blob: 3c99d880c9a715ddbd7c77e9923cdd560cc2344e [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/d3d12/TextureD3D12.h"
#include <algorithm>
#include <utility>
#include "dawn/common/Constants.h"
#include "dawn/common/Math.h"
#include "dawn/native/DynamicUploader.h"
#include "dawn/native/EnumMaskIterator.h"
#include "dawn/native/Error.h"
#include "dawn/native/IntegerTypes.h"
#include "dawn/native/ResourceMemoryAllocation.h"
#include "dawn/native/ToBackend.h"
#include "dawn/native/d3d/D3DError.h"
#include "dawn/native/d3d12/BufferD3D12.h"
#include "dawn/native/d3d12/CommandRecordingContext.h"
#include "dawn/native/d3d12/D3D11on12Util.h"
#include "dawn/native/d3d12/DeviceD3D12.h"
#include "dawn/native/d3d12/Forward.h"
#include "dawn/native/d3d12/HeapD3D12.h"
#include "dawn/native/d3d12/ResourceAllocatorManagerD3D12.h"
#include "dawn/native/d3d12/StagingDescriptorAllocatorD3D12.h"
#include "dawn/native/d3d12/TextureCopySplitter.h"
#include "dawn/native/d3d12/UtilsD3D12.h"
namespace dawn::native::d3d12 {
namespace {
D3D12_RESOURCE_STATES D3D12TextureUsage(wgpu::TextureUsage usage, const Format& format) {
D3D12_RESOURCE_STATES resourceState = D3D12_RESOURCE_STATE_COMMON;
if (usage & kPresentTextureUsage) {
// The present usage is only used internally by the swapchain and is never used in
// combination with other usages.
ASSERT(usage == kPresentTextureUsage);
return D3D12_RESOURCE_STATE_PRESENT;
}
if (usage & wgpu::TextureUsage::CopySrc) {
resourceState |= D3D12_RESOURCE_STATE_COPY_SOURCE;
}
if (usage & wgpu::TextureUsage::CopyDst) {
resourceState |= D3D12_RESOURCE_STATE_COPY_DEST;
}
if (usage & (wgpu::TextureUsage::TextureBinding)) {
resourceState |= (D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE |
D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE);
}
if (usage & wgpu::TextureUsage::StorageBinding) {
resourceState |= D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
}
if (usage & wgpu::TextureUsage::RenderAttachment) {
if (format.HasDepthOrStencil()) {
resourceState |= D3D12_RESOURCE_STATE_DEPTH_WRITE;
} else {
resourceState |= D3D12_RESOURCE_STATE_RENDER_TARGET;
}
}
if (usage & kReadOnlyRenderAttachment) {
// There is no STENCIL_READ state. Readonly for stencil is bundled with DEPTH_READ.
resourceState |= D3D12_RESOURCE_STATE_DEPTH_READ;
}
return resourceState;
}
D3D12_RESOURCE_FLAGS D3D12ResourceFlags(wgpu::TextureUsage usage, const Format& format) {
D3D12_RESOURCE_FLAGS flags = D3D12_RESOURCE_FLAG_NONE;
if (usage & wgpu::TextureUsage::StorageBinding) {
flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
if (usage & wgpu::TextureUsage::RenderAttachment) {
if (format.HasDepthOrStencil()) {
flags |= D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;
} else {
flags |= D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;
