blob: e43a5305fa7e35a125e4dc9d3e09548f1c3d1da1 [file] [log] [blame]
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include "common/Math.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/TestUtils.h"
#include "utils/WGPUHelpers.h"
#define EXPECT_LAZY_CLEAR(N, statement) \
do { \
if (UsesWire()) { \
statement; \
} else { \
size_t lazyClearsBefore = dawn_native::GetLazyClearCountForTesting(device.Get()); \
statement; \
size_t lazyClearsAfter = dawn_native::GetLazyClearCountForTesting(device.Get()); \
EXPECT_EQ(N, lazyClearsAfter - lazyClearsBefore); \
} \
} while (0)
class TextureZeroInitTest : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
}
wgpu::TextureDescriptor CreateTextureDescriptor(uint32_t mipLevelCount,
uint32_t arrayLayerCount,
wgpu::TextureUsage usage,
wgpu::TextureFormat format) {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = kSize;
descriptor.size.height = kSize;
descriptor.size.depthOrArrayLayers = arrayLayerCount;
descriptor.sampleCount = 1;
descriptor.format = format;
descriptor.mipLevelCount = mipLevelCount;
descriptor.usage = usage;
return descriptor;
}
wgpu::TextureViewDescriptor CreateTextureViewDescriptor(
uint32_t baseMipLevel,
uint32_t baseArrayLayer,
wgpu::TextureFormat format = kColorFormat) {
wgpu::TextureViewDescriptor descriptor;
descriptor.format = format;
descriptor.baseArrayLayer = baseArrayLayer;
descriptor.arrayLayerCount = 1;
descriptor.baseMipLevel = baseMipLevel;
descriptor.mipLevelCount = 1;
descriptor.dimension = wgpu::TextureViewDimension::e2D;
return descriptor;
}
wgpu::RenderPipeline CreatePipelineForTest(float depth = 0.f) {
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest(depth);
const char* fs = R"(
;
[[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
}
)";
pipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, fs);
wgpu::DepthStencilState* depthStencil = pipelineDescriptor.EnableDepthStencil();
depthStencil->depthCompare = wgpu::CompareFunction::Equal;
depthStencil->stencilFront.compare = wgpu::CompareFunction::Equal;
return device.CreateRenderPipeline(&pipelineDescriptor);
}
wgpu::ShaderModule CreateBasicVertexShaderForTest(float depth = 0.f) {
std::string source = R"(
[[stage(vertex)]]
fn main([[builtin(vertex_index)]] VertexIndex : u32) -> [[builtin(position)]] vec4<f32> {
var pos = array<vec2<f32>, 6>(
vec2<f32>(-1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0)
);
return vec4<f32>(pos[VertexIndex], )" +
std::to_string(depth) + R"(, 1.0);
})";
return utils::CreateShaderModule(device, source.c_str());
}
wgpu::ShaderModule CreateSampledTextureFragmentShaderForTest() {
return utils::CreateShaderModule(device, R"(
[[group(0), binding(0)]] var texture0 : texture_2d<f32>;
struct FragmentOut {
[[location(0)]] color : vec4<f32>;
};
[[stage(fragment)]]
fn main([[builtin(position)]] FragCoord : vec4<f32>) -> FragmentOut {
var output : FragmentOut;
output.color = textureLoad(texture0, vec2<i32>(FragCoord.xy), 0);
return output;
}
)");
}
constexpr static uint32_t kSize = 128;
constexpr static uint32_t kUnalignedSize = 127;
// All texture formats used (RGBA8Unorm, Depth24PlusStencil8, and RGBA8Snorm, BC formats)
// have the same block byte size of 4.
constexpr static uint32_t kFormatBlockByteSize = 4;
constexpr static wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr static wgpu::TextureFormat kDepthStencilFormat =
wgpu::TextureFormat::Depth24PlusStencil8;
constexpr static wgpu::TextureFormat kNonrenderableColorFormat =
wgpu::TextureFormat::RGBA8Snorm;
};
// This tests that the code path of CopyTextureToBuffer clears correctly to Zero after first usage
TEST_P(TextureZeroInitTest, CopyTextureToBufferSource) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
// Texture's first usage is in EXPECT_PIXEL_RGBA8_EQ's call to CopyTextureToBuffer
RGBA8 filledWithZeros(0, 0, 0, 0);
EXPECT_LAZY_CLEAR(1u, EXPECT_PIXEL_RGBA8_EQ(filledWithZeros, texture, 0, 0));
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// This tests that the code path of CopyTextureToBuffer with multiple texture array layers clears
// correctly to Zero after first usage
TEST_P(TextureZeroInitTest, CopyMultipleTextureArrayLayersToBufferSource) {
constexpr uint32_t kArrayLayers = 6u;
const wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, kArrayLayers, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
const uint32_t bytesPerRow = utils::GetMinimumBytesPerRow(kColorFormat, kSize);
const uint32_t rowsPerImage = kSize;
wgpu::BufferDescriptor bufferDescriptor;
bufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
bufferDescriptor.size = utils::RequiredBytesInCopy(bytesPerRow, rowsPerImage,
{kSize, kSize, kArrayLayers}, kColorFormat);
wgpu::Buffer buffer = device.CreateBuffer(&bufferDescriptor);
const wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(buffer, 0, bytesPerRow, kSize);
const wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
const wgpu::Extent3D copySize = {kSize, kSize, kArrayLayers};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &copySize);
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect texture to be lazy initialized.
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commandBuffer));
// Expect texture subresource initialized to be true
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, kArrayLayers));
const std::vector<RGBA8> kExpectedAllZero(kSize * kSize, {0, 0, 0, 0});
for (uint32_t layer = 0; layer < kArrayLayers; ++layer) {
EXPECT_TEXTURE_EQ(kExpectedAllZero.data(), texture, {0, 0, layer}, {kSize, kSize});
}
}
// Test that non-zero mip level clears subresource to Zero after first use
// This goes through the BeginRenderPass's code path
TEST_P(TextureZeroInitTest, RenderingMipMapClearsToZero) {
uint32_t baseMipLevel = 2;
uint32_t levelCount = 4;
uint32_t baseArrayLayer = 0;
uint32_t layerCount = 1;
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
levelCount, layerCount, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::TextureViewDescriptor viewDescriptor =
CreateTextureViewDescriptor(baseMipLevel, baseArrayLayer);
wgpu::TextureView view = texture.CreateView(&viewDescriptor);
utils::BasicRenderPass renderPass = utils::BasicRenderPass(kSize, kSize, texture, kColorFormat);
// Specify loadOp Load. Clear should be used to zero-initialize.
renderPass.renderPassInfo.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
// Specify non-zero clear color. It should still be cleared to zero.
renderPass.renderPassInfo.cColorAttachments[0].clearColor = {0.5f, 0.5f, 0.5f, 0.5f};
renderPass.renderPassInfo.cColorAttachments[0].view = view;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
// Texture's first usage is in BeginRenderPass's call to RecordRenderPass
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
uint32_t mipSize = kSize >> 2;
std::vector<RGBA8> expected(mipSize * mipSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expected.data(), renderPass.color, {0, 0, baseArrayLayer}, {mipSize, mipSize},
baseMipLevel);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
renderPass.color.Get(), baseMipLevel, 1, baseArrayLayer, 1));
}
// Test that non-zero array layers clears subresource to Zero after first use.
// This goes through the BeginRenderPass's code path
TEST_P(TextureZeroInitTest, RenderingArrayLayerClearsToZero) {
uint32_t baseMipLevel = 0;
uint32_t levelCount = 1;
uint32_t baseArrayLayer = 2;
uint32_t layerCount = 4;
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
levelCount, layerCount, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::TextureViewDescriptor viewDescriptor =
CreateTextureViewDescriptor(baseMipLevel, baseArrayLayer);
wgpu::TextureView view = texture.CreateView(&viewDescriptor);
utils::BasicRenderPass renderPass = utils::BasicRenderPass(kSize, kSize, texture, kColorFormat);
// Specify loadOp Load. Clear should be used to zero-initialize.
renderPass.renderPassInfo.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
// Specify non-zero clear color. It should still be cleared to zero.
renderPass.renderPassInfo.cColorAttachments[0].clearColor = {0.5f, 0.5f, 0.5f, 0.5f};
renderPass.renderPassInfo.cColorAttachments[0].view = view;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
std::vector<RGBA8> expected(kSize * kSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expected.data(), renderPass.color, {0, 0, baseArrayLayer}, {kSize, kSize},
baseMipLevel);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
renderPass.color.Get(), baseMipLevel, 1, baseArrayLayer, 1));
}
// This tests CopyBufferToTexture fully overwrites copy so lazy init is not needed.
