blob: 48e2948a1adafe08a7118e9b22dee9e93aba7e62 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/transform/canonicalize_entry_point_io.h"
#include <algorithm>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "src/tint/ast/disable_validation_attribute.h"
#include "src/tint/program_builder.h"
#include "src/tint/sem/function.h"
#include "src/tint/transform/unshadow.h"
using namespace tint::number_suffixes; // NOLINT
TINT_INSTANTIATE_TYPEINFO(tint::transform::CanonicalizeEntryPointIO);
TINT_INSTANTIATE_TYPEINFO(tint::transform::CanonicalizeEntryPointIO::Config);
namespace tint::transform {
CanonicalizeEntryPointIO::CanonicalizeEntryPointIO() = default;
CanonicalizeEntryPointIO::~CanonicalizeEntryPointIO() = default;
namespace {
/// Info for a struct member
struct MemberInfo {
/// The struct member item
const ast::StructMember* member;
/// The struct member location if provided
std::optional<uint32_t> location;
};
/// FXC is sensitive to field order in structures, this is used by StructMemberComparator to ensure
/// that FXC is happy with the order of emitted fields.
uint32_t BuiltinOrder(ast::BuiltinValue builtin) {
switch (builtin) {
case ast::BuiltinValue::kPosition:
return 1;
case ast::BuiltinValue::kVertexIndex:
return 2;
case ast::BuiltinValue::kInstanceIndex:
return 3;
case ast::BuiltinValue::kFrontFacing:
return 4;
case ast::BuiltinValue::kFragDepth:
return 5;
case ast::BuiltinValue::kLocalInvocationId:
return 6;
case ast::BuiltinValue::kLocalInvocationIndex:
return 7;
case ast::BuiltinValue::kGlobalInvocationId:
return 8;
case ast::BuiltinValue::kWorkgroupId:
return 9;
case ast::BuiltinValue::kNumWorkgroups:
return 10;
case ast::BuiltinValue::kSampleIndex:
return 11;
case ast::BuiltinValue::kSampleMask:
return 12;
case ast::BuiltinValue::kPointSize:
return 13;
default:
break;
}
return 0;
}
/// Comparison function used to reorder struct members such that all members with
/// location attributes appear first (ordered by location slot), followed by
/// those with builtin attributes.
/// @param a a struct member
/// @param b another struct member
/// @returns true if a comes before b
bool StructMemberComparator(const MemberInfo& a, const MemberInfo& b) {
auto* a_loc = ast::GetAttribute<ast::LocationAttribute>(a.member->attributes);
auto* b_loc = ast::GetAttribute<ast::LocationAttribute>(b.member->attributes);
auto* a_blt = ast::GetAttribute<ast::BuiltinAttribute>(a.member->attributes);
auto* b_blt = ast::GetAttribute<ast::BuiltinAttribute>(b.member->attributes);
if (a_loc) {
if (!b_loc) {
// `a` has location attribute and `b` does not: `a` goes first.
return true;
}
// Both have location attributes: smallest goes first.
return a.location < b.location;
} else {
if (b_loc) {
// `b` has location attribute and `a` does not: `b` goes first.
return false;
}
// Both are builtins: order matters for FXC.
return BuiltinOrder(a_blt->builtin) < BuiltinOrder(b_blt->builtin);
}
}
// Returns true if `attr` is a shader IO attribute.
bool IsShaderIOAttribute(const ast::Attribute* attr) {
return attr->IsAnyOf<ast::BuiltinAttribute, ast::InterpolateAttribute, ast::InvariantAttribute,
ast::LocationAttribute>();
}
// Returns true if `attrs` contains a `sample_mask` builtin.
bool HasSampleMask(utils::VectorRef<const ast::Attribute*> attrs) {
auto* builtin = ast::GetAttribute<ast::BuiltinAttribute>(attrs);
return builtin && builtin->builtin == ast::BuiltinValue::kSampleMask;
}
} // namespace
/// PIMPL state for the transform
struct CanonicalizeEntryPointIO::State {
/// OutputValue represents a shader result that the wrapper function produces.
struct OutputValue {
/// The name of the output value.
std::string name;
/// The type of the output value.
const ast::Type* type;
/// The shader IO attributes.
utils::Vector<const ast::Attribute*, 2> attributes;
/// The value itself.
const ast::Expression* value;
/// The output location.
std::optional<uint32_t> location;
};
/// The clone context.