}
}
ASSERT(!(flags & D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL) ||
flags == D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL);
return flags;
}
D3D12_RESOURCE_DIMENSION D3D12TextureDimension(wgpu::TextureDimension dimension) {
switch (dimension) {
case wgpu::TextureDimension::e1D:
return D3D12_RESOURCE_DIMENSION_TEXTURE1D;
case wgpu::TextureDimension::e2D:
return D3D12_RESOURCE_DIMENSION_TEXTURE2D;
case wgpu::TextureDimension::e3D:
return D3D12_RESOURCE_DIMENSION_TEXTURE3D;
}
}
DXGI_FORMAT D3D12TypelessTextureFormat(wgpu::TextureFormat format) {
switch (format) {
case wgpu::TextureFormat::R8Unorm:
case wgpu::TextureFormat::R8Snorm:
case wgpu::TextureFormat::R8Uint:
case wgpu::TextureFormat::R8Sint:
return DXGI_FORMAT_R8_TYPELESS;
case wgpu::TextureFormat::R16Uint:
case wgpu::TextureFormat::R16Sint:
case wgpu::TextureFormat::R16Float:
case wgpu::TextureFormat::Depth16Unorm:
return DXGI_FORMAT_R16_TYPELESS;
case wgpu::TextureFormat::RG8Unorm:
case wgpu::TextureFormat::RG8Snorm:
case wgpu::TextureFormat::RG8Uint:
case wgpu::TextureFormat::RG8Sint:
return DXGI_FORMAT_R8G8_TYPELESS;
case wgpu::TextureFormat::R32Uint:
case wgpu::TextureFormat::R32Sint:
case wgpu::TextureFormat::R32Float:
return DXGI_FORMAT_R32_TYPELESS;
case wgpu::TextureFormat::RG16Uint:
case wgpu::TextureFormat::RG16Sint:
case wgpu::TextureFormat::RG16Float:
return DXGI_FORMAT_R16G16_TYPELESS;
case wgpu::TextureFormat::RGBA8Unorm:
case wgpu::TextureFormat::RGBA8UnormSrgb:
case wgpu::TextureFormat::RGBA8Snorm:
case wgpu::TextureFormat::RGBA8Uint:
case wgpu::TextureFormat::RGBA8Sint:
return DXGI_FORMAT_R8G8B8A8_TYPELESS;
case wgpu::TextureFormat::BGRA8Unorm:
case wgpu::TextureFormat::BGRA8UnormSrgb:
return DXGI_FORMAT_B8G8R8A8_TYPELESS;
case wgpu::TextureFormat::RGB10A2Unorm:
return DXGI_FORMAT_R10G10B10A2_TYPELESS;
case wgpu::TextureFormat::RG11B10Ufloat:
return DXGI_FORMAT_R11G11B10_FLOAT;
case wgpu::TextureFormat::RGB9E5Ufloat:
return DXGI_FORMAT_R9G9B9E5_SHAREDEXP;
case wgpu::TextureFormat::RG32Uint:
case wgpu::TextureFormat::RG32Sint:
case wgpu::TextureFormat::RG32Float:
return DXGI_FORMAT_R32G32_TYPELESS;
case wgpu::TextureFormat::RGBA16Uint:
case wgpu::TextureFormat::RGBA16Sint:
case wgpu::TextureFormat::RGBA16Float:
return DXGI_FORMAT_R16G16B16A16_TYPELESS;
case wgpu::TextureFormat::RGBA32Uint:
case wgpu::TextureFormat::RGBA32Sint:
case wgpu::TextureFormat::RGBA32Float:
return DXGI_FORMAT_R32G32B32A32_TYPELESS;
case wgpu::TextureFormat::Depth32Float:
case wgpu::TextureFormat::Depth24Plus:
return DXGI_FORMAT_R32_TYPELESS;
// DXGI_FORMAT_D24_UNORM_S8_UINT is the smallest format supported on D3D12 that has stencil,
// for which the typeless equivalent is DXGI_FORMAT_R24G8_TYPELESS.
case wgpu::TextureFormat::Stencil8:
return DXGI_FORMAT_R24G8_TYPELESS;
