| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SRC_TINT_RESOLVER_RESOLVER_H_ |
| #define SRC_TINT_RESOLVER_RESOLVER_H_ |
| |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/tint/constant/constant.h" |
| #include "src/tint/program_builder.h" |
| #include "src/tint/resolver/const_eval.h" |
| #include "src/tint/resolver/dependency_graph.h" |
| #include "src/tint/resolver/intrinsic_table.h" |
| #include "src/tint/resolver/sem_helper.h" |
| #include "src/tint/resolver/validator.h" |
| #include "src/tint/scope_stack.h" |
| #include "src/tint/sem/binding_point.h" |
| #include "src/tint/sem/block_statement.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/struct.h" |
| #include "src/tint/utils/bitset.h" |
| #include "src/tint/utils/unique_vector.h" |
| |
| // Forward declarations |
| namespace tint::ast { |
| class IndexAccessorExpression; |
| class BinaryExpression; |
| class BitcastExpression; |
| class CallExpression; |
| class CallStatement; |
| class CaseStatement; |
| class ForLoopStatement; |
| class Function; |
| class IdentifierExpression; |
| class LoopStatement; |
| class MemberAccessorExpression; |
| class ReturnStatement; |
| class SwitchStatement; |
| class UnaryOpExpression; |
| class Variable; |
| class WhileStatement; |
| } // namespace tint::ast |
| namespace tint::sem { |
| class Array; |
| class BlockStatement; |
| class Builtin; |
| class CaseStatement; |
| class ForLoopStatement; |
| class IfStatement; |
| class LoopStatement; |
| class Statement; |
| class StructMember; |
| class SwitchStatement; |
| class TypeInitializer; |
| class WhileStatement; |
| } // namespace tint::sem |
| namespace tint::type { |
| class Atomic; |
| } // namespace tint::type |
| |
| namespace tint::resolver { |
| |
| /// Resolves types for all items in the given tint program |
| class Resolver { |
| public: |
| /// Constructor |
| /// @param builder the program builder |
| explicit Resolver(ProgramBuilder* builder); |
| |
| /// Destructor |
| ~Resolver(); |
| |
| /// @returns error messages from the resolver |
| std::string error() const { return diagnostics_.str(); } |
| |
| /// @returns true if the resolver was successful |
| bool Resolve(); |
| |
| /// @param type the given type |
| /// @returns true if the given type is a plain type |
| bool IsPlain(const type::Type* type) const { return validator_.IsPlain(type); } |
| |
| /// @param type the given type |
| /// @returns true if the given type is a fixed-footprint type |
| bool IsFixedFootprint(const type::Type* type) const { |
| return validator_.IsFixedFootprint(type); |
| } |
| |
| /// @param type the given type |
| /// @returns true if the given type is storable |
| bool IsStorable(const type::Type* type) const { return validator_.IsStorable(type); } |
| |
| /// @param type the given type |
| /// @returns true if the given type is host-shareable |
| bool IsHostShareable(const type::Type* type) const { return validator_.IsHostShareable(type); } |
| |
| /// @returns the validator for testing |
| const Validator* GetValidatorForTesting() const { return &validator_; } |
| |
| private: |
| /// Resolves the program, without creating final the semantic nodes. |
| /// @returns true on success, false on error |
| bool ResolveInternal(); |
| |
| /// Creates the nodes and adds them to the sem::Info mappings of the |
| /// ProgramBuilder. |
| void CreateSemanticNodes() const; |
| |
| /// Expression traverses the graph of expressions starting at `expr`, building a postordered |
| /// list (leaf-first) of all the expression nodes. Each of the expressions are then resolved by |
| /// dispatching to the appropriate expression handlers below. |
| /// @returns the resolved semantic node for the expression `expr`, or nullptr on failure. |
| sem::Expression* Expression(const ast::Expression* expr); |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| // Expression resolving methods |
| // |
| // Returns the semantic node pointer on success, nullptr on failure. |
| // |
| // These methods are invoked by Expression(), in postorder (child-first). These methods should |
| // not attempt to resolve their children. This design avoids recursion, which is a common cause |
| // of stack-overflows. |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| sem::Expression* IndexAccessor(const ast::IndexAccessorExpression*); |
| sem::Expression* Binary(const ast::BinaryExpression*); |
| sem::Expression* Bitcast(const ast::BitcastExpression*); |