TEST_P(TextureZeroInitTest, CopyBufferToTexture) {
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(4, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize, 100);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * sizeof(uint32_t));
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
std::vector<RGBA8> expected(kSize * kSize, {100, 100, 100, 100});
EXPECT_TEXTURE_EQ(expected.data(), texture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// Test for a copy only to a subset of the subresource, lazy init is necessary to clear the other
// half.
TEST_P(TextureZeroInitTest, CopyBufferToTextureHalf) {
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(4, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize, 100);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * sizeof(uint16_t));
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize / 2, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<RGBA8> expected100((kSize / 2) * kSize, {100, 100, 100, 100});
std::vector<RGBA8> expectedZeros((kSize / 2) * kSize, {0, 0, 0, 0});
// first half filled with 100, by the buffer data
EXPECT_TEXTURE_EQ(expected100.data(), texture, {0, 0}, {kSize / 2, kSize});
// second half should be cleared
EXPECT_TEXTURE_EQ(expectedZeros.data(), texture, {kSize / 2, 0}, {kSize / 2, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// This tests CopyBufferToTexture fully overwrites a range of subresources, so lazy initialization
// is needed for neither the subresources involved in the copy nor the other subresources.
TEST_P(TextureZeroInitTest, CopyBufferToTextureMultipleArrayLayers) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 6, wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
constexpr uint32_t kBaseArrayLayer = 2u;
constexpr uint32_t kCopyLayerCount = 3u;
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize * kCopyLayerCount, 100);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
const wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * kFormatBlockByteSize, kSize);
const wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, kBaseArrayLayer});
const wgpu::Extent3D copySize = {kSize, kSize, kCopyLayerCount};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
// The copy overwrites the whole subresources so we don't need to do lazy initialization on
// them.
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
// Expect texture subresource initialized to be true
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, kBaseArrayLayer,
kCopyLayerCount));
const std::vector<RGBA8> expected100(kSize * kSize, {100, 100, 100, 100});
for (uint32_t layer = kBaseArrayLayer; layer < kBaseArrayLayer + kCopyLayerCount; ++layer) {
EXPECT_TEXTURE_EQ(expected100.data(), texture, {0, 0, layer}, {kSize, kSize});
}
}
// This tests CopyTextureToTexture fully overwrites copy so lazy init is not needed.
TEST_P(TextureZeroInitTest, CopyTextureToTexture) {
wgpu::TextureDescriptor srcDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
wgpu::ImageCopyTexture srcImageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, 0, {0, 0, 0});
wgpu::TextureDescriptor dstDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture dstTexture = device.CreateTexture(&dstDescriptor);
wgpu::ImageCopyTexture dstImageCopyTexture =
utils::CreateImageCopyTexture(dstTexture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToTexture(&srcImageCopyTexture, &dstImageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<RGBA8> expected(kSize * kSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expected.data(), srcTexture, {0, 0}, {kSize, kSize});
EXPECT_TEXTURE_EQ(expected.data(), dstTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(srcTexture.Get(), 0, 1, 0, 1));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(dstTexture.Get(), 0, 1, 0, 1));
}
// This Tests the CopyTextureToTexture's copy only to a subset of the subresource, lazy init is
// necessary to clear the other half.
TEST_P(TextureZeroInitTest, CopyTextureToTextureHalf) {
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst,
kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
// fill srcTexture with 100
{
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize, 100);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * kFormatBlockByteSize);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
}
wgpu::ImageCopyTexture srcImageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, 0, {0, 0, 0});
wgpu::TextureDescriptor dstDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture dstTexture = device.CreateTexture(&dstDescriptor);
wgpu::ImageCopyTexture dstImageCopyTexture =
utils::CreateImageCopyTexture(dstTexture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize / 2, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToTexture(&srcImageCopyTexture, &dstImageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<RGBA8> expectedWithZeros((kSize / 2) * kSize, {0, 0, 0, 0});
std::vector<RGBA8> expectedWith100(kSize * kSize, {100, 100, 100, 100});
EXPECT_TEXTURE_EQ(expectedWith100.data(), srcTexture, {0, 0}, {kSize, kSize});
EXPECT_TEXTURE_EQ(expectedWith100.data(), dstTexture, {0, 0}, {kSize / 2, kSize});
EXPECT_TEXTURE_EQ(expectedWithZeros.data(), dstTexture, {kSize / 2, 0}, {kSize / 2, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(srcTexture.Get(), 0, 1, 0, 1));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(dstTexture.Get(), 0, 1, 0, 1));
}
// This tests the texture with depth attachment and load op load will init depth stencil texture to
// 0s.
TEST_P(TextureZeroInitTest, RenderingLoadingDepth) {
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
wgpu::TextureDescriptor depthStencilDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({srcTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
// Set clearDepth to non-zero. It should still be cleared to 0 by the loadOp.
renderPassDescriptor.cDepthStencilAttachmentInfo.clearDepth = 0.5f;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cDepthStencilAttachmentInfo.clearStencil = 0;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Store;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Store;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect 0 lazy clears, depth stencil texture will clear using loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because depth test passed.
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), srcTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(srcTexture.Get(), 0, 1, 0, 1));
}
// This tests the texture with stencil attachment and load op load will init depth stencil texture
// to 0s.
TEST_P(TextureZeroInitTest, RenderingLoadingStencil) {
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
wgpu::TextureDescriptor depthStencilDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({srcTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cDepthStencilAttachmentInfo.clearDepth = 0.0f;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
// Set clearStencil to non-zero. It should still be cleared to 0 by the loadOp.
renderPassDescriptor.cDepthStencilAttachmentInfo.clearStencil = 2;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Store;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Store;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect 0 lazy clears, depth stencil texture will clear using loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because stencil test passed.
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), srcTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(srcTexture.Get(), 0, 1, 0, 1));
}
// This tests the texture with depth stencil attachment and load op load will init depth stencil
// texture to 0s.
TEST_P(TextureZeroInitTest, RenderingLoadingDepthStencil) {
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
wgpu::TextureDescriptor depthStencilDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({srcTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Store;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Store;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect 0 lazy clears, depth stencil texture will clear using loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because both depth and stencil tests passed.
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), srcTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(srcTexture.Get(), 0, 1, 0, 1));
}
// Test that clear state is tracked independently for depth/stencil textures.
TEST_P(TextureZeroInitTest, IndependentDepthStencilLoadAfterDiscard) {
// TODO(crbug.com/dawn/704): Readback after clear via stencil copy does not work
// on some Intel drivers.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel());
wgpu::TextureDescriptor depthStencilDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
// Uninitialize only depth
{
// Clear the stencil to 2 and discard the depth
{
utils::ComboRenderPassDescriptor renderPassDescriptor({},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Discard;
renderPassDescriptor.cDepthStencilAttachmentInfo.clearStencil = 2;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Store;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
}
// "all" subresources are not initialized; Depth is not initialized
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_All));
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_StencilOnly));
// Now load both depth and stencil. Depth should be cleared and stencil should stay the same
// at 2.
{
wgpu::TextureDescriptor colorDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture colorTexture = device.CreateTexture(&colorDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.SetStencilReference(2);
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// No lazy clear because depth will be cleared with a loadOp
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because the depth and stencil tests passed. Depth was 0
// and stencil was 2.
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), colorTexture, {0, 0}, {kSize, kSize});
}
// Everything is initialized now
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_All));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_StencilOnly));
// TODO(crbug.com/dawn/439): Implement stencil copies on other platforms
if (IsMetal() || IsVulkan() || IsD3D12()) {
// Check by copy that the stencil data is 2.
std::vector<uint8_t> expected(kSize * kSize, 2);
EXPECT_LAZY_CLEAR(
0u, EXPECT_TEXTURE_EQ(expected.data(), depthStencilTexture, {0, 0}, {kSize, kSize},
0, wgpu::TextureAspect::StencilOnly));
}
}
// Uninitialize only stencil
{
// Clear the depth to 0.7 and discard the stencil.