case wgpu::TextureFormat::Depth24PlusStencil8:
case wgpu::TextureFormat::Depth32FloatStencil8:
return DXGI_FORMAT_R32G8X24_TYPELESS;
case wgpu::TextureFormat::BC1RGBAUnorm:
case wgpu::TextureFormat::BC1RGBAUnormSrgb:
return DXGI_FORMAT_BC1_TYPELESS;
case wgpu::TextureFormat::BC2RGBAUnorm:
case wgpu::TextureFormat::BC2RGBAUnormSrgb:
return DXGI_FORMAT_BC2_TYPELESS;
case wgpu::TextureFormat::BC3RGBAUnorm:
case wgpu::TextureFormat::BC3RGBAUnormSrgb:
return DXGI_FORMAT_BC3_TYPELESS;
case wgpu::TextureFormat::BC4RSnorm:
case wgpu::TextureFormat::BC4RUnorm:
return DXGI_FORMAT_BC4_TYPELESS;
case wgpu::TextureFormat::BC5RGSnorm:
case wgpu::TextureFormat::BC5RGUnorm:
return DXGI_FORMAT_BC5_TYPELESS;
case wgpu::TextureFormat::BC6HRGBFloat:
case wgpu::TextureFormat::BC6HRGBUfloat:
return DXGI_FORMAT_BC6H_TYPELESS;
case wgpu::TextureFormat::BC7RGBAUnorm:
case wgpu::TextureFormat::BC7RGBAUnormSrgb:
return DXGI_FORMAT_BC7_TYPELESS;
case wgpu::TextureFormat::ETC2RGB8Unorm:
case wgpu::TextureFormat::ETC2RGB8UnormSrgb:
case wgpu::TextureFormat::ETC2RGB8A1Unorm:
case wgpu::TextureFormat::ETC2RGB8A1UnormSrgb:
case wgpu::TextureFormat::ETC2RGBA8Unorm:
case wgpu::TextureFormat::ETC2RGBA8UnormSrgb:
case wgpu::TextureFormat::EACR11Unorm:
case wgpu::TextureFormat::EACR11Snorm:
case wgpu::TextureFormat::EACRG11Unorm:
case wgpu::TextureFormat::EACRG11Snorm:
case wgpu::TextureFormat::ASTC4x4Unorm:
case wgpu::TextureFormat::ASTC4x4UnormSrgb:
case wgpu::TextureFormat::ASTC5x4Unorm:
case wgpu::TextureFormat::ASTC5x4UnormSrgb:
case wgpu::TextureFormat::ASTC5x5Unorm:
case wgpu::TextureFormat::ASTC5x5UnormSrgb:
case wgpu::TextureFormat::ASTC6x5Unorm:
case wgpu::TextureFormat::ASTC6x5UnormSrgb:
case wgpu::TextureFormat::ASTC6x6Unorm:
case wgpu::TextureFormat::ASTC6x6UnormSrgb:
case wgpu::TextureFormat::ASTC8x5Unorm:
case wgpu::TextureFormat::ASTC8x5UnormSrgb:
case wgpu::TextureFormat::ASTC8x6Unorm:
case wgpu::TextureFormat::ASTC8x6UnormSrgb:
case wgpu::TextureFormat::ASTC8x8Unorm:
case wgpu::TextureFormat::ASTC8x8UnormSrgb:
case wgpu::TextureFormat::ASTC10x5Unorm:
case wgpu::TextureFormat::ASTC10x5UnormSrgb:
case wgpu::TextureFormat::ASTC10x6Unorm:
case wgpu::TextureFormat::ASTC10x6UnormSrgb:
case wgpu::TextureFormat::ASTC10x8Unorm:
case wgpu::TextureFormat::ASTC10x8UnormSrgb:
case wgpu::TextureFormat::ASTC10x10Unorm:
case wgpu::TextureFormat::ASTC10x10UnormSrgb:
case wgpu::TextureFormat::ASTC12x10Unorm:
case wgpu::TextureFormat::ASTC12x10UnormSrgb:
case wgpu::TextureFormat::ASTC12x12Unorm:
case wgpu::TextureFormat::ASTC12x12UnormSrgb:
case wgpu::TextureFormat::R8BG8Biplanar420Unorm:
case wgpu::TextureFormat::Undefined:
UNREACHABLE();
}
}
} // namespace
DXGI_FORMAT D3D12TextureFormat(wgpu::TextureFormat format) {
switch (format) {
case wgpu::TextureFormat::R8Unorm:
