstParent<sem::LoopBlockStatement>()) { |
| if (!block->FirstContinue()) { |
| const_cast<sem::LoopBlockStatement*>(block)->SetFirstContinue( |
| stmt, block->Decls().Count()); |
| } |
| } |
| |
| return validator_.ContinueStatement(sem, current_statement_); |
| }); |
| } |
| |
| sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| current_function_->SetDiscardStatement(sem); |
| return true; |
| }); |
| } |
| |
| sem::Statement* Resolver::IncrementDecrementStatement( |
| const ast::IncrementDecrementStatement* stmt) { |
| auto* sem = b.create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* lhs = ValueExpression(stmt->lhs); |
| if (!lhs) { |
| return false; |
| } |
| sem->Behaviors() = lhs->Behaviors(); |
| |
| RegisterStore(lhs); |
| |
| return validator_.IncrementDecrementStatement(stmt); |
| }); |
| } |
| |
| bool Resolver::ApplyAddressSpaceUsageToType(core::AddressSpace address_space, |
| core::type::Type* ty, |
| const Source& usage) { |
| ty = const_cast<core::type::Type*>(ty->UnwrapRef()); |
| |
| if (auto* str = ty->As<sem::Struct>()) { |
| if (str->AddressSpaceUsage().Contains(address_space)) { |
| return true; // Already applied |
| } |
| |
| str->AddUsage(address_space); |
| |
| for (auto* member : str->Members()) { |
| auto decl = member->Declaration(); |
| if (decl && !ApplyAddressSpaceUsageToType(address_space, |
| const_cast<core::type::Type*>(member->Type()), |
| decl->type->source)) { |
| StringStream err; |
| err << "while analyzing structure member " << sem_.TypeNameOf(str) << "." |
| << member->Name().Name(); |
| AddNote(err.str(), member->Declaration()->source); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (auto* arr = ty->As<sem::Array>()) { |
| if (address_space != core::AddressSpace::kStorage) { |
| if (arr->Count()->Is<core::type::RuntimeArrayCount>()) { |
| AddError("runtime-sized arrays can only be used in the <storage> address space", |
| usage); |
| return false; |
| } |
| |
| auto count = arr->ConstantCount(); |
| if (count.has_value() && count.value() >= kMaxArrayElementCount) { |
| AddError("array count (" + std::to_string(count.value()) + ") must be less than " + |
| std::to_string(kMaxArrayElementCount), |
| usage); |
| return false; |
| } |
| } |
| return ApplyAddressSpaceUsageToType(address_space, |
| const_cast<core::type::Type*>(arr->ElemType()), usage); |
| } |
| |
| if (core::IsHostShareable(address_space) && !validator_.IsHostShareable(ty)) { |
| StringStream err; |
| err << "Type '" << sem_.TypeNameOf(ty) << "' cannot be used in address space '" |
| << address_space << "' as it is non-host-shareable"; |
| AddError(err.str(), usage); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <typename SEM, typename F> |
| SEM* Resolver::StatementScope(const ast::Statement* ast, SEM* sem, F&& callback) { |
| b.Sem().Add(ast, sem); |
| |
| auto* as_compound = |
| As<sem::CompoundStatement, tint::CastFlags::kDontErrorOnImpossibleCast>(sem); |
| |
| // Helper to handle attributes that are supported on certain types of statement. |
| auto handle_attributes = [&](auto* stmt, sem::Statement* sem_stmt, const char* use) { |
| for (auto* attribute : stmt->attributes) { |
| Mark(attribute); |
| bool ok = Switch( |
| attribute, // |
| [&](const ast::DiagnosticAttribute* attr) { return DiagnosticAttribute(attr); }, |
| [&](Default) { |
| ErrorInvalidAttribute(attribute, use); |
| return false; |
| }); |
| if (!ok) { |
| return false; |
| } |
| } |
| if (!validator_.NoDuplicateAttributes(stmt->attributes)) { |
| return false; |
| } |
| ApplyDiagnosticSeverities(sem_stmt); |
| return true; |
| }; |
| |
| // Handle attributes, if necessary. |
| // Some statements can take diagnostic filtering attributes, so push a new diagnostic filter |