| sem::Call* Call(const ast::CallExpression*); |
| sem::Function* Function(const ast::Function*); |
| template <size_t N> |
| sem::Call* FunctionCall(const ast::CallExpression*, |
| sem::Function* target, |
| utils::Vector<const sem::Expression*, N>& args, |
| sem::Behaviors arg_behaviors); |
| sem::Expression* Identifier(const ast::IdentifierExpression*); |
| template <size_t N> |
| sem::Call* BuiltinCall(const ast::CallExpression*, |
| sem::BuiltinType, |
| utils::Vector<const sem::Expression*, N>& args); |
| sem::Expression* Literal(const ast::LiteralExpression*); |
| sem::Expression* MemberAccessor(const ast::MemberAccessorExpression*); |
| sem::Expression* UnaryOp(const ast::UnaryOpExpression*); |
| |
| /// Register a memory load from an expression, to track accesses to root identifiers in order to |
| /// perform alias analysis. |
| void RegisterLoadIfNeeded(const sem::Expression* expr); |
| |
| /// Register a memory store to an expression, to track accesses to root identifiers in order to |
| /// perform alias analysis. |
| void RegisterStore(const sem::Expression* expr); |
| |
| /// Perform pointer alias analysis for `call`. |
| /// @returns true is the call arguments are free from aliasing issues, false otherwise. |
| bool AliasAnalysis(const sem::Call* call); |
| |
| /// If `expr` is not of an abstract-numeric type, then Materialize() will just return `expr`. |
| /// If `expr` is of an abstract-numeric type: |
| /// * Materialize will create and return a sem::Materialize node wrapping `expr`. |
| /// * The AST -> Sem binding will be updated to point to the new sem::Materialize node. |
| /// * The sem::Materialize node will have a new concrete type, which will be `target_type` if |
| /// not nullptr, otherwise: |
| /// * a type with the element type of `i32` (e.g. `i32`, `vec2<i32>`) if `expr` has a |
| /// element type of abstract-integer... |
| /// * ... or a type with the element type of `f32` (e.g. `f32`, vec3<f32>`, `mat2x3<f32>`) |
| /// if `expr` has a element type of abstract-float. |
| /// * The sem::Materialize constant value will be the value of `expr` value-converted to the |
| /// materialized type. |
| /// If `expr` is nullptr, then Materialize() will also return nullptr. |
| const sem::Expression* Materialize(const sem::Expression* expr, |
| const type::Type* target_type = nullptr); |
| |
| /// Materializes all the arguments in `args` to the parameter types of `target`. |
| /// @returns true on success, false on failure. |
| template <size_t N> |
| bool MaybeMaterializeArguments(utils::Vector<const sem::Expression*, N>& args, |
| const sem::CallTarget* target); |
| |
| /// @returns true if an argument of an abstract numeric type, passed to a parameter of type |
| /// `parameter_ty` should be materialized. |
| bool ShouldMaterializeArgument(const type::Type* parameter_ty) const; |
| |
| /// Converts `c` to `target_ty` |
| /// @returns true on success, false on failure. |
| bool Convert(const constant::Constant*& c, const type::Type* target_ty, const Source& source); |
| |
| /// Transforms `args` to a vector of constants, and converts each constant to the call target's |
| /// parameter type. |
| /// @returns the vector of constants, `utils::Failure` on failure. |
| template <size_t N> |
| utils::Result<utils::Vector<const constant::Constant*, N>> ConvertArguments( |
| const utils::Vector<const sem::Expression*, N>& args, |
| const sem::CallTarget* target); |
| |
| /// @param ty the type that may hold abstract numeric types |
| /// @param target_ty the target type for the expression (variable type, parameter type, etc). |
| /// May be nullptr. |
| /// @param source the source of the expression requiring materialization |
| /// @returns the concrete (materialized) type for the given type, or nullptr if the type is |
| /// already concrete. |
| const type::Type* ConcreteType(const type::Type* ty, |
| const type::Type* target_ty, |
| const Source& source); |
| |
| // Statement resolving methods |
| // Each return true on success, false on failure. |
| sem::Statement* AssignmentStatement(const ast::AssignmentStatement*); |
| sem::BlockStatement* BlockStatement(const ast::BlockStatement*); |
| sem::Statement* BreakStatement(const ast::BreakStatement*); |
| sem::Statement* BreakIfStatement(const ast::BreakIfStatement*); |
| sem::Statement* CallStatement(const ast::CallStatement*); |
| sem::CaseStatement* CaseStatement(const ast::CaseStatement*, const type::Type*); |