return DXGI_FORMAT_R8_UNORM;
case wgpu::TextureFormat::R8Snorm:
return DXGI_FORMAT_R8_SNORM;
case wgpu::TextureFormat::R8Uint:
return DXGI_FORMAT_R8_UINT;
case wgpu::TextureFormat::R8Sint:
return DXGI_FORMAT_R8_SINT;
case wgpu::TextureFormat::R16Uint:
return DXGI_FORMAT_R16_UINT;
case wgpu::TextureFormat::R16Sint:
return DXGI_FORMAT_R16_SINT;
case wgpu::TextureFormat::R16Float:
return DXGI_FORMAT_R16_FLOAT;
case wgpu::TextureFormat::RG8Unorm:
return DXGI_FORMAT_R8G8_UNORM;
case wgpu::TextureFormat::RG8Snorm:
return DXGI_FORMAT_R8G8_SNORM;
case wgpu::TextureFormat::RG8Uint:
return DXGI_FORMAT_R8G8_UINT;
case wgpu::TextureFormat::RG8Sint:
return DXGI_FORMAT_R8G8_SINT;
case wgpu::TextureFormat::R32Uint:
return DXGI_FORMAT_R32_UINT;
case wgpu::TextureFormat::R32Sint:
return DXGI_FORMAT_R32_SINT;
case wgpu::TextureFormat::R32Float:
return DXGI_FORMAT_R32_FLOAT;
case wgpu::TextureFormat::RG16Uint:
return DXGI_FORMAT_R16G16_UINT;
case wgpu::TextureFormat::RG16Sint:
return DXGI_FORMAT_R16G16_SINT;
case wgpu::TextureFormat::RG16Float:
return DXGI_FORMAT_R16G16_FLOAT;
case wgpu::TextureFormat::RGBA8Unorm:
return DXGI_FORMAT_R8G8B8A8_UNORM;
case wgpu::TextureFormat::RGBA8UnormSrgb:
return DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
case wgpu::TextureFormat::RGBA8Snorm:
return DXGI_FORMAT_R8G8B8A8_SNORM;
case wgpu::TextureFormat::RGBA8Uint:
return DXGI_FORMAT_R8G8B8A8_UINT;
case wgpu::TextureFormat::RGBA8Sint:
return DXGI_FORMAT_R8G8B8A8_SINT;
case wgpu::TextureFormat::BGRA8Unorm:
return DXGI_FORMAT_B8G8R8A8_UNORM;
case wgpu::TextureFormat::BGRA8UnormSrgb:
return DXGI_FORMAT_B8G8R8A8_UNORM_SRGB;
case wgpu::TextureFormat::RGB10A2Unorm:
return DXGI_FORMAT_R10G10B10A2_UNORM;
case wgpu::TextureFormat::RG11B10Ufloat:
return DXGI_FORMAT_R11G11B10_FLOAT;
case wgpu::TextureFormat::RGB9E5Ufloat:
return DXGI_FORMAT_R9G9B9E5_SHAREDEXP;
case wgpu::TextureFormat::RG32Uint:
return DXGI_FORMAT_R32G32_UINT;
case wgpu::TextureFormat::RG32Sint:
return DXGI_FORMAT_R32G32_SINT;
case wgpu::TextureFormat::RG32Float:
return DXGI_FORMAT_R32G32_FLOAT;
case wgpu::TextureFormat::RGBA16Uint:
return DXGI_FORMAT_R16G16B16A16_UINT;
case wgpu::TextureFormat::RGBA16Sint:
return DXGI_FORMAT_R16G16B16A16_SINT;
case wgpu::TextureFormat::RGBA16Float:
return DXGI_FORMAT_R16G16B16A16_FLOAT;
case wgpu::TextureFormat::RGBA32Uint:
return DXGI_FORMAT_R32G32B32A32_UINT;
case wgpu::TextureFormat::RGBA32Sint:
return DXGI_FORMAT_R32G32B32A32_SINT;
case wgpu::TextureFormat::RGBA32Float:
return DXGI_FORMAT_R32G32B32A32_FLOAT;
case wgpu::TextureFormat::Depth16Unorm:
return DXGI_FORMAT_D16_UNORM;
case wgpu::TextureFormat::Depth32Float:
case wgpu::TextureFormat::Depth24Plus:
return DXGI_FORMAT_D32_FLOAT;
// DXGI_FORMAT_D24_UNORM_S8_UINT is the smallest format supported on D3D12 that has stencil.