| // scope to capture them. |
| validator_.DiagnosticFilters().Push(); |
| TINT_DEFER(validator_.DiagnosticFilters().Pop()); |
| if (!Switch( |
| ast, // |
| [&](const ast::BlockStatement* block) { |
| return handle_attributes(block, sem, "block statements"); |
| }, |
| [&](const ast::ForLoopStatement* f) { |
| return handle_attributes(f, sem, "for statements"); |
| }, |
| [&](const ast::IfStatement* i) { return handle_attributes(i, sem, "if statements"); }, |
| [&](const ast::LoopStatement* l) { |
| return handle_attributes(l, sem, "loop statements"); |
| }, |
| [&](const ast::SwitchStatement* s) { |
| return handle_attributes(s, sem, "switch statements"); |
| }, |
| [&](const ast::WhileStatement* w) { |
| return handle_attributes(w, sem, "while statements"); |
| }, |
| [&](Default) { return true; })) { |
| return nullptr; |
| } |
| |
| TINT_SCOPED_ASSIGNMENT(current_statement_, sem); |
| TINT_SCOPED_ASSIGNMENT(current_compound_statement_, |
| as_compound ? as_compound : current_compound_statement_); |
| TINT_SCOPED_ASSIGNMENT(current_scoping_depth_, current_scoping_depth_ + 1); |
| |
| if (current_scoping_depth_ > kMaxStatementDepth) { |
| AddError("statement nesting depth / chaining length exceeds limit of " + |
| std::to_string(kMaxStatementDepth), |
| ast->source); |
| return nullptr; |
| } |
| |
| if (!callback()) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| bool Resolver::Mark(const ast::Node* node) { |
| if (TINT_UNLIKELY(node == nullptr)) { |
| AddICE("Resolver::Mark() called with nullptr", {}); |
| return false; |
| } |
| auto marked_bit_ref = marked_[node->node_id.value]; |
| if (TINT_LIKELY(!marked_bit_ref)) { |
| marked_bit_ref = true; |
| return true; |
| } |
| StringStream err; |
| err << "AST node '" << node->TypeInfo().name |
| << "' was encountered twice in the same AST of a Program\n" |
| << "Pointer: " << node; |
| AddICE(err.str(), node->source); |
| return false; |
| } |
| |
| template <typename NODE> |
| void Resolver::ApplyDiagnosticSeverities(NODE* node) { |
| for (auto itr : validator_.DiagnosticFilters().Top()) { |
| node->SetDiagnosticSeverity(itr.key, itr.value); |
| } |
| } |
| |
| bool Resolver::CheckNotTemplated(const char* use, const ast::Identifier* ident) { |
| if (TINT_UNLIKELY(ident->Is<ast::TemplatedIdentifier>())) { |
| AddError( |
| std::string(use) + " '" + ident->symbol.Name() + "' does not take template arguments", |
| ident->source); |
| if (auto resolved = dependencies_.resolved_identifiers.Get(ident)) { |
| if (auto* ast_node = resolved->Node()) { |
| sem_.NoteDeclarationSource(ast_node); |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| void Resolver::ErrorInvalidAttribute(const ast::Attribute* attr, std::string_view use) { |
| AddError("@" + attr->Name() + " is not valid for " + std::string(use), attr->source); |
| } |
| |
| void Resolver::AddICE(const std::string& msg, const Source& source) const { |
| if (source.file) { |
| TINT_ICE() << source << ": " << msg; |
| } else { |
| TINT_ICE() << msg; |
| } |
| diag::Diagnostic err{}; |
| err.severity = diag::Severity::InternalCompilerError; |
| err.system = diag::System::Resolver; |
| err.source = source; |
| err.message = msg; |
| diagnostics_.add(std::move(err)); |
| } |
| |
| void Resolver::AddError(const std::string& msg, const Source& source) const { |
| diagnostics_.add_error(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddWarning(const std::string& msg, const Source& source) const { |
| diagnostics_.add_warning(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddNote(const std::string& msg, const Source& source) const { |
| diagnostics_.add_note(diag::System::Resolver, msg, source); |
| } |
| |
| } // namespace tint::resolver |