| sem::Statement* CompoundAssignmentStatement(const ast::CompoundAssignmentStatement*); |
| sem::Statement* ContinueStatement(const ast::ContinueStatement*); |
| sem::Statement* DiscardStatement(const ast::DiscardStatement*); |
| sem::ForLoopStatement* ForLoopStatement(const ast::ForLoopStatement*); |
| sem::WhileStatement* WhileStatement(const ast::WhileStatement*); |
| sem::GlobalVariable* GlobalVariable(const ast::Variable*); |
| sem::Statement* Parameter(const ast::Variable*); |
| sem::IfStatement* IfStatement(const ast::IfStatement*); |
| sem::Statement* IncrementDecrementStatement(const ast::IncrementDecrementStatement*); |
| sem::LoopStatement* LoopStatement(const ast::LoopStatement*); |
| sem::Statement* ReturnStatement(const ast::ReturnStatement*); |
| sem::Statement* Statement(const ast::Statement*); |
| sem::Statement* StaticAssert(const ast::StaticAssert*); |
| sem::SwitchStatement* SwitchStatement(const ast::SwitchStatement* s); |
| sem::Statement* VariableDeclStatement(const ast::VariableDeclStatement*); |
| bool Statements(utils::VectorRef<const ast::Statement*>); |
| |
| // CollectTextureSamplerPairs() collects all the texture/sampler pairs from the target function |
| // / builtin, and records these on the current function by calling AddTextureSamplerPair(). |
| void CollectTextureSamplerPairs(sem::Function* func, |
| utils::VectorRef<const sem::Expression*> args) const; |
| void CollectTextureSamplerPairs(const sem::Builtin* builtin, |
| utils::VectorRef<const sem::Expression*> args) const; |
| |
| /// Resolves the WorkgroupSize for the given function, assigning it to |
| /// current_function_ |
| bool WorkgroupSize(const ast::Function*); |
| |
| /// @returns the type::Type for the ast::Type `ty`, building it if it |
| /// hasn't been constructed already. If an error is raised, nullptr is |
| /// returned. |
| /// @param ty the ast::Type |
| type::Type* Type(const ast::Type* ty); |
| |
| /// @param enable the enable declaration |
| /// @returns the resolved extension |
| bool Enable(const ast::Enable* enable); |
| |
| /// @param named_type the named type to resolve |
| /// @returns the resolved semantic type |
| type::Type* TypeDecl(const ast::TypeDecl* named_type); |
| |
| /// Builds and returns the semantic information for the AST array `arr`. |
| /// This method does not mark the ast::Array node, nor attach the generated semantic information |
| /// to the AST node. |
| /// @returns the semantic Array information, or nullptr if an error is raised. |
| /// @param arr the Array to get semantic information for |
| type::Array* Array(const ast::Array* arr); |
| |
| /// Resolves and validates the expression used as the count parameter of an array. |
| /// @param count_expr the expression used as the second template parameter to an array<>. |
| /// @returns the number of elements in the array. |
| const type::ArrayCount* ArrayCount(const ast::Expression* count_expr); |
| |
| /// Resolves and validates the attributes on an array. |
| /// @param attributes the attributes on the array type. |
| /// @param el_ty the element type of the array. |
| /// @param explicit_stride assigned the specified stride of the array in bytes. |
| /// @returns true on success, false on failure |
| bool ArrayAttributes(utils::VectorRef<const ast::Attribute*> attributes, |
| const type::Type* el_ty, |
| uint32_t& explicit_stride); |
| |
| /// Builds and returns the semantic information for an array. |
| /// @returns the semantic Array information, or nullptr if an error is raised. |
| /// @param el_source the source of the array element, or the array if the array does not have a |
| /// locally-declared element AST node. |
| /// @param count_source the source of the array count, or the array if the array does not have a |
| /// locally-declared element AST node. |
| /// @param el_ty the Array element type |
| /// @param el_count the number of elements in the array. |
| /// @param explicit_stride the explicit byte stride of the array. Zero means implicit stride. |
| type::Array* Array(const Source& el_source, |
| const Source& count_source, |
| const type::Type* el_ty, |
| const type::ArrayCount* el_count, |
| uint32_t explicit_stride); |
| |
| /// Builds and returns the semantic information for the alias `alias`. |
| /// This method does not mark the ast::Alias node, nor attach the generated |
| /// semantic information to the AST node. |
| /// @returns the aliased type, or nullptr if an error is raised. |