case wgpu::TextureFormat::Stencil8:
return DXGI_FORMAT_D24_UNORM_S8_UINT;
case wgpu::TextureFormat::Depth24PlusStencil8:
case wgpu::TextureFormat::Depth32FloatStencil8:
return DXGI_FORMAT_D32_FLOAT_S8X24_UINT;
case wgpu::TextureFormat::BC1RGBAUnorm:
return DXGI_FORMAT_BC1_UNORM;
case wgpu::TextureFormat::BC1RGBAUnormSrgb:
return DXGI_FORMAT_BC1_UNORM_SRGB;
case wgpu::TextureFormat::BC2RGBAUnorm:
return DXGI_FORMAT_BC2_UNORM;
case wgpu::TextureFormat::BC2RGBAUnormSrgb:
return DXGI_FORMAT_BC2_UNORM_SRGB;
case wgpu::TextureFormat::BC3RGBAUnorm:
return DXGI_FORMAT_BC3_UNORM;
case wgpu::TextureFormat::BC3RGBAUnormSrgb:
return DXGI_FORMAT_BC3_UNORM_SRGB;
case wgpu::TextureFormat::BC4RSnorm:
return DXGI_FORMAT_BC4_SNORM;
case wgpu::TextureFormat::BC4RUnorm:
return DXGI_FORMAT_BC4_UNORM;
case wgpu::TextureFormat::BC5RGSnorm:
return DXGI_FORMAT_BC5_SNORM;
case wgpu::TextureFormat::BC5RGUnorm:
return DXGI_FORMAT_BC5_UNORM;
case wgpu::TextureFormat::BC6HRGBFloat:
return DXGI_FORMAT_BC6H_SF16;
case wgpu::TextureFormat::BC6HRGBUfloat:
return DXGI_FORMAT_BC6H_UF16;
case wgpu::TextureFormat::BC7RGBAUnorm:
return DXGI_FORMAT_BC7_UNORM;
case wgpu::TextureFormat::BC7RGBAUnormSrgb:
return DXGI_FORMAT_BC7_UNORM_SRGB;
case wgpu::TextureFormat::R8BG8Biplanar420Unorm:
return DXGI_FORMAT_NV12;
case wgpu::TextureFormat::ETC2RGB8Unorm:
case wgpu::TextureFormat::ETC2RGB8UnormSrgb:
case wgpu::TextureFormat::ETC2RGB8A1Unorm:
case wgpu::TextureFormat::ETC2RGB8A1UnormSrgb:
case wgpu::TextureFormat::ETC2RGBA8Unorm:
case wgpu::TextureFormat::ETC2RGBA8UnormSrgb:
case wgpu::TextureFormat::EACR11Unorm:
case wgpu::TextureFormat::EACR11Snorm:
case wgpu::TextureFormat::EACRG11Unorm:
case wgpu::TextureFormat::EACRG11Snorm:
case wgpu::TextureFormat::ASTC4x4Unorm:
case wgpu::TextureFormat::ASTC4x4UnormSrgb:
case wgpu::TextureFormat::ASTC5x4Unorm:
case wgpu::TextureFormat::ASTC5x4UnormSrgb:
case wgpu::TextureFormat::ASTC5x5Unorm:
case wgpu::TextureFormat::ASTC5x5UnormSrgb:
case wgpu::TextureFormat::ASTC6x5Unorm:
case wgpu::TextureFormat::ASTC6x5UnormSrgb:
case wgpu::TextureFormat::ASTC6x6Unorm:
case wgpu::TextureFormat::ASTC6x6UnormSrgb:
case wgpu::TextureFormat::ASTC8x5Unorm:
case wgpu::TextureFormat::ASTC8x5UnormSrgb:
case wgpu::TextureFormat::ASTC8x6Unorm:
case wgpu::TextureFormat::ASTC8x6UnormSrgb:
case wgpu::TextureFormat::ASTC8x8Unorm:
case wgpu::TextureFormat::ASTC8x8UnormSrgb:
case wgpu::TextureFormat::ASTC10x5Unorm:
case wgpu::TextureFormat::ASTC10x5UnormSrgb:
case wgpu::TextureFormat::ASTC10x6Unorm:
case wgpu::TextureFormat::ASTC10x6UnormSrgb:
case wgpu::TextureFormat::ASTC10x8Unorm:
case wgpu::TextureFormat::ASTC10x8UnormSrgb:
case wgpu::TextureFormat::ASTC10x10Unorm:
case wgpu::TextureFormat::ASTC10x10UnormSrgb:
case wgpu::TextureFormat::ASTC12x10Unorm:
case wgpu::TextureFormat::ASTC12x10UnormSrgb:
case wgpu::TextureFormat::ASTC12x12Unorm:
case wgpu::TextureFormat::ASTC12x12UnormSrgb:
case wgpu::TextureFormat::Undefined:
UNREACHABLE();
}
}
MaybeError ValidateTextureDescriptorCanBeWrapped(const TextureDescriptor* descriptor) {
DAWN_INVALID_IF(descriptor->dimension != wgpu::TextureDimension::e2D,
"Texture dimension (%s) is not %s.", descriptor->dimension,
wgpu::TextureDimension::e2D);
DAWN_INVALID_IF(descriptor->mipLevelCount != 1, "Mip level count (%u) is not 1.",
descriptor->mipLevelCount);