CloneContext& ctx;
/// The transform config.
CanonicalizeEntryPointIO::Config const cfg;
/// The entry point function (AST).
const ast::Function* func_ast;
/// The entry point function (SEM).
const sem::Function* func_sem;
/// The new entry point wrapper function's parameters.
utils::Vector<const ast::Parameter*, 8> wrapper_ep_parameters;
/// The members of the wrapper function's struct parameter.
utils::Vector<MemberInfo, 8> wrapper_struct_param_members;
/// The name of the wrapper function's struct parameter.
Symbol wrapper_struct_param_name;
/// The parameters that will be passed to the original function.
utils::Vector<const ast::Expression*, 8> inner_call_parameters;
/// The members of the wrapper function's struct return type.
utils::Vector<MemberInfo, 8> wrapper_struct_output_members;
/// The wrapper function output values.
utils::Vector<OutputValue, 8> wrapper_output_values;
/// The body of the wrapper function.
utils::Vector<const ast::Statement*, 8> wrapper_body;
/// Input names used by the entrypoint
std::unordered_set<std::string> input_names;
/// Constructor
/// @param context the clone context
/// @param config the transform config
/// @param function the entry point function
State(CloneContext& context,
const CanonicalizeEntryPointIO::Config& config,
const ast::Function* function)
: ctx(context), cfg(config), func_ast(function), func_sem(ctx.src->Sem().Get(function)) {}
/// Clones the shader IO attributes from `src`.
/// @param src the attributes to clone
/// @param do_interpolate whether to clone InterpolateAttribute
/// @return the cloned attributes
template <size_t N>
auto CloneShaderIOAttributes(utils::Vector<const ast::Attribute*, N> src, bool do_interpolate) {
utils::Vector<const ast::Attribute*, N> new_attributes;
for (auto* attr : src) {
if (IsShaderIOAttribute(attr) &&
(do_interpolate || !attr->template Is<ast::InterpolateAttribute>())) {
new_attributes.Push(ctx.Clone(attr));
}
}
return new_attributes;
}
/// Create or return a symbol for the wrapper function's struct parameter.
/// @returns the symbol for the struct parameter
Symbol InputStructSymbol() {
if (!wrapper_struct_param_name.IsValid()) {
wrapper_struct_param_name = ctx.dst->Sym();
}
return wrapper_struct_param_name;
}
/// Add a shader input to the entry point.
/// @param name the name of the shader input
/// @param type the type of the shader input
/// @param location the location if provided
/// @param attributes the attributes to apply to the shader input
/// @returns an expression which evaluates to the value of the shader input
const ast::Expression* AddInput(std::string name,
const type::Type* type,
std::optional<uint32_t> location,
utils::Vector<const ast::Attribute*, 8> attributes) {
auto* ast_type = CreateASTTypeFor(ctx, type);
if (cfg.shader_style == ShaderStyle::kSpirv || cfg.shader_style == ShaderStyle::kGlsl) {
// Vulkan requires that integer user-defined fragment inputs are always decorated with
// `Flat`. See:
// https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/StandaloneSpirv.html#VUID-StandaloneSpirv-Flat-04744
// TODO(crbug.com/tint/1224): Remove this once a flat interpolation attribute is
// required for integers.
if (func_ast->PipelineStage() == ast::PipelineStage::kFragment &&
type->is_integer_scalar_or_vector() &&
!ast::HasAttribute<ast::InterpolateAttribute>(attributes) &&
(ast::HasAttribute<ast::LocationAttribute>(attributes) ||
cfg.shader_style == ShaderStyle::kSpirv)) {
attributes.Push(ctx.dst->Interpolate(ast::InterpolationType::kFlat,
ast::InterpolationSampling::kUndefined));
}
// Disable validation for use of the `input` address space.