{
utils::ComboRenderPassDescriptor renderPassDescriptor({},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.clearDepth = 0.7;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Store;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp =
wgpu::StoreOp::Discard;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
}
// "all" subresources are not initialized; Stencil is not initialized
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_All));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_StencilOnly));
// Now load both depth and stencil. Stencil should be cleared and depth should stay the same
// at 0.7.
{
wgpu::TextureDescriptor colorDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture colorTexture = device.CreateTexture(&colorDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest(0.7));
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// No lazy clear because stencil will clear using a loadOp.
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because both the depth a stencil tests passed.
// Depth was 0.7 and stencil was 0
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), colorTexture, {0, 0}, {kSize, kSize});
}
// Everything is initialized now
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_All));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_StencilOnly));
// TODO(crbug.com/dawn/439): Implement stencil copies on other platforms
if (IsMetal() || IsVulkan() || IsD3D12()) {
// Check by copy that the stencil data is 0.
std::vector<uint8_t> expected(kSize * kSize, 0);
EXPECT_LAZY_CLEAR(
0u, EXPECT_TEXTURE_EQ(expected.data(), depthStencilTexture, {0, 0}, {kSize, kSize},
0, wgpu::TextureAspect::StencilOnly));
}
}
}
// Test that clear state is tracked independently for depth/stencil textures.
// Lazy clear of the stencil aspect via copy should not touch depth.
TEST_P(TextureZeroInitTest, IndependentDepthStencilCopyAfterDiscard) {
// TODO(crbug.com/dawn/439): Implement stencil copies on other platforms
DAWN_SUPPRESS_TEST_IF(!(IsMetal() || IsVulkan() || IsD3D12()));
// TODO(enga): Figure out why this fails on Metal Intel.
DAWN_SUPPRESS_TEST_IF(IsMetal() && IsIntel());
wgpu::TextureDescriptor depthStencilDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
// Clear the depth to 0.3 and discard the stencil.
{
utils::ComboRenderPassDescriptor renderPassDescriptor({}, depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.clearDepth = 0.3;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Store;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Discard;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
}
// "all" subresources are not initialized; Stencil is not initialized
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0, 1,
0, 1, WGPUTextureAspect_All));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0, 1, 0,
1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(
depthStencilTexture.Get(), 0, 1, 0, 1, WGPUTextureAspect_StencilOnly));
// Check by copy that the stencil data is lazily cleared to 0.
std::vector<uint8_t> expected(kSize * kSize, 0);
EXPECT_LAZY_CLEAR(1u, EXPECT_TEXTURE_EQ(expected.data(), depthStencilTexture, {0, 0},
{kSize, kSize}, 0, wgpu::TextureAspect::StencilOnly));
// Everything is initialized now
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0, 1, 0,
1, WGPUTextureAspect_All));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0, 1, 0,
1, WGPUTextureAspect_DepthOnly));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0, 1, 0,
1, WGPUTextureAspect_StencilOnly));
// Now load both depth and stencil. Stencil should be cleared and depth should stay the same
// at 0.3.
{
wgpu::TextureDescriptor colorDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture colorTexture = device.CreateTexture(&colorDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({colorTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
auto pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest(0.3));
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// No lazy clear because stencil will clear using a loadOp.
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Expect the texture to be red because both the depth a stencil tests passed.
// Depth was 0.3 and stencil was 0
std::vector<RGBA8> expected(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expected.data(), colorTexture, {0, 0}, {kSize, kSize});
}
}
// This tests the color attachments clear to 0s
TEST_P(TextureZeroInitTest, ColorAttachmentsClear) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
utils::BasicRenderPass renderPass = utils::BasicRenderPass(kSize, kSize, texture, kColorFormat);
renderPass.renderPassInfo.cColorAttachments[0].loadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
std::vector<RGBA8> expected(kSize * kSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expected.data(), renderPass.color, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true,
dawn_native::IsTextureSubresourceInitialized(renderPass.color.Get(), 0, 1, 0, 1));
}
// This tests the clearing of sampled textures in render pass
TEST_P(TextureZeroInitTest, RenderPassSampledTextureClear) {
// Create needed resources
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(1, 1, wgpu::TextureUsage::TextureBinding, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::TextureDescriptor renderTextureDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment, kColorFormat);
wgpu::Texture renderTexture = device.CreateTexture(&renderTextureDescriptor);
// Create render pipeline
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.cTargets[0].format = kColorFormat;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
// Create bindgroup
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, texture.CreateView()}});
// Encode pass and submit
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
utils::ComboRenderPassDescriptor renderPassDesc({renderTexture.CreateView()});
renderPassDesc.cColorAttachments[0].clearColor = {1.0, 1.0, 1.0, 1.0};
renderPassDesc.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDesc);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
// Expect 1 lazy clear for sampled texture
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
// Expect the rendered texture to be cleared
std::vector<RGBA8> expectedWithZeros(kSize * kSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expectedWithZeros.data(), renderTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(renderTexture.Get(), 0, 1, 0, 1));
}
// This is a regression test for a bug where a texture wouldn't get clear for a pass if at least
// one of its subresources was used as an attachment. It tests that if a texture is used as both
// sampled and attachment (with LoadOp::Clear so the lazy clear can be skipped) then the sampled
// subresource is correctly cleared.
TEST_P(TextureZeroInitTest, TextureBothSampledAndAttachmentClear) {
// TODO(crbug.com/dawn/593): This test uses glTextureView() which is not supported on OpenGL ES.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
// Create a 2D array texture, layer 0 will be used as attachment, layer 1 as sampled.
wgpu::TextureDescriptor texDesc;
texDesc.usage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::RenderAttachment |
wgpu::TextureUsage::CopySrc;
texDesc.size = {1, 1, 2};
texDesc.format = wgpu::TextureFormat::RGBA8Unorm;
wgpu::Texture texture = device.CreateTexture(&texDesc);
wgpu::TextureViewDescriptor viewDesc;
viewDesc.dimension = wgpu::TextureViewDimension::e2D;
viewDesc.arrayLayerCount = 1;
viewDesc.baseArrayLayer = 0;
wgpu::TextureView attachmentView = texture.CreateView(&viewDesc);
viewDesc.baseArrayLayer = 1;
wgpu::TextureView sampleView = texture.CreateView(&viewDesc);
// Create render pipeline
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0), {{0, sampleView}});
// Encode pass and submit
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
utils::ComboRenderPassDescriptor renderPassDesc({attachmentView});
renderPassDesc.cColorAttachments[0].clearColor = {1.0, 1.0, 1.0, 1.0};
renderPassDesc.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDesc);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
// Expect the lazy clear for the sampled subresource.
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
// Expect both subresources to be zero: the sampled one with lazy-clearing and the attachment
// because it sampled the lazy-cleared sampled subresource.
EXPECT_TEXTURE_EQ(&RGBA8::kZero, texture, {0, 0, 0}, {1, 1});
EXPECT_TEXTURE_EQ(&RGBA8::kZero, texture, {0, 0, 1}, {1, 1});
// The whole texture is now initialized.
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 2));
}
// This tests the clearing of sampled textures during compute pass
TEST_P(TextureZeroInitTest, ComputePassSampledTextureClear) {
// Create needed resources
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(1, 1, wgpu::TextureUsage::TextureBinding, kColorFormat);
descriptor.size.width = 1;
descriptor.size.height = 1;
wgpu::Texture texture = device.CreateTexture(&descriptor);
uint32_t bufferSize = kFormatBlockByteSize * sizeof(uint32_t);
wgpu::BufferDescriptor bufferDescriptor;
bufferDescriptor.size = bufferSize;
bufferDescriptor.usage =
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst;
wgpu::Buffer bufferTex = device.CreateBuffer(&bufferDescriptor);
// Add data to buffer to ensure it is initialized
uint32_t data = 100;
queue.WriteBuffer(bufferTex, 0, &data, sizeof(data));
wgpu::Sampler sampler = device.CreateSampler();
// Create compute pipeline
wgpu::ComputePipelineDescriptor computePipelineDescriptor;
wgpu::ProgrammableStageDescriptor compute;
const char* cs = R"(
[[group(0), binding(0)]] var tex : texture_2d<f32>;
[[block]] struct Result {
value : vec4<f32>;
};
[[group(0), binding(1)]] var<storage, read_write> result : Result;
[[stage(compute), workgroup_size(1)]] fn main() {
result.value = textureLoad(tex, vec2<i32>(0,0), 0);
}
)";
computePipelineDescriptor.compute.module = utils::CreateShaderModule(device, cs);
computePipelineDescriptor.compute.entryPoint = "main";
wgpu::ComputePipeline computePipeline =
device.CreateComputePipeline(&computePipelineDescriptor);
// Create bindgroup
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, computePipeline.GetBindGroupLayout(0),
{{0, texture.CreateView()}, {1, bufferTex, 0, bufferSize}});
// Encode the pass and submit
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(computePipeline);
pass.SetBindGroup(0, bindGroup);
pass.Dispatch(1);
pass.EndPass();
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
// Expect the buffer to be zeroed out by the compute pass
std::vector<uint32_t> expectedWithZeros(bufferSize, 0);
EXPECT_BUFFER_U32_RANGE_EQ(expectedWithZeros.data(), bufferTex, 0, kFormatBlockByteSize);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// This tests that the code path of CopyTextureToBuffer clears correctly for non-renderable textures
TEST_P(TextureZeroInitTest, NonRenderableTextureClear) {
// TODO(crbug.com/dawn/667): Work around the fact that some platforms do not support reading
// from Snorm textures.