| type::Type* Alias(const ast::Alias* alias); |
| |
| /// Builds and returns the semantic information for the structure `str`. |
| /// This method does not mark the ast::Struct node, nor attach the generated |
| /// semantic information to the AST node. |
| /// @returns the semantic Struct information, or nullptr if an error is |
| /// raised. |
| sem::Struct* Structure(const ast::Struct* str); |
| |
| /// @returns the semantic info for the variable `v`. If an error is raised, nullptr is |
| /// returned. |
| /// @note this method does not resolve the attributes as these are context-dependent (global, |
| /// local) |
| /// @param var the variable |
| /// @param is_global true if this is module scope, otherwise function scope |
| sem::Variable* Variable(const ast::Variable* var, bool is_global); |
| |
| /// @returns the semantic info for the `ast::Let` `v`. If an error is raised, nullptr is |
| /// returned. |
| /// @note this method does not resolve the attributes as these are context-dependent (global, |
| /// local) |
| /// @param var the variable |
| /// @param is_global true if this is module scope, otherwise function scope |
| sem::Variable* Let(const ast::Let* var, bool is_global); |
| |
| /// @returns the semantic info for the module-scope `ast::Override` `v`. If an error is raised, |
| /// nullptr is returned. |
| /// @note this method does not resolve the attributes as these are context-dependent (global, |
| /// local) |
| /// @param override the variable |
| sem::Variable* Override(const ast::Override* override); |
| |
| /// @returns the semantic info for an `ast::Const` `v`. If an error is raised, nullptr is |
| /// returned. |
| /// @note this method does not resolve the attributes as these are context-dependent (global, |
| /// local) |
| /// @param const_ the variable |
| /// @param is_global true if this is module scope, otherwise function scope |
| sem::Variable* Const(const ast::Const* const_, bool is_global); |
| |
| /// @returns the semantic info for the `ast::Var` `var`. If an error is raised, nullptr is |
| /// returned. |
| /// @note this method does not resolve the attributes as these are context-dependent (global, |
| /// local) |
| /// @param var the variable |
| /// @param is_global true if this is module scope, otherwise function scope |
| sem::Variable* Var(const ast::Var* var, bool is_global); |
| |
| /// @returns the semantic info for the function parameter `param`. If an error is raised, |
| /// nullptr is returned. |
| /// @note the caller is expected to validate the parameter |
| /// @param param the AST parameter |
| /// @param index the index of the parameter |
| sem::Parameter* Parameter(const ast::Parameter* param, uint32_t index); |
| |
| /// @returns the location value for a `@location` attribute, validating the value's range and |
| /// type. |
| utils::Result<uint32_t> LocationAttribute(const ast::LocationAttribute* attr); |
| |
| /// Records the address space usage for the given type, and any transient |
| /// dependencies of the type. Validates that the type can be used for the |
| /// given address space, erroring if it cannot. |
| /// @param sc the address space to apply to the type and transitent types |
| /// @param ty the type to apply the address space on |
| /// @param usage the Source of the root variable declaration that uses the |
| /// given type and address space. Used for generating sensible error |
| /// messages. |
| /// @returns true on success, false on error |
| bool ApplyAddressSpaceUsageToType(ast::AddressSpace sc, type::Type* ty, const Source& usage); |
| |
| /// @param address_space the address space |
| /// @returns the default access control for the given address space |
| ast::Access DefaultAccessForAddressSpace(ast::AddressSpace address_space); |
| |
| /// Allocate constant IDs for pipeline-overridable constants. |
| /// @returns true on success, false on error |
| bool AllocateOverridableConstantIds(); |
| |
| /// Set the shadowing information on variable declarations. |
| /// @note this method must only be called after all semantic nodes are built. |
| void SetShadows(); |
| |
| /// StatementScope() does the following: |
| /// * Creates the AST -> SEM mapping. |
| /// * Assigns `sem` to #current_statement_ |
| /// * Assigns `sem` to #current_compound_statement_ if `sem` derives from |
| /// sem::CompoundStatement. |
| /// * Then calls `callback`. |
| /// * Before returning #current_statement_ and #current_compound_statement_ are restored to |