attributes.Push(ctx.dst->Disable(ast::DisabledValidation::kIgnoreAddressSpace));
// In GLSL, if it's a builtin, override the name with the
// corresponding gl_ builtin name
auto* builtin = ast::GetAttribute<ast::BuiltinAttribute>(attributes);
if (cfg.shader_style == ShaderStyle::kGlsl && builtin) {
name = GLSLBuiltinToString(builtin->builtin, func_ast->PipelineStage(),
ast::AddressSpace::kIn);
}
auto symbol = ctx.dst->Symbols().New(name);
// Create the global variable and use its value for the shader input.
const ast::Expression* value = ctx.dst->Expr(symbol);
if (builtin) {
if (cfg.shader_style == ShaderStyle::kGlsl) {
value = FromGLSLBuiltin(builtin->builtin, value, ast_type);
} else if (builtin->builtin == ast::BuiltinValue::kSampleMask) {
// Vulkan requires the type of a SampleMask builtin to be an array.
// Declare it as array<u32, 1> and then load the first element.
ast_type = ctx.dst->ty.array(ast_type, 1_u);
value = ctx.dst->IndexAccessor(value, 0_i);
}
}
ctx.dst->GlobalVar(symbol, ast_type, ast::AddressSpace::kIn, std::move(attributes));
return value;
} else if (cfg.shader_style == ShaderStyle::kMsl &&
ast::HasAttribute<ast::BuiltinAttribute>(attributes)) {
// If this input is a builtin and we are targeting MSL, then add it to the
// parameter list and pass it directly to the inner function.
Symbol symbol = input_names.emplace(name).second ? ctx.dst->Symbols().Register(name)
: ctx.dst->Symbols().New(name);
wrapper_ep_parameters.Push(ctx.dst->Param(symbol, ast_type, std::move(attributes)));
return ctx.dst->Expr(symbol);
} else {
// Otherwise, move it to the new structure member list.
Symbol symbol = input_names.emplace(name).second ? ctx.dst->Symbols().Register(name)
: ctx.dst->Symbols().New(name);
wrapper_struct_param_members.Push(
{ctx.dst->Member(symbol, ast_type, std::move(attributes)), location});
return ctx.dst->MemberAccessor(InputStructSymbol(), symbol);
}
}
/// Add a shader output to the entry point.
/// @param name the name of the shader output
/// @param type the type of the shader output
/// @param location the location if provided
/// @param attributes the attributes to apply to the shader output
/// @param value the value of the shader output
void AddOutput(std::string name,
const type::Type* type,
std::optional<uint32_t> location,
utils::Vector<const ast::Attribute*, 8> attributes,
const ast::Expression* value) {
// Vulkan requires that integer user-defined vertex outputs are always decorated with
// `Flat`.
// TODO(crbug.com/tint/1224): Remove this once a flat interpolation attribute is required
// for integers.
if (cfg.shader_style == ShaderStyle::kSpirv &&
func_ast->PipelineStage() == ast::PipelineStage::kVertex &&
type->is_integer_scalar_or_vector() &&
ast::HasAttribute<ast::LocationAttribute>(attributes) &&
!ast::HasAttribute<ast::InterpolateAttribute>(attributes)) {
attributes.Push(ctx.dst->Interpolate(ast::InterpolationType::kFlat,
ast::InterpolationSampling::kUndefined));
}
// In GLSL, if it's a builtin, override the name with the
// corresponding gl_ builtin name
if (cfg.shader_style == ShaderStyle::kGlsl) {
if (auto* b = ast::GetAttribute<ast::BuiltinAttribute>(attributes)) {
name = GLSLBuiltinToString(b->builtin, func_ast->PipelineStage(),
ast::AddressSpace::kOut);
value = ToGLSLBuiltin(b->builtin, value, type);
}
}
OutputValue output;
output.name = name;
output.type = CreateASTTypeFor(ctx, type);
output.attributes = std::move(attributes);
output.value = value;
output.location = location;
wrapper_output_values.Push(output);
}
/// Process a non-struct parameter.