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_snorm_read"));
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(1, 1, wgpu::TextureUsage::CopySrc, kNonrenderableColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
// Set buffer with dirty data so we know it is cleared by the lazy cleared texture copy
uint32_t bytesPerRow = Align(kSize * kFormatBlockByteSize, kTextureBytesPerRowAlignment);
uint32_t bufferSize = bytesPerRow * kSize;
std::vector<uint8_t> data(bufferSize, 100);
wgpu::Buffer bufferDst = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer = utils::CreateImageCopyBuffer(bufferDst, 0, bytesPerRow);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<uint32_t> expectedWithZeros(bufferSize, 0);
EXPECT_BUFFER_U32_RANGE_EQ(expectedWithZeros.data(), bufferDst, 0, kSize);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// This tests that the code path of CopyTextureToBuffer clears correctly for non-renderable textures
TEST_P(TextureZeroInitTest, NonRenderableTextureClearUnalignedSize) {
// TODO(crbug.com/dawn/667): Work around the fact that some platforms do not support reading
// from Snorm textures.
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_snorm_read"));
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(1, 1, wgpu::TextureUsage::CopySrc, kNonrenderableColorFormat);
descriptor.size.width = kUnalignedSize;
descriptor.size.height = kUnalignedSize;
wgpu::Texture texture = device.CreateTexture(&descriptor);
// Set buffer with dirty data so we know it is cleared by the lazy cleared texture copy
uint32_t bytesPerRow =
Align(kUnalignedSize * kFormatBlockByteSize, kTextureBytesPerRowAlignment);
uint32_t bufferSize = bytesPerRow * kUnalignedSize;
std::vector<uint8_t> data(bufferSize, 100);
wgpu::Buffer bufferDst = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer = utils::CreateImageCopyBuffer(bufferDst, 0, bytesPerRow);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kUnalignedSize, kUnalignedSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<uint32_t> expectedWithZeros(bufferSize, 0);
EXPECT_BUFFER_U32_RANGE_EQ(expectedWithZeros.data(), bufferDst, 0, kUnalignedSize);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// This tests that the code path of CopyTextureToBuffer clears correctly for non-renderable textures
// with more than 1 array layers
TEST_P(TextureZeroInitTest, NonRenderableTextureClearWithMultiArrayLayers) {
// TODO(crbug.com/dawn/667): Work around the fact that some platforms do not support reading
// from Snorm textures.
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_snorm_read"));
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(1, 2, wgpu::TextureUsage::CopySrc, kNonrenderableColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
// Set buffer with dirty data so we know it is cleared by the lazy cleared texture copy
uint32_t bufferSize = kFormatBlockByteSize * kSize * kSize;
std::vector<uint8_t> data(bufferSize, 100);
wgpu::Buffer bufferDst = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(bufferDst, 0, kSize * kFormatBlockByteSize);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 1});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
std::vector<uint32_t> expectedWithZeros(bufferSize, 0);
EXPECT_BUFFER_U32_RANGE_EQ(expectedWithZeros.data(), bufferDst, 0, 8);
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 1, 1));
}
// This tests that storeOp clear resets resource state to uninitialized.
// Start with a sample texture that is initialized with data.
// Then expect the render texture to not store the data from sample texture
// because it will be lazy cleared by the EXPECT_TEXTURE_EQ call.
TEST_P(TextureZeroInitTest, RenderPassStoreOpClear) {
// Create needed resources
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopyDst, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::TextureDescriptor renderTextureDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment, kColorFormat);
wgpu::Texture renderTexture = device.CreateTexture(&renderTextureDescriptor);
// Fill the sample texture with data
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize, 1);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * kFormatBlockByteSize);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
// Expect 0 lazy clears because the texture will be completely copied to
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
// Create render pipeline
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
renderPipelineDescriptor.cTargets[0].format = kColorFormat;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
// Create bindgroup
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, texture.CreateView()}});
// Encode pass and submit
encoder = device.CreateCommandEncoder();
utils::ComboRenderPassDescriptor renderPassDesc({renderTexture.CreateView()});
renderPassDesc.cColorAttachments[0].clearColor = {0.0, 0.0, 0.0, 0.0};
renderPassDesc.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDesc.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDesc);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
commands = encoder.Finish();
// Expect 0 lazy clears, sample texture is initialized by copyBufferToTexture and render texture
// is cleared by loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
// Expect the rendered texture to be cleared
std::vector<RGBA8> expectedWithZeros(kSize * kSize, {0, 0, 0, 0});
EXPECT_LAZY_CLEAR(
1u, EXPECT_TEXTURE_EQ(expectedWithZeros.data(), renderTexture, {0, 0}, {kSize, kSize}));
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(renderTexture.Get(), 0, 1, 0, 1));
}
// This tests storeOp Clear on depth and stencil textures.
// We put the depth stencil texture through 2 passes:
// 1) LoadOp::Clear and StoreOp::Discard, fail the depth and stencil test set in the render
// pipeline. This means nothing is drawn and subresource is set as uninitialized.
// 2) LoadOp::Load and StoreOp::Discard, pass the depth and stencil test set in the render pipeline.
// Because LoadOp is Load and the subresource is uninitialized, the texture will be cleared to
// 0's This means the depth and stencil test will pass and the red square is drawn.
TEST_P(TextureZeroInitTest, RenderingLoadingDepthStencilStoreOpClear) {
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::RenderAttachment,
kColorFormat);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
wgpu::TextureDescriptor depthStencilDescriptor =
CreateTextureDescriptor(1, 1,
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst,
kDepthStencilFormat);
wgpu::Texture depthStencilTexture = device.CreateTexture(&depthStencilDescriptor);
// Setup the renderPass for the first pass.
// We want to fail the depth and stencil test here so that nothing gets drawn and we can
// see that the subresource correctly gets set as unintialized in the second pass
utils::ComboRenderPassDescriptor renderPassDescriptor({srcTexture.CreateView()},
depthStencilTexture.CreateView());
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cDepthStencilAttachmentInfo.clearDepth = 1.0f;
renderPassDescriptor.cDepthStencilAttachmentInfo.clearStencil = 1u;
renderPassDescriptor.cDepthStencilAttachmentInfo.depthStoreOp = wgpu::StoreOp::Discard;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilStoreOp = wgpu::StoreOp::Discard;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect 0 lazy clears, depth stencil texture will clear using loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// The depth stencil test should fail and not draw because the depth stencil texture is
// cleared to 1's by using loadOp clear and set values from descriptor.
std::vector<RGBA8> expectedBlack(kSize * kSize, {0, 0, 0, 0});
EXPECT_TEXTURE_EQ(expectedBlack.data(), srcTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be false since storeop is clear, sets
// subresource as uninitialized
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0,
1, 0, 1));
}
// Now we put the depth stencil texture back into renderpass, it should be cleared by loadop
// because storeOp clear sets the subresource as uninitialized
{
renderPassDescriptor.cDepthStencilAttachmentInfo.depthLoadOp = wgpu::LoadOp::Load;
renderPassDescriptor.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Load;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDescriptor);
pass.SetPipeline(CreatePipelineForTest());
pass.Draw(6);
pass.EndPass();
wgpu::CommandBuffer commandBuffer = encoder.Finish();
// Expect 0 lazy clears, depth stencil texture will clear using loadop
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commandBuffer));
// Now the depth stencil test should pass since depth stencil texture is cleared to 0's by
// loadop load and uninitialized subresource, so we should have a red square
std::vector<RGBA8> expectedRed(kSize * kSize, {255, 0, 0, 255});
EXPECT_TEXTURE_EQ(expectedRed.data(), srcTexture, {0, 0}, {kSize, kSize});
// Expect texture subresource initialized to be false since storeop is clear, sets
// subresource as uninitialized
EXPECT_EQ(false, dawn_native::IsTextureSubresourceInitialized(depthStencilTexture.Get(), 0,
1, 0, 1));
}
}
// Test that if one mip of a texture is initialized and another is uninitialized, lazy clearing the
// uninitialized mip does not clear the initialized mip.