DAWN_INVALID_IF(descriptor->size.depthOrArrayLayers != 1, "Array layer count (%u) is not 1.",
descriptor->size.depthOrArrayLayers);
DAWN_INVALID_IF(descriptor->sampleCount != 1, "Sample count (%u) is not 1.",
descriptor->sampleCount);
return {};
}
MaybeError ValidateD3D12TextureCanBeWrapped(ID3D12Resource* d3d12Resource,
const TextureDescriptor* dawnDescriptor) {
const D3D12_RESOURCE_DESC d3dDescriptor = d3d12Resource->GetDesc();
DAWN_INVALID_IF(
(dawnDescriptor->size.width != d3dDescriptor.Width) ||
(dawnDescriptor->size.height != d3dDescriptor.Height) ||
(dawnDescriptor->size.depthOrArrayLayers != 1),
"D3D12 texture size (Width: %u, Height: %u, DepthOrArraySize: 1) doesn't match Dawn "
"descriptor size (width: %u, height: %u, depthOrArrayLayers: %u).",
d3dDescriptor.Width, d3dDescriptor.Height, dawnDescriptor->size.width,
dawnDescriptor->size.height, dawnDescriptor->size.depthOrArrayLayers);
const DXGI_FORMAT dxgiFormatFromDescriptor = D3D12TextureFormat(dawnDescriptor->format);
DAWN_INVALID_IF(dxgiFormatFromDescriptor != d3dDescriptor.Format,
"D3D12 texture format (%x) is not compatible with Dawn descriptor format (%s).",
d3dDescriptor.Format, dawnDescriptor->format);
DAWN_INVALID_IF(d3dDescriptor.MipLevels != 1,
"D3D12 texture number of miplevels (%u) is not 1.", d3dDescriptor.MipLevels);
DAWN_INVALID_IF(d3dDescriptor.DepthOrArraySize != 1, "D3D12 texture array size (%u) is not 1.",
d3dDescriptor.DepthOrArraySize);
// Shared textures cannot be multi-sample so no need to check those.
ASSERT(d3dDescriptor.SampleDesc.Count == 1);
ASSERT(d3dDescriptor.SampleDesc.Quality == 0);
return {};
}
// https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_shared_resource_compatibility_tier
MaybeError ValidateD3D12VideoTextureCanBeShared(Device* device, DXGI_FORMAT textureFormat) {
const bool supportsSharedResourceCapabilityTier1 =
device->GetDeviceInfo().supportsSharedResourceCapabilityTier1;
switch (textureFormat) {
// MSDN docs are not correct, NV12 requires at-least tier 1.
case DXGI_FORMAT_NV12:
if (supportsSharedResourceCapabilityTier1) {
return {};
}
break;
default:
break;
}
return DAWN_VALIDATION_ERROR("DXGI format does not support cross-API sharing.");
}
// static
ResultOrError<Ref<Texture>> Texture::Create(Device* device, const TextureDescriptor* descriptor) {
Ref<Texture> dawnTexture =
AcquireRef(new Texture(device, descriptor, TextureState::OwnedInternal));
DAWN_INVALID_IF(dawnTexture->GetFormat().IsMultiPlanar(),
"Cannot create a multi-planar formatted texture directly");
DAWN_TRY(dawnTexture->InitializeAsInternalTexture());
return std::move(dawnTexture);
}
// static
ResultOrError<Ref<Texture>> Texture::CreateExternalImage(
Device* device,
const TextureDescriptor* descriptor,
ComPtr<ID3D12Resource> d3d12Texture,
std::vector<Ref<Fence>> waitFences,
Ref<D3D11on12ResourceCacheEntry> d3d11on12Resource,
bool isSwapChainTexture,
bool isInitialized) {
Ref<Texture> dawnTexture =
AcquireRef(new Texture(device, descriptor, TextureState::OwnedExternal));
DAWN_TRY(
dawnTexture->InitializeAsExternalTexture(std::move(d3d12Texture), std::move(waitFences),
std::move(d3d11on12Resource), isSwapChainTexture));
// Importing a multi-planar format must be initialized. This is required because
// a shared multi-planar format cannot be initialized by Dawn.