/// This creates a new object for the shader input, moving the shader IO
/// attributes to it. It also adds an expression to the list of parameters
/// that will be passed to the original function.
/// @param param the original function parameter
void ProcessNonStructParameter(const sem::Parameter* param) {
// Do not add interpolation attributes on vertex input
bool do_interpolate = func_ast->PipelineStage() != ast::PipelineStage::kVertex;
// Remove the shader IO attributes from the inner function parameter, and
// attach them to the new object instead.
utils::Vector<const ast::Attribute*, 8> attributes;
for (auto* attr : param->Declaration()->attributes) {
if (IsShaderIOAttribute(attr)) {
ctx.Remove(param->Declaration()->attributes, attr);
if ((do_interpolate || !attr->Is<ast::InterpolateAttribute>())) {
attributes.Push(ctx.Clone(attr));
}
}
}
auto name = ctx.src->Symbols().NameFor(param->Declaration()->symbol);
auto* input_expr = AddInput(name, param->Type(), param->Location(), std::move(attributes));
inner_call_parameters.Push(input_expr);
}
/// Process a struct parameter.
/// This creates new objects for each struct member, moving the shader IO
/// attributes to them. It also creates the structure that will be passed to
/// the original function.
/// @param param the original function parameter
void ProcessStructParameter(const sem::Parameter* param) {
// Do not add interpolation attributes on vertex input
bool do_interpolate = func_ast->PipelineStage() != ast::PipelineStage::kVertex;
auto* str = param->Type()->As<sem::Struct>();
// Recreate struct members in the outer entry point and build an initializer
// list to pass them through to the inner function.
utils::Vector<const ast::Expression*, 8> inner_struct_values;
for (auto* member : str->Members()) {
if (member->Type()->Is<sem::Struct>()) {
TINT_ICE(Transform, ctx.dst->Diagnostics()) << "nested IO struct";
continue;
}
auto name = ctx.src->Symbols().NameFor(member->Name());
auto attributes =
CloneShaderIOAttributes(member->Declaration()->attributes, do_interpolate);
auto* input_expr =
AddInput(name, member->Type(), member->Location(), std::move(attributes));
inner_struct_values.Push(input_expr);
}
// Construct the original structure using the new shader input objects.
inner_call_parameters.Push(
ctx.dst->Construct(ctx.Clone(param->Declaration()->type), inner_struct_values));
}
/// Process the entry point return type.
/// This generates a list of output values that are returned by the original
/// function.
/// @param inner_ret_type the original function return type
/// @param original_result the result object produced by the original function
void ProcessReturnType(const type::Type* inner_ret_type, Symbol original_result) {
// Do not add interpolation attributes on fragment output
bool do_interpolate = func_ast->PipelineStage() != ast::PipelineStage::kFragment;
if (auto* str = inner_ret_type->As<sem::Struct>()) {
for (auto* member : str->Members()) {
if (member->Type()->Is<sem::Struct>()) {
TINT_ICE(Transform, ctx.dst->Diagnostics()) << "nested IO struct";
continue;
}
auto name = ctx.src->Symbols().NameFor(member->Name());
auto attributes =
CloneShaderIOAttributes(member->Declaration()->attributes, do_interpolate);
// Extract the original structure member.
AddOutput(name, member->Type(), member->Location(), std::move(attributes),
ctx.dst->MemberAccessor(original_result, name));
}
} else if (!inner_ret_type->Is<type::Void>()) {
auto attributes =
CloneShaderIOAttributes(func_ast->return_type_attributes, do_interpolate);
// Propagate the non-struct return value as is.
AddOutput("value", func_sem->ReturnType(), func_sem->ReturnLocation(),
std::move(attributes), ctx.dst->Expr(original_result));
}
}
/// Add a fixed sample mask to the wrapper function output.