TEST_P(TextureZeroInitTest, PreservesInitializedMip) {
wgpu::TextureDescriptor sampleTextureDescriptor =
CreateTextureDescriptor(2, 1,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding,
kColorFormat);
wgpu::Texture sampleTexture = device.CreateTexture(&sampleTextureDescriptor);
wgpu::TextureDescriptor renderTextureDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment, kColorFormat);
wgpu::Texture renderTexture = device.CreateTexture(&renderTextureDescriptor);
// Fill the sample texture's second mip with data
uint32_t mipSize = kSize >> 1;
std::vector<uint8_t> data(kFormatBlockByteSize * mipSize * mipSize, 2);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, mipSize * kFormatBlockByteSize);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(sampleTexture, 1, {0, 0, 0});
wgpu::Extent3D copySize = {mipSize, mipSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
// Expect 0 lazy clears because the texture subresource will be completely copied to
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
// Create render pipeline
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
renderPipelineDescriptor.cTargets[0].format = kColorFormat;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
// Create bindgroup
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, sampleTexture.CreateView()}});
// Encode pass and submit
encoder = device.CreateCommandEncoder();
utils::ComboRenderPassDescriptor renderPassDesc({renderTexture.CreateView()});
renderPassDesc.cColorAttachments[0].clearColor = {0.0, 0.0, 0.0, 0.0};
renderPassDesc.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDesc.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDesc);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
commands = encoder.Finish();
// Expect 1 lazy clears, because not all mips of the sample texture are initialized by
// copyBufferToTexture.
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
// Expect the rendered texture to be cleared since we copied from the uninitialized first
// mip.
std::vector<RGBA8> expectedWithZeros(kSize * kSize, {0, 0, 0, 0});
EXPECT_LAZY_CLEAR(
1u, EXPECT_TEXTURE_EQ(expectedWithZeros.data(), renderTexture, {0, 0}, {kSize, kSize}, 0));
// Expect the first mip to have been lazy cleared to 0.
EXPECT_LAZY_CLEAR(
0u, EXPECT_TEXTURE_EQ(expectedWithZeros.data(), sampleTexture, {0, 0}, {kSize, kSize}, 0));
// Expect the second mip to still be filled with 2.
std::vector<RGBA8> expectedWithTwos(mipSize * mipSize, {2, 2, 2, 2});
EXPECT_LAZY_CLEAR(0u, EXPECT_TEXTURE_EQ(expectedWithTwos.data(), sampleTexture, {0, 0},
{mipSize, mipSize}, 1));
// Expect the whole texture to be initialized
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(sampleTexture.Get(), 0, 2, 0, 1));
}
// Test that if one layer of a texture is initialized and another is uninitialized, lazy clearing
// the uninitialized layer does not clear the initialized layer.
TEST_P(TextureZeroInitTest, PreservesInitializedArrayLayer) {
// TODO(crbug.com/dawn/593): This test uses glTextureView() which is not supported on OpenGL ES.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
wgpu::TextureDescriptor sampleTextureDescriptor =
CreateTextureDescriptor(1, 2,
wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding,
kColorFormat);
wgpu::Texture sampleTexture = device.CreateTexture(&sampleTextureDescriptor);
wgpu::TextureDescriptor renderTextureDescriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment, kColorFormat);
wgpu::Texture renderTexture = device.CreateTexture(&renderTextureDescriptor);
// Fill the sample texture's second array layer with data
std::vector<uint8_t> data(kFormatBlockByteSize * kSize * kSize, 2);
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), static_cast<uint32_t>(data.size()), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kSize * kFormatBlockByteSize);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(sampleTexture, 0, {0, 0, 1});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
// Expect 0 lazy clears because the texture subresource will be completely copied to
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
// Create render pipeline
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
renderPipelineDescriptor.cTargets[0].format = kColorFormat;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
// Only sample from the uninitialized first layer.
wgpu::TextureViewDescriptor textureViewDescriptor;
textureViewDescriptor.dimension = wgpu::TextureViewDimension::e2D;
textureViewDescriptor.arrayLayerCount = 1;
// Create bindgroup
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, sampleTexture.CreateView(&textureViewDescriptor)}});
// Encode pass and submit
encoder = device.CreateCommandEncoder();
utils::ComboRenderPassDescriptor renderPassDesc({renderTexture.CreateView()});
renderPassDesc.cColorAttachments[0].clearColor = {0.0, 0.0, 0.0, 0.0};
renderPassDesc.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDesc.cColorAttachments[0].storeOp = wgpu::StoreOp::Discard;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassDesc);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
commands = encoder.Finish();
// Expect 1 lazy clears, because not all array layers of the sample texture are initialized by
// copyBufferToTexture.
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
// Expect the rendered texture to be cleared since we copied from the uninitialized first
// array layer.
std::vector<RGBA8> expectedWithZeros(kSize * kSize, {0, 0, 0, 0});
EXPECT_LAZY_CLEAR(
1u, EXPECT_TEXTURE_EQ(expectedWithZeros.data(), renderTexture, {0, 0, 0}, {kSize, kSize}));
// Expect the first array layer to have been lazy cleared to 0.
EXPECT_LAZY_CLEAR(
0u, EXPECT_TEXTURE_EQ(expectedWithZeros.data(), sampleTexture, {0, 0, 0}, {kSize, kSize}));
// Expect the second array layer to still be filled with 2.
std::vector<RGBA8> expectedWithTwos(kSize * kSize, {2, 2, 2, 2});
EXPECT_LAZY_CLEAR(
0u, EXPECT_TEXTURE_EQ(expectedWithTwos.data(), sampleTexture, {0, 0, 1}, {kSize, kSize}));
// Expect the whole texture to be initialized
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(sampleTexture.Get(), 0, 1, 0, 2));
}
// This is a regression test for crbug.com/dawn/451 where the lazy texture
// init path on D3D12 had a divide-by-zero exception in the copy split logic.
TEST_P(TextureZeroInitTest, CopyTextureToBufferNonRenderableUnaligned) {
// TODO(crbug.com/dawn/667): Work around the fact that some platforms do not support reading
// from Snorm textures.
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_snorm_read"));
wgpu::TextureDescriptor descriptor;
descriptor.size.width = kUnalignedSize;
descriptor.size.height = kUnalignedSize;
descriptor.size.depthOrArrayLayers = 1;
descriptor.format = wgpu::TextureFormat::R8Snorm;
descriptor.usage = wgpu::TextureUsage::CopySrc;
wgpu::Texture texture = device.CreateTexture(&descriptor);
{
uint32_t bytesPerRow = Align(kUnalignedSize, kTextureBytesPerRowAlignment);
// Create and initialize the destination buffer to ensure we only count the times of
// texture lazy initialization in this test.
const uint64_t bufferSize = kUnalignedSize * bytesPerRow;
const std::vector<uint8_t> initialBufferData(bufferSize, 0u);
wgpu::Buffer buffer = utils::CreateBufferFromData(device, initialBufferData.data(),
bufferSize, wgpu::BufferUsage::CopyDst);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(buffer, 0, bytesPerRow);
wgpu::Extent3D copySize = {kUnalignedSize, kUnalignedSize, 1};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &copySize);
wgpu::CommandBuffer commands = encoder.Finish();
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
}
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
}
// In this test WriteTexture fully overwrites a texture
TEST_P(TextureZeroInitTest, WriteWholeTexture) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 1, wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize, kSize, 1};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kSize * kFormatBlockByteSize;
textureDataLayout.rowsPerImage = kSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
// The write overwrites the whole texture so we don't need to do lazy initialization.