| /// their original values. |
| /// @returns `sem` if `callback` returns true, otherwise `nullptr`. |
| template <typename SEM, typename F> |
| SEM* StatementScope(const ast::Statement* ast, SEM* sem, F&& callback); |
| |
| /// Mark records that the given AST node has been visited, and asserts that |
| /// the given node has not already been seen. Diamonds in the AST are |
| /// illegal. |
| /// @param node the AST node. |
| /// @returns true on success, false on error |
| bool Mark(const ast::Node* node); |
| |
| /// Adds the given error message to the diagnostics |
| void AddError(const std::string& msg, const Source& source) const; |
| |
| /// Adds the given warning message to the diagnostics |
| void AddWarning(const std::string& msg, const Source& source) const; |
| |
| /// Adds the given note message to the diagnostics |
| void AddNote(const std::string& msg, const Source& source) const; |
| |
| /// @returns true if the symbol is the name of a builtin function. |
| bool IsBuiltin(Symbol) const; |
| |
| /// @returns the builtin type alias for the given symbol |
| type::Type* BuiltinTypeAlias(Symbol) const; |
| |
| // ArrayInitializerSig represents a unique array initializer signature. |
| // It is a tuple of the array type, number of arguments provided and earliest evaluation stage. |
| using ArrayInitializerSig = |
| utils::UnorderedKeyWrapper<std::tuple<const type::Array*, size_t, sem::EvaluationStage>>; |
| |
| // StructInitializerSig represents a unique structure initializer signature. |
| // It is a tuple of the structure type, number of arguments provided and earliest evaluation |
| // stage. |
| using StructInitializerSig = |
| utils::UnorderedKeyWrapper<std::tuple<const sem::Struct*, size_t, sem::EvaluationStage>>; |
| |
| /// ExprEvalStageConstraint describes a constraint on when expressions can be evaluated. |
| struct ExprEvalStageConstraint { |
| /// The latest stage that the expression can be evaluated |
| sem::EvaluationStage stage = sem::EvaluationStage::kRuntime; |
| /// The 'thing' that is imposing the contraint. e.g. "var declaration" |
| /// If nullptr, then there is no constraint |
| const char* constraint = nullptr; |
| }; |
| |
| /// AliasAnalysisInfo captures the memory accesses performed by a given function for the purpose |
| /// of determining if any two arguments alias at any callsite. |
| struct AliasAnalysisInfo { |
| /// The set of module-scope variables that are written to, and where that write occurs. |
| std::unordered_map<const sem::Variable*, const sem::Expression*> module_scope_writes; |
| /// The set of module-scope variables that are read from, and where that read occurs. |
| std::unordered_map<const sem::Variable*, const sem::Expression*> module_scope_reads; |
| /// The set of function parameters that are written to. |
| std::unordered_set<const sem::Variable*> parameter_writes; |
| /// The set of function parameters that are read from. |
| std::unordered_set<const sem::Variable*> parameter_reads; |
| }; |
| |
| ProgramBuilder* const builder_; |
| diag::List& diagnostics_; |
| ConstEval const_eval_; |
| std::unique_ptr<IntrinsicTable> const intrinsic_table_; |
| DependencyGraph dependencies_; |
| SemHelper sem_; |
| Validator validator_; |
| ast::Extensions enabled_extensions_; |
| utils::Vector<sem::Function*, 8> entry_points_; |
| utils::Hashmap<const type::Type*, const Source*, 8> atomic_composite_info_; |
| utils::Bitset<0> marked_; |
| ExprEvalStageConstraint expr_eval_stage_constraint_; |
| std::unordered_map<const sem::Function*, AliasAnalysisInfo> alias_analysis_infos_; |
| utils::Hashmap<OverrideId, const sem::Variable*, 8> override_ids_; |
| utils::Hashmap<ArrayInitializerSig, sem::CallTarget*, 8> array_inits_; |
| utils::Hashmap<StructInitializerSig, sem::CallTarget*, 8> struct_inits_; |
| sem::Function* current_function_ = nullptr; |
| sem::Statement* current_statement_ = nullptr; |
| sem::CompoundStatement* current_compound_statement_ = nullptr; |
| uint32_t current_scoping_depth_ = 0; |
| utils::UniqueVector<const sem::GlobalVariable*, 4>* resolved_overrides_ = nullptr; |
| utils::Hashset<TypeAndAddressSpace, 8> valid_type_storage_layouts_; |
| utils::Hashmap<const ast::Expression*, const ast::BinaryExpression*, 8> |
| logical_binary_lhs_to_parent_; |
| utils::Hashset<const ast::Expression*, 8> skip_const_eval_; |
| }; |
| |
| } // namespace tint::resolver |
| |
| #endif // SRC_TINT_RESOLVER_RESOLVER_H_ |