/// If there is already a sample mask, bitwise-and it with the fixed mask.
/// Otherwise, create a new output value from the fixed mask.
void AddFixedSampleMask() {
// Check the existing output values for a sample mask builtin.
for (auto& outval : wrapper_output_values) {
if (HasSampleMask(outval.attributes)) {
// Combine the authored sample mask with the fixed mask.
outval.value = ctx.dst->And(outval.value, u32(cfg.fixed_sample_mask));
return;
}
}
// No existing sample mask builtin was found, so create a new output value
// using the fixed sample mask.
AddOutput("fixed_sample_mask", ctx.dst->create<type::U32>(), std::nullopt,
{ctx.dst->Builtin(ast::BuiltinValue::kSampleMask)},
ctx.dst->Expr(u32(cfg.fixed_sample_mask)));
}
/// Add a point size builtin to the wrapper function output.
void AddVertexPointSize() {
// Create a new output value and assign it a literal 1.0 value.
AddOutput("vertex_point_size", ctx.dst->create<type::F32>(), std::nullopt,
{ctx.dst->Builtin(ast::BuiltinValue::kPointSize)}, ctx.dst->Expr(1_f));
}
/// Create an expression for gl_Position.[component]
/// @param component the component of gl_Position to access
/// @returns the new expression
const ast::Expression* GLPosition(const char* component) {
Symbol pos = ctx.dst->Symbols().Register("gl_Position");
Symbol c = ctx.dst->Symbols().Register(component);
return ctx.dst->MemberAccessor(ctx.dst->Expr(pos), ctx.dst->Expr(c));
}
/// Create the wrapper function's struct parameter and type objects.
void CreateInputStruct() {
// Sort the struct members to satisfy HLSL interfacing matching rules.
std::sort(wrapper_struct_param_members.begin(), wrapper_struct_param_members.end(),
StructMemberComparator);
utils::Vector<const ast::StructMember*, 8> members;
for (auto& mem : wrapper_struct_param_members) {
members.Push(mem.member);
}
// Create the new struct type.
auto struct_name = ctx.dst->Sym();
auto* in_struct = ctx.dst->create<ast::Struct>(struct_name, members, utils::Empty);
ctx.InsertBefore(ctx.src->AST().GlobalDeclarations(), func_ast, in_struct);
// Create a new function parameter using this struct type.
auto* param = ctx.dst->Param(InputStructSymbol(), ctx.dst->ty.type_name(struct_name));
wrapper_ep_parameters.Push(param);
}
/// Create and return the wrapper function's struct result object.
/// @returns the struct type
ast::Struct* CreateOutputStruct() {
utils::Vector<const ast::Statement*, 8> assignments;
auto wrapper_result = ctx.dst->Symbols().New("wrapper_result");
// Create the struct members and their corresponding assignment statements.
std::unordered_set<std::string> member_names;
for (auto& outval : wrapper_output_values) {
// Use the original output name, unless that is already taken.
Symbol name;
if (member_names.count(outval.name)) {
name = ctx.dst->Symbols().New(outval.name);
} else {
name = ctx.dst->Symbols().Register(outval.name);
}
member_names.insert(ctx.dst->Symbols().NameFor(name));
wrapper_struct_output_members.Push(
{ctx.dst->Member(name, outval.type, std::move(outval.attributes)),
outval.location});
assignments.Push(
ctx.dst->Assign(ctx.dst->MemberAccessor(wrapper_result, name), outval.value));
}
// Sort the struct members to satisfy HLSL interfacing matching rules.
std::sort(wrapper_struct_output_members.begin(), wrapper_struct_output_members.end(),
StructMemberComparator);
utils::Vector<const ast::StructMember*, 8> members;
for (auto& mem : wrapper_struct_output_members) {
members.Push(mem.member);
}
// Create the new struct type.
auto* out_struct = ctx.dst->create<ast::Struct>(ctx.dst->Sym(), members, utils::Empty);
ctx.InsertBefore(ctx.src->AST().GlobalDeclarations(), func_ast, out_struct);
// Create the output struct object, assign its members, and return it.