EXPECT_LAZY_CLEAR(
0u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture initialized to be true
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0}, {kSize, kSize});
}
// Test WriteTexture to a subset of the texture, lazy init is necessary to clear the other
// half.
TEST_P(TextureZeroInitTest, WriteTextureHalf) {
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(4, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(texture, 0, {0, 0, 0});
wgpu::Extent3D copySize = {kSize / 2, kSize, 1};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kSize * kFormatBlockByteSize / 2;
textureDataLayout.rowsPerImage = kSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
EXPECT_LAZY_CLEAR(
1u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, 0, 1));
std::vector<RGBA8> expectedZeros((kSize / 2) * kSize, {0, 0, 0, 0});
// first half filled with 100, by the data
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0}, {kSize / 2, kSize});
// second half should be cleared
EXPECT_TEXTURE_EQ(expectedZeros.data(), texture, {kSize / 2, 0}, {kSize / 2, kSize});
}
// In this test WriteTexture fully overwrites a range of subresources, so lazy initialization
// is needed for neither the subresources involved in the write nor the other subresources.
TEST_P(TextureZeroInitTest, WriteWholeTextureArray) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
1, 6, wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
constexpr uint32_t kBaseArrayLayer = 2u;
constexpr uint32_t kCopyLayerCount = 3u;
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, kBaseArrayLayer});
wgpu::Extent3D copySize = {kSize, kSize, kCopyLayerCount};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kSize * kFormatBlockByteSize;
textureDataLayout.rowsPerImage = kSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
// The write overwrites the whole subresources so we don't need to do lazy initialization on
// them.
EXPECT_LAZY_CLEAR(
0u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture subresource initialized to be true
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1, kBaseArrayLayer,
kCopyLayerCount));
for (uint32_t layer = kBaseArrayLayer; layer < kBaseArrayLayer + kCopyLayerCount; ++layer) {
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0, layer}, {kSize, kSize});
}
}
// Test WriteTexture to a subset of the subresource, lazy init is necessary to clear the other
// half.
TEST_P(TextureZeroInitTest, WriteTextureArrayHalf) {
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(4, 6,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
constexpr uint32_t kBaseArrayLayer = 2u;
constexpr uint32_t kCopyLayerCount = 3u;
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, 0, {0, 0, kBaseArrayLayer});
wgpu::Extent3D copySize = {kSize / 2, kSize, kCopyLayerCount};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kSize * kFormatBlockByteSize / 2;
textureDataLayout.rowsPerImage = kSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
EXPECT_LAZY_CLEAR(
1u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture subresource initialized to be true
EXPECT_EQ(true, dawn_native::IsTextureSubresourceInitialized(texture.Get(), 0, 1,
kBaseArrayLayer, kCopyLayerCount));
std::vector<RGBA8> expectedZeros((kSize / 2) * kSize, {0, 0, 0, 0});
for (uint32_t layer = kBaseArrayLayer; layer < kBaseArrayLayer + kCopyLayerCount; ++layer) {
// first half filled with 100, by the data
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0, layer}, {kSize / 2, kSize});
// second half should be cleared
EXPECT_TEXTURE_EQ(expectedZeros.data(), texture, {kSize / 2, 0, layer}, {kSize / 2, kSize});
}
}
// In this test WriteTexture fully overwrites a texture at mip level.
TEST_P(TextureZeroInitTest, WriteWholeTextureAtMipLevel) {
wgpu::TextureDescriptor descriptor = CreateTextureDescriptor(
4, 1, wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc, kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
constexpr uint32_t kMipLevel = 2;
constexpr uint32_t kMipSize = kSize >> kMipLevel;
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, kMipLevel, {0, 0, 0});
wgpu::Extent3D copySize = {kMipSize, kMipSize, 1};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kMipSize * kFormatBlockByteSize;
textureDataLayout.rowsPerImage = kMipSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
// The write overwrites the whole texture so we don't need to do lazy initialization.
EXPECT_LAZY_CLEAR(
0u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture initialized to be true
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(texture.Get(), kMipLevel, 1, 0, 1));
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0}, {kMipSize, kMipSize}, kMipLevel);
}
// Test WriteTexture to a subset of the texture at mip level, lazy init is necessary to clear the
// other half.
TEST_P(TextureZeroInitTest, WriteTextureHalfAtMipLevel) {
wgpu::TextureDescriptor descriptor =
CreateTextureDescriptor(4, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding |
wgpu::TextureUsage::CopySrc,
kColorFormat);
wgpu::Texture texture = device.CreateTexture(&descriptor);
constexpr uint32_t kMipLevel = 2;
constexpr uint32_t kMipSize = kSize >> kMipLevel;
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(texture, kMipLevel, {0, 0, 0});
wgpu::Extent3D copySize = {kMipSize / 2, kMipSize, 1};
wgpu::TextureDataLayout textureDataLayout;
textureDataLayout.offset = 0;
textureDataLayout.bytesPerRow = kMipSize * kFormatBlockByteSize / 2;
textureDataLayout.rowsPerImage = kMipSize;
std::vector<RGBA8> data(
utils::RequiredBytesInCopy(textureDataLayout.bytesPerRow, textureDataLayout.rowsPerImage,
copySize, kColorFormat) /
sizeof(RGBA8),
{100, 100, 100, 100});
EXPECT_LAZY_CLEAR(
1u, queue.WriteTexture(&imageCopyTexture, data.data(), data.size() * sizeof(RGBA8),
&textureDataLayout, &copySize));
// Expect texture initialized to be true
EXPECT_EQ(true,
dawn_native::IsTextureSubresourceInitialized(texture.Get(), kMipLevel, 1, 0, 1));
std::vector<RGBA8> expectedZeros((kMipSize / 2) * kMipSize, {0, 0, 0, 0});
// first half filled with 100, by the data
EXPECT_TEXTURE_EQ(data.data(), texture, {0, 0}, {kMipSize / 2, kMipSize}, kMipLevel);
// second half should be cleared
EXPECT_TEXTURE_EQ(expectedZeros.data(), texture, {kMipSize / 2, 0}, {kMipSize / 2, kMipSize},
kMipLevel);
}
DAWN_INSTANTIATE_TEST(TextureZeroInitTest,
D3D12Backend({"nonzero_clear_resources_on_creation_for_testing"}),
D3D12Backend({"nonzero_clear_resources_on_creation_for_testing"},
{"use_d3d12_render_pass"}),
OpenGLBackend({"nonzero_clear_resources_on_creation_for_testing"}),
OpenGLESBackend({"nonzero_clear_resources_on_creation_for_testing"}),
MetalBackend({"nonzero_clear_resources_on_creation_for_testing"}),
VulkanBackend({"nonzero_clear_resources_on_creation_for_testing"}));
class CompressedTextureZeroInitTest : public TextureZeroInitTest {
protected:
void SetUp() override {
DawnTest::SetUp();
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
DAWN_TEST_UNSUPPORTED_IF(!IsBCFormatSupported());
}
std::vector<const char*> GetRequiredExtensions() override {
mIsBCFormatSupported = SupportsExtensions({"texture_compression_bc"});
if (!mIsBCFormatSupported) {
return {};
}
return {"texture_compression_bc"};
}
bool IsBCFormatSupported() const {
return mIsBCFormatSupported;
}
// Copy the compressed texture data into the destination texture.
void InitializeDataInCompressedTextureAndExpectLazyClear(
wgpu::Texture bcCompressedTexture,
wgpu::TextureDescriptor textureDescriptor,
wgpu::Extent3D copyExtent3D,
uint32_t viewMipmapLevel,
uint32_t baseArrayLayer,
size_t lazyClearCount) {
uint32_t copyWidthInBlock = copyExtent3D.width / kFormatBlockByteSize;
uint32_t copyHeightInBlock = copyExtent3D.height / kFormatBlockByteSize;
uint32_t copyBytesPerRow =
Align(copyWidthInBlock * utils::GetTexelBlockSizeInBytes(textureDescriptor.format),
kTextureBytesPerRowAlignment);
std::vector<uint8_t> data(
utils::RequiredBytesInCopy(copyBytesPerRow, copyHeightInBlock, copyExtent3D,
textureDescriptor.format),
1);
// Copy texture data from a staging buffer to the destination texture.