DAWN_INVALID_IF(
!isInitialized && dawnTexture->GetFormat().IsMultiPlanar(),
"Cannot create a texture with a multi-planar format (%s) with uninitialized data.",
dawnTexture->GetFormat().format);
dawnTexture->SetIsSubresourceContentInitialized(isInitialized,
dawnTexture->GetAllSubresources());
return std::move(dawnTexture);
}
// static
ResultOrError<Ref<Texture>> Texture::Create(Device* device,
const TextureDescriptor* descriptor,
ComPtr<ID3D12Resource> d3d12Texture) {
Ref<Texture> dawnTexture =
AcquireRef(new Texture(device, descriptor, TextureState::OwnedExternal));
DAWN_TRY(dawnTexture->InitializeAsSwapChainTexture(std::move(d3d12Texture)));
return std::move(dawnTexture);
}
MaybeError Texture::InitializeAsExternalTexture(ComPtr<ID3D12Resource> d3d12Texture,
std::vector<Ref<Fence>> waitFences,
Ref<D3D11on12ResourceCacheEntry> d3d11on12Resource,
bool isSwapChainTexture) {
D3D12_RESOURCE_DESC desc = d3d12Texture->GetDesc();
mD3D12ResourceFlags = desc.Flags;
AllocationInfo info;
info.mMethod = AllocationMethod::kExternal;
// When creating the ResourceHeapAllocation, the resource heap is set to nullptr because the
// texture is owned externally. The texture's owning entity must remain responsible for
// memory management.
mResourceAllocation = {info, 0, std::move(d3d12Texture), nullptr};
mWaitFences = std::move(waitFences);
mD3D11on12Resource = std::move(d3d11on12Resource);
mSwapChainTexture = isSwapChainTexture;
SetLabelHelper("Dawn_ExternalTexture");
return {};
}
MaybeError Texture::InitializeAsInternalTexture() {
D3D12_RESOURCE_DESC resourceDescriptor;
resourceDescriptor.Dimension = D3D12TextureDimension(GetDimension());
resourceDescriptor.Alignment = 0;
const Extent3D& size = GetSize();
resourceDescriptor.Width = size.width;
resourceDescriptor.Height = size.height;
resourceDescriptor.DepthOrArraySize = size.depthOrArrayLayers;
Device* device = ToBackend(GetDevice());
bool applyForceClearCopyableDepthStencilTextureOnCreationToggle =
device->IsToggleEnabled(Toggle::D3D12ForceClearCopyableDepthStencilTextureOnCreation) &&
GetFormat().HasDepthOrStencil() && (GetInternalUsage() & wgpu::TextureUsage::CopyDst);
if (applyForceClearCopyableDepthStencilTextureOnCreationToggle) {
AddInternalUsage(wgpu::TextureUsage::RenderAttachment);
}
// This will need to be much more nuanced when WebGPU has
// texture view compatibility rules.
const bool needsTypelessFormat =
(GetDevice()->IsToggleEnabled(Toggle::D3D12AlwaysUseTypelessFormatsForCastableTexture) &&
GetViewFormats().any()) ||
(GetFormat().HasDepthOrStencil() &&
(GetInternalUsage() & wgpu::TextureUsage::TextureBinding) != 0);
DXGI_FORMAT dxgiFormat = needsTypelessFormat ? D3D12TypelessTextureFormat(GetFormat().format)
: D3D12TextureFormat(GetFormat().format);
resourceDescriptor.MipLevels = static_cast<UINT16>(GetNumMipLevels());
resourceDescriptor.Format = dxgiFormat;
resourceDescriptor.SampleDesc.Count = GetSampleCount();
resourceDescriptor.SampleDesc.Quality = 0;
resourceDescriptor.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
resourceDescriptor.Flags = D3D12ResourceFlags(GetInternalUsage(), GetFormat());
mD3D12ResourceFlags = resourceDescriptor.Flags;
uint32_t bytesPerBlock = 0;
if (GetFormat().IsColor()) {
bytesPerBlock = GetFormat().GetAspectInfo(wgpu::TextureAspect::All).block.byteSize;
}
bool forceAllocateAsCommittedResource =
(device->IsToggleEnabled(
Toggle::D3D12Allocate2DTextureWithCopyDstOrRenderAttachmentAsCommittedResource)) &&
GetDimension() == wgpu::TextureDimension::e2D &&
(GetInternalUsage() & (wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::RenderAttachment));