auto* result_object = ctx.dst->Var(wrapper_result, ctx.dst->ty.type_name(out_struct->name));
wrapper_body.Push(ctx.dst->Decl(result_object));
for (auto* assignment : assignments) {
wrapper_body.Push(assignment);
}
wrapper_body.Push(ctx.dst->Return(wrapper_result));
return out_struct;
}
/// Create and assign the wrapper function's output variables.
void CreateGlobalOutputVariables() {
for (auto& outval : wrapper_output_values) {
// Disable validation for use of the `output` address space.
utils::Vector<const ast::Attribute*, 8> attributes = std::move(outval.attributes);
attributes.Push(ctx.dst->Disable(ast::DisabledValidation::kIgnoreAddressSpace));
// Create the global variable and assign it the output value.
auto name = ctx.dst->Symbols().New(outval.name);
auto* type = outval.type;
const ast::Expression* lhs = ctx.dst->Expr(name);
if (HasSampleMask(attributes)) {
// Vulkan requires the type of a SampleMask builtin to be an array.
// Declare it as array<u32, 1> and then store to the first element.
type = ctx.dst->ty.array(type, 1_u);
lhs = ctx.dst->IndexAccessor(lhs, 0_i);
}
ctx.dst->GlobalVar(name, type, ast::AddressSpace::kOut, std::move(attributes));
wrapper_body.Push(ctx.dst->Assign(lhs, outval.value));
}
}
// Recreate the original function without entry point attributes and call it.
/// @returns the inner function call expression
const ast::CallExpression* CallInnerFunction() {
Symbol inner_name;
if (cfg.shader_style == ShaderStyle::kGlsl) {
// In GLSL, clone the original entry point name, as the wrapper will be
// called "main".
inner_name = ctx.Clone(func_ast->symbol);
} else {
// Add a suffix to the function name, as the wrapper function will take
// the original entry point name.
auto ep_name = ctx.src->Symbols().NameFor(func_ast->symbol);
inner_name = ctx.dst->Symbols().New(ep_name + "_inner");
}
// Clone everything, dropping the function and return type attributes.
// The parameter attributes will have already been stripped during
// processing.
auto* inner_function = ctx.dst->create<ast::Function>(
inner_name, ctx.Clone(func_ast->params), ctx.Clone(func_ast->return_type),
ctx.Clone(func_ast->body), utils::Empty, utils::Empty);
ctx.Replace(func_ast, inner_function);
// Call the function.
return ctx.dst->Call(inner_function->symbol, inner_call_parameters);
}
/// Process the entry point function.
void Process() {
bool needs_fixed_sample_mask = false;
bool needs_vertex_point_size = false;
if (func_ast->PipelineStage() == ast::PipelineStage::kFragment &&
cfg.fixed_sample_mask != 0xFFFFFFFF) {
needs_fixed_sample_mask = true;
}
if (func_ast->PipelineStage() == ast::PipelineStage::kVertex &&
cfg.emit_vertex_point_size) {
needs_vertex_point_size = true;
}
// Exit early if there is no shader IO to handle.
if (func_sem->Parameters().Length() == 0 && func_sem->ReturnType()->Is<type::Void>() &&
!needs_fixed_sample_mask && !needs_vertex_point_size &&
cfg.shader_style != ShaderStyle::kGlsl) {
return;
}
// Process the entry point parameters, collecting those that need to be
// aggregated into a single structure.
if (!func_sem->Parameters().IsEmpty()) {
for (auto* param : func_sem->Parameters()) {
if (param->Type()->Is<sem::Struct>()) {
ProcessStructParameter(param);
} else {
ProcessNonStructParameter(param);
}
}
// Create a structure parameter for the outer entry point if necessary.
if (!wrapper_struct_param_members.IsEmpty()) {
CreateInputStruct();
}
}
// Recreate the original function and call it.
auto* call_inner = CallInnerFunction();
// Process the return type, and start building the wrapper function body.
std::function<const ast::Type*()> wrapper_ret_type = [&] { return ctx.dst->ty.void_(); };
if (func_sem->ReturnType()->Is<type::Void>()) {
// The function call is just a statement with no result.
wrapper_body.Push(ctx.dst->CallStmt(call_inner));
} else {
// Capture the result of calling the original function.
auto* inner_result = ctx.dst->Let(ctx.dst->Symbols().New("inner_result"), call_inner);
wrapper_body.Push(ctx.dst->Decl(inner_result));
// Process the original return type to determine the outputs that the
// outer function needs to produce.