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(device, data.data(), data.size(),
wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, copyBytesPerRow, copyHeightInBlock);
wgpu::ImageCopyTexture imageCopyTexture = utils::CreateImageCopyTexture(
bcCompressedTexture, viewMipmapLevel, {0, 0, baseArrayLayer});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copyExtent3D);
wgpu::CommandBuffer copy = encoder.Finish();
EXPECT_LAZY_CLEAR(lazyClearCount, queue.Submit(1, &copy));
}
// Run the tests that copies pre-prepared BC format data into a BC texture and verifies if we
// can render correctly with the pixel values sampled from the BC texture.
// Expect that the texture subresource is initialized
void TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
wgpu::TextureDescriptor textureDescriptor,
wgpu::Extent3D copyExtent3D,
wgpu::Extent3D nonPaddedCopyExtent,
uint32_t viewMipmapLevel,
uint32_t baseArrayLayer,
size_t lazyClearCount,
bool halfCopyTest = false) {
wgpu::Texture bcTexture = device.CreateTexture(&textureDescriptor);
InitializeDataInCompressedTextureAndExpectLazyClear(bcTexture, textureDescriptor,
copyExtent3D, viewMipmapLevel,
baseArrayLayer, lazyClearCount);
SampleCompressedTextureAndVerifyColor(bcTexture, textureDescriptor, copyExtent3D,
nonPaddedCopyExtent, viewMipmapLevel, baseArrayLayer,
halfCopyTest);
}
void SampleCompressedTextureAndVerifyColor(wgpu::Texture bcTexture,
wgpu::TextureDescriptor textureDescriptor,
wgpu::Extent3D copyExtent3D,
wgpu::Extent3D nonPaddedCopyExtent,
uint32_t viewMipmapLevel,
uint32_t baseArrayLayer,
bool halfCopyTest = false) {
// Sample the compressed texture and verify the texture colors in the render target
utils::BasicRenderPass renderPass =
utils::CreateBasicRenderPass(device, textureDescriptor.size.width >> viewMipmapLevel,
textureDescriptor.size.height >> viewMipmapLevel);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.cTargets[0].format = kColorFormat;
renderPipelineDescriptor.vertex.module = CreateBasicVertexShaderForTest();
renderPipelineDescriptor.cFragment.module = CreateSampledTextureFragmentShaderForTest();
wgpu::RenderPipeline renderPipeline =
device.CreateRenderPipeline(&renderPipelineDescriptor);
pass.SetPipeline(renderPipeline);
wgpu::TextureViewDescriptor textureViewDescriptor = CreateTextureViewDescriptor(
viewMipmapLevel, baseArrayLayer, textureDescriptor.format);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, bcTexture.CreateView(&textureViewDescriptor)}});
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
std::vector<RGBA8> expected(nonPaddedCopyExtent.width * nonPaddedCopyExtent.height,
{0x00, 0x20, 0x08, 0xFF});
EXPECT_TEXTURE_EQ(expected.data(), renderPass.color, {0, 0},
{nonPaddedCopyExtent.width, nonPaddedCopyExtent.height});
EXPECT_TRUE(dawn_native::IsTextureSubresourceInitialized(bcTexture.Get(), viewMipmapLevel,
1, baseArrayLayer, 1));
// If we only copied to half the texture, check the other half is initialized to black
if (halfCopyTest) {
std::vector<RGBA8> expectBlack(nonPaddedCopyExtent.width * nonPaddedCopyExtent.height,
{0x00, 0x00, 0x00, 0xFF});
EXPECT_TEXTURE_EQ(expectBlack.data(), renderPass.color, {copyExtent3D.width, 0},
{nonPaddedCopyExtent.width, nonPaddedCopyExtent.height});
}
}
bool mIsBCFormatSupported = false;
};
// Test that the clearing is skipped when we use a full mip copy (with the physical size different
// than the virtual mip size)
TEST_P(CompressedTextureZeroInitTest, FullMipCopy) {
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
textureDescriptor.size = {60, 60, 1};
textureDescriptor.mipLevelCount = 1;
textureDescriptor.format = utils::kBCFormats[0];
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, textureDescriptor.size, textureDescriptor.size, 0, 0, 0u);
}
// Test that 1 lazy clear count happens when we copy to half the texture
TEST_P(CompressedTextureZeroInitTest, HalfCopyBufferToTexture) {
// TODO(crbug.com/dawn/643): diagnose and fix this failure on OpenGL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
constexpr static uint32_t kSize = 16;
textureDescriptor.size = {kSize, kSize, 1};
textureDescriptor.mipLevelCount = 1;
textureDescriptor.format = utils::kBCFormats[0];
wgpu::Extent3D copyExtent3D = {kSize / 2, kSize, 1};
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, copyExtent3D, copyExtent3D, 0, 0, 1u, true);
}
// Test that 0 lazy clear count happens when we copy buffer to texture to a nonzero mip level
// (with physical size different from the virtual mip size)
TEST_P(CompressedTextureZeroInitTest, FullCopyToNonZeroMipLevel) {
// TODO(crbug.com/dawn/593): This test uses glTextureView() which is not supported on OpenGL ES.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
constexpr static uint32_t kSize = 60;
textureDescriptor.size = {kSize, kSize, 1};
textureDescriptor.mipLevelCount = 3;
textureDescriptor.format = utils::kBCFormats[0];
const uint32_t kViewMipLevel = 2;
const uint32_t kActualSizeAtLevel = kSize >> kViewMipLevel;
const uint32_t kCopySizeAtLevel = Align(kActualSizeAtLevel, kFormatBlockByteSize);
wgpu::Extent3D copyExtent3D = {kCopySizeAtLevel, kCopySizeAtLevel, 1};
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, copyExtent3D, {kActualSizeAtLevel, kActualSizeAtLevel, 1}, kViewMipLevel,
0, 0u);
}
// Test that 1 lazy clear count happens when we copy buffer to half texture to a nonzero mip level
// (with physical size different from the virtual mip size)
TEST_P(CompressedTextureZeroInitTest, HalfCopyToNonZeroMipLevel) {
// TODO(crbug.com/dawn/643): diagnose and fix this failure on OpenGL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
constexpr static uint32_t kSize = 60;
textureDescriptor.size = {kSize, kSize, 1};
textureDescriptor.mipLevelCount = 3;
textureDescriptor.format = utils::kBCFormats[0];
const uint32_t kViewMipLevel = 2;
const uint32_t kActualSizeAtLevel = kSize >> kViewMipLevel;
const uint32_t kCopySizeAtLevel = Align(kActualSizeAtLevel, kFormatBlockByteSize);
wgpu::Extent3D copyExtent3D = {kCopySizeAtLevel / 2, kCopySizeAtLevel, 1};
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, copyExtent3D, {kActualSizeAtLevel / 2, kActualSizeAtLevel, 1},
kViewMipLevel, 0, 1u, true);
}
// Test that 0 lazy clear count happens when we copy buffer to nonzero array layer
TEST_P(CompressedTextureZeroInitTest, FullCopyToNonZeroArrayLayer) {
// TODO(crbug.com/dawn/593): This test uses glTextureView() which is not supported on OpenGL ES.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
constexpr static uint32_t kSize = 16;
constexpr static uint32_t kArrayLayers = 4;
textureDescriptor.size = {kSize, kSize, kArrayLayers};
textureDescriptor.mipLevelCount = 1;
textureDescriptor.format = utils::kBCFormats[0];
wgpu::Extent3D copyExtent3D = {kSize, kSize, 1};
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, copyExtent3D, copyExtent3D, 0, kArrayLayers - 2, 0u);
}
// Test that 1 lazy clear count happens when we copy buffer to half texture to a nonzero array layer
TEST_P(CompressedTextureZeroInitTest, HalfCopyToNonZeroArrayLayer) {
// TODO(crbug.com/dawn/643): diagnose and fix this failure on OpenGL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst |
wgpu::TextureUsage::TextureBinding;
constexpr static uint32_t kSize = 16;
constexpr static uint32_t kArrayLayers = 4;
textureDescriptor.size = {kSize, kSize, kArrayLayers};
textureDescriptor.mipLevelCount = 3;
textureDescriptor.format = utils::kBCFormats[0];
wgpu::Extent3D copyExtent3D = {kSize / 2, kSize, 1};
TestCopyRegionIntoBCFormatTexturesAndCheckSubresourceIsInitialized(