ProcessReturnType(func_sem->ReturnType(), inner_result->symbol);
}
// Add a fixed sample mask, if necessary.
if (needs_fixed_sample_mask) {
AddFixedSampleMask();
}
// Add the pointsize builtin, if necessary.
if (needs_vertex_point_size) {
AddVertexPointSize();
}
// Produce the entry point outputs, if necessary.
if (!wrapper_output_values.IsEmpty()) {
if (cfg.shader_style == ShaderStyle::kSpirv || cfg.shader_style == ShaderStyle::kGlsl) {
CreateGlobalOutputVariables();
} else {
auto* output_struct = CreateOutputStruct();
wrapper_ret_type = [&, output_struct] {
return ctx.dst->ty.type_name(output_struct->name);
};
}
}
if (cfg.shader_style == ShaderStyle::kGlsl &&
func_ast->PipelineStage() == ast::PipelineStage::kVertex) {
auto* pos_y = GLPosition("y");
auto* negate_pos_y =
ctx.dst->create<ast::UnaryOpExpression>(ast::UnaryOp::kNegation, GLPosition("y"));
wrapper_body.Push(ctx.dst->Assign(pos_y, negate_pos_y));
auto* two_z = ctx.dst->Mul(ctx.dst->Expr(2_f), GLPosition("z"));
auto* fixed_z = ctx.dst->Sub(two_z, GLPosition("w"));
wrapper_body.Push(ctx.dst->Assign(GLPosition("z"), fixed_z));
}
// Create the wrapper entry point function.
// For GLSL, use "main", otherwise take the name of the original
// entry point function.
Symbol name;
if (cfg.shader_style == ShaderStyle::kGlsl) {
name = ctx.dst->Symbols().New("main");
} else {
name = ctx.Clone(func_ast->symbol);
}
auto* wrapper_func = ctx.dst->create<ast::Function>(
name, wrapper_ep_parameters, wrapper_ret_type(), ctx.dst->Block(wrapper_body),
ctx.Clone(func_ast->attributes), utils::Empty);
ctx.InsertAfter(ctx.src->AST().GlobalDeclarations(), func_ast, wrapper_func);
}
/// Retrieve the gl_ string corresponding to a builtin.
/// @param builtin the builtin
/// @param stage the current pipeline stage
/// @param address_space the address space (input or output)
/// @returns the gl_ string corresponding to that builtin
const char* GLSLBuiltinToString(ast::BuiltinValue builtin,
ast::PipelineStage stage,
ast::AddressSpace address_space) {
switch (builtin) {
case ast::BuiltinValue::kPosition:
switch (stage) {
case ast::PipelineStage::kVertex:
return "gl_Position";
case ast::PipelineStage::kFragment:
return "gl_FragCoord";
default:
return "";
}
case ast::BuiltinValue::kVertexIndex:
return "gl_VertexID";
case ast::BuiltinValue::kInstanceIndex:
return "gl_InstanceID";
case ast::BuiltinValue::kFrontFacing:
return "gl_FrontFacing";
case ast::BuiltinValue::kFragDepth:
return "gl_FragDepth";
case ast::BuiltinValue::kLocalInvocationId:
return "gl_LocalInvocationID";
case ast::BuiltinValue::kLocalInvocationIndex:
return "gl_LocalInvocationIndex";
case ast::BuiltinValue::kGlobalInvocationId:
return "gl_GlobalInvocationID";
case ast::BuiltinValue::kNumWorkgroups:
return "gl_NumWorkGroups";
case ast::BuiltinValue::kWorkgroupId:
return "gl_WorkGroupID";
case ast::BuiltinValue::kSampleIndex:
return "gl_SampleID";
case ast::BuiltinValue::kSampleMask:
if (address_space == ast::AddressSpace::kIn) {
return "gl_SampleMaskIn";
} else {
return "gl_SampleMask";
}
default:
return "";
}
}
/// Convert a given GLSL builtin value to the corresponding WGSL value.