textureDescriptor, copyExtent3D, copyExtent3D, 0, kArrayLayers - 2, 1u, true);
}
// full copy texture to texture, 0 lazy clears are needed
TEST_P(CompressedTextureZeroInitTest, FullCopyTextureToTextureMipLevel) {
// TODO(crbug.com/dawn/593): This test uses glTextureView() which is not supported on OpenGL ES.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
// create srcTexture and fill it with data
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(3, 1,
wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst,
utils::kBCFormats[0]);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
const uint32_t kViewMipLevel = 2;
const uint32_t kActualSizeAtLevel = kSize >> kViewMipLevel;
const uint32_t kCopySizeAtLevel = Align(kActualSizeAtLevel, kFormatBlockByteSize);
wgpu::Extent3D copyExtent3D = {kCopySizeAtLevel, kCopySizeAtLevel, 1};
// fill srcTexture with data
InitializeDataInCompressedTextureAndExpectLazyClear(srcTexture, srcDescriptor, copyExtent3D,
kViewMipLevel, 0, 0u);
wgpu::ImageCopyTexture srcImageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, kViewMipLevel, {0, 0, 0});
// create dstTexture that we will copy to
wgpu::TextureDescriptor dstDescriptor =
CreateTextureDescriptor(3, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::TextureBinding,
utils::kBCFormats[0]);
wgpu::Texture dstTexture = device.CreateTexture(&dstDescriptor);
wgpu::ImageCopyTexture dstImageCopyTexture =
utils::CreateImageCopyTexture(dstTexture, kViewMipLevel, {0, 0, 0});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToTexture(&srcImageCopyTexture, &dstImageCopyTexture, &copyExtent3D);
wgpu::CommandBuffer commands = encoder.Finish();
// the dstTexture does not need to be lazy cleared since it's fully copied to
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &commands));
SampleCompressedTextureAndVerifyColor(dstTexture, dstDescriptor, copyExtent3D,
{kActualSizeAtLevel, kActualSizeAtLevel, 1},
kViewMipLevel, 0);
}
// half copy texture to texture, lazy clears are needed for noncopied half
TEST_P(CompressedTextureZeroInitTest, HalfCopyTextureToTextureMipLevel) {
// TODO(crbug.com/dawn/643): diagnose and fix this failure on OpenGL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
// create srcTexture with data
wgpu::TextureDescriptor srcDescriptor =
CreateTextureDescriptor(3, 1,
wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst,
utils::kBCFormats[0]);
wgpu::Texture srcTexture = device.CreateTexture(&srcDescriptor);
const uint32_t kViewMipLevel = 2;
const uint32_t kActualSizeAtLevel = kSize >> kViewMipLevel;
const uint32_t kCopySizeAtLevel = Align(kActualSizeAtLevel, kFormatBlockByteSize);
wgpu::Extent3D copyExtent3D = {kCopySizeAtLevel / 2, kCopySizeAtLevel, 1};
// fill srcTexture with data
InitializeDataInCompressedTextureAndExpectLazyClear(srcTexture, srcDescriptor, copyExtent3D,
kViewMipLevel, 0, 1u);
wgpu::ImageCopyTexture srcImageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, kViewMipLevel, {0, 0, 0});
// create dstTexture that we will copy to
wgpu::TextureDescriptor dstDescriptor =
CreateTextureDescriptor(3, 1,
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::TextureBinding,
utils::kBCFormats[0]);
wgpu::Texture dstTexture = device.CreateTexture(&dstDescriptor);
wgpu::ImageCopyTexture dstImageCopyTexture =
utils::CreateImageCopyTexture(dstTexture, kViewMipLevel, {0, 0, 0});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToTexture(&srcImageCopyTexture, &dstImageCopyTexture, &copyExtent3D);
wgpu::CommandBuffer commands = encoder.Finish();
// expect 1 lazy clear count since the dstTexture needs to be lazy cleared when we only copy to
// half texture
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &commands));
SampleCompressedTextureAndVerifyColor(dstTexture, dstDescriptor, copyExtent3D,
{kActualSizeAtLevel / 2, kActualSizeAtLevel, 1},
kViewMipLevel, 0, true);
}
// Test uploading then reading back from a 2D array compressed texture.
// This is a regression test for a bug where the final destination buffer
// was considered fully initialized even though there was a 256-byte
// stride between images.
TEST_P(CompressedTextureZeroInitTest, Copy2DArrayCompressedB2T2B) {
// TODO(crbug.com/dawn/643): diagnose and fix this failure on OpenGL.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
// create srcTexture with data
wgpu::TextureDescriptor textureDescriptor = CreateTextureDescriptor(
4, 5, wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst, utils::kBCFormats[0]);
textureDescriptor.size = {8, 8, 5};
wgpu::Texture srcTexture = device.CreateTexture(&textureDescriptor);
uint32_t mipLevel = 2;
wgpu::Extent3D copyExtent3D = {4, 4, 5};
uint32_t copyWidthInBlock = copyExtent3D.width / kFormatBlockByteSize;
uint32_t copyHeightInBlock = copyExtent3D.height / kFormatBlockByteSize;
uint32_t copyRowsPerImage = copyHeightInBlock;
uint32_t copyBytesPerRow =
Align(copyWidthInBlock * utils::GetTexelBlockSizeInBytes(textureDescriptor.format),
kTextureBytesPerRowAlignment);
// Generate data to upload
std::vector<uint8_t> data(utils::RequiredBytesInCopy(copyBytesPerRow, copyRowsPerImage,
copyExtent3D, textureDescriptor.format));
for (size_t i = 0; i < data.size(); ++i) {
data[i] = i % 255;
}
// Copy texture data from a staging buffer to the destination texture.
wgpu::Buffer stagingBuffer =
utils::CreateBufferFromData(device, data.data(), data.size(), wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBufferSrc =
utils::CreateImageCopyBuffer(stagingBuffer, 0, copyBytesPerRow, copyRowsPerImage);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(srcTexture, mipLevel, {0, 0, 0});
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToTexture(&imageCopyBufferSrc, &imageCopyTexture, &copyExtent3D);
wgpu::CommandBuffer copy = encoder.Finish();
EXPECT_LAZY_CLEAR(0u, queue.Submit(1, &copy));
}
// Create a buffer to read back the data. It is the same size as the upload buffer.
wgpu::BufferDescriptor readbackDesc = {};
readbackDesc.size = data.size();
readbackDesc.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer readbackBuffer = device.CreateBuffer(&readbackDesc);
// Copy the texture to the readback buffer.
wgpu::ImageCopyBuffer imageCopyBufferDst =
utils::CreateImageCopyBuffer(readbackBuffer, 0, copyBytesPerRow, copyRowsPerImage);
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyTextureToBuffer(&imageCopyTexture, &imageCopyBufferDst, &copyExtent3D);
wgpu::CommandBuffer copy = encoder.Finish();
// Expect a lazy clear because the padding in the copy is not touched.
EXPECT_LAZY_CLEAR(1u, queue.Submit(1, &copy));
}
// Generate expected data. It is the same as the upload data, but padding is zero.
std::vector<uint8_t> expected(data.size(), 0);
for (uint32_t z = 0; z < copyExtent3D.depthOrArrayLayers; ++z) {
for (uint32_t y = 0; y < copyHeightInBlock; ++y) {
memcpy(&expected[copyBytesPerRow * y + copyBytesPerRow * copyRowsPerImage * z],
&data[copyBytesPerRow * y + copyBytesPerRow * copyRowsPerImage * z],
copyWidthInBlock * utils::GetTexelBlockSizeInBytes(textureDescriptor.format));
}
}
// Check final contents
EXPECT_BUFFER_U8_RANGE_EQ(expected.data(), readbackBuffer, 0, expected.size());
}
DAWN_INSTANTIATE_TEST(CompressedTextureZeroInitTest,
D3D12Backend({"nonzero_clear_resources_on_creation_for_testing"}),
MetalBackend({"nonzero_clear_resources_on_creation_for_testing"}),
OpenGLBackend({"nonzero_clear_resources_on_creation_for_testing"}),
OpenGLESBackend({"nonzero_clear_resources_on_creation_for_testing"}),
VulkanBackend({"nonzero_clear_resources_on_creation_for_testing"}));