/// @param builtin the builtin variable
/// @param value the value to convert
/// @param ast_type (inout) the incoming WGSL and outgoing GLSL types
/// @returns an expression representing the GLSL builtin converted to what
/// WGSL expects
const ast::Expression* FromGLSLBuiltin(ast::BuiltinValue builtin,
const ast::Expression* value,
const ast::Type*& ast_type) {
switch (builtin) {
case ast::BuiltinValue::kVertexIndex:
case ast::BuiltinValue::kInstanceIndex:
case ast::BuiltinValue::kSampleIndex:
// GLSL uses i32 for these, so bitcast to u32.
value = ctx.dst->Bitcast(ast_type, value);
ast_type = ctx.dst->ty.i32();
break;
case ast::BuiltinValue::kSampleMask:
// gl_SampleMask is an array of i32. Retrieve the first element and
// bitcast it to u32.
value = ctx.dst->IndexAccessor(value, 0_i);
value = ctx.dst->Bitcast(ast_type, value);
ast_type = ctx.dst->ty.array(ctx.dst->ty.i32(), 1_u);
break;
default:
break;
}
return value;
}
/// Convert a given WGSL value to the type expected when assigning to a
/// GLSL builtin.
/// @param builtin the builtin variable
/// @param value the value to convert
/// @param type (out) the type to which the value was converted
/// @returns the converted value which can be assigned to the GLSL builtin
const ast::Expression* ToGLSLBuiltin(ast::BuiltinValue builtin,
const ast::Expression* value,
const type::Type*& type) {
switch (builtin) {
case ast::BuiltinValue::kVertexIndex:
case ast::BuiltinValue::kInstanceIndex:
case ast::BuiltinValue::kSampleIndex:
case ast::BuiltinValue::kSampleMask:
type = ctx.dst->create<type::I32>();
value = ctx.dst->Bitcast(CreateASTTypeFor(ctx, type), value);
break;
default:
break;
}
return value;
}
};
Transform::ApplyResult CanonicalizeEntryPointIO::Apply(const Program* src,
const DataMap& inputs,
DataMap&) const {
ProgramBuilder b;
CloneContext ctx{&b, src, /* auto_clone_symbols */ true};
auto* cfg = inputs.Get<Config>();
if (cfg == nullptr) {
b.Diagnostics().add_error(diag::System::Transform,
"missing transform data for " + std::string(TypeInfo().name));
return Program(std::move(b));
}
// Remove entry point IO attributes from struct declarations.
// New structures will be created for each entry point, as necessary.
for (auto* ty : src->AST().TypeDecls()) {
if (auto* struct_ty = ty->As<ast::Struct>()) {
for (auto* member : struct_ty->members) {
for (auto* attr : member->attributes) {
if (IsShaderIOAttribute(attr)) {
ctx.Remove(member->attributes, attr);
}
}
}
}
}
for (auto* func_ast : src->AST().Functions()) {
if (!func_ast->IsEntryPoint()) {
continue;
}
State state(ctx, *cfg, func_ast);
state.Process();
}
ctx.Clone();
return Program(std::move(b));
}
CanonicalizeEntryPointIO::Config::Config(ShaderStyle style,
uint32_t sample_mask,
bool emit_point_size)
: shader_style(style),
fixed_sample_mask(sample_mask),
emit_vertex_point_size(emit_point_size) {}
CanonicalizeEntryPointIO::Config::Config(const Config&) = default;
CanonicalizeEntryPointIO::Config::~Config() = default;
} // namespace tint::transform