DAWN_TRY_ASSIGN(mResourceAllocation,
device->AllocateMemory(D3D12_HEAP_TYPE_DEFAULT, resourceDescriptor,
D3D12_RESOURCE_STATE_COMMON, bytesPerBlock,
forceAllocateAsCommittedResource));
SetLabelImpl();
if (applyForceClearCopyableDepthStencilTextureOnCreationToggle) {
CommandRecordingContext* commandContext;
DAWN_TRY_ASSIGN(commandContext, device->GetPendingCommandContext());
DAWN_TRY(ClearTexture(commandContext, GetAllSubresources(), TextureBase::ClearValue::Zero));
}
if (device->IsToggleEnabled(Toggle::NonzeroClearResourcesOnCreationForTesting)) {
CommandRecordingContext* commandContext;
DAWN_TRY_ASSIGN(commandContext, device->GetPendingCommandContext());
DAWN_TRY(
ClearTexture(commandContext, GetAllSubresources(), TextureBase::ClearValue::NonZero));
}
return {};
}
MaybeError Texture::InitializeAsSwapChainTexture(ComPtr<ID3D12Resource> d3d12Texture) {
AllocationInfo info;
info.mMethod = AllocationMethod::kExternal;
// When creating the ResourceHeapAllocation, the resource heap is set to nullptr because the
// texture is owned externally. The texture's owning entity must remain responsible for
// memory management.
mResourceAllocation = {info, 0, std::move(d3d12Texture), nullptr};
SetLabelHelper("Dawn_SwapChainTexture");
return {};
}
Texture::Texture(Device* device, const TextureDescriptor* descriptor, TextureState state)
: TextureBase(device, descriptor, state),
mSubresourceStateAndDecay(
GetFormat().aspects,
GetArrayLayers(),
GetNumMipLevels(),
{D3D12_RESOURCE_STATES::D3D12_RESOURCE_STATE_COMMON, kMaxExecutionSerial, false}) {}
Texture::~Texture() {}
void Texture::DestroyImpl() {
TextureBase::DestroyImpl();
ToBackend(GetDevice())->DeallocateMemory(mResourceAllocation);
// Set mSwapChainTexture to false to prevent ever calling ID3D12SharingContract::Present again.
mSwapChainTexture = false;
// Now that the texture has been destroyed, it should release the d3d11on12 resource refptr.
mD3D11on12Resource = nullptr;
}
ResultOrError<ExecutionSerial> Texture::EndAccess() {
ASSERT(mD3D11on12Resource == nullptr);
Device* device = ToBackend(GetDevice());
// Synchronize if texture access wasn't synchronized already due to ExecuteCommandLists.
if (!mSignalFenceValue.has_value()) {
// Needed to ensure that command allocator doesn't get destroyed before pending commands
// are submitted due to calling NextSerial(). No-op if there are no pending commands.
DAWN_TRY(device->ExecutePendingCommandContext());
// If there were pending commands that used this texture mSignalFenceValue will be set,
// but if it's still not set, generate a signal fence after waiting on wait fences.
if (!mSignalFenceValue.has_value()) {
DAWN_TRY(SynchronizeImportedTextureBeforeUse());
DAWN_TRY(SynchronizeImportedTextureAfterUse());
}
DAWN_TRY(device->NextSerial());
ASSERT(mSignalFenceValue.has_value());
}
ExecutionSerial ret = mSignalFenceValue.value();
ASSERT(ret <= device->GetLastSubmittedCommandSerial());
// Explicitly call reset() since std::move() on optional doesn't make it std::nullopt.
mSignalFenceValue.reset();
return ret;
}
DXGI_FORMAT Texture::GetD3D12Format() const {
return D3D12TextureFormat(GetFormat().format);
}
ID3D12Resource* Texture::GetD3D12Resource() const {
return mResourceAllocation.GetD3D12Resource();
}
D3D12_RESOURCE_FLAGS Texture::GetD3D12ResourceFlags() const {
return mD3D12ResourceFlags;
}
DXGI_FORMAT Texture::GetD3D12CopyableSubresourceFormat(Aspect aspect) const {
ASSERT(GetFormat().aspects & aspect);
switch (GetFormat().format) {
case wgpu::TextureFormat::Depth24PlusStencil8:
case wgpu::TextureFormat::Depth32FloatStencil8:
case wgpu::TextureFormat::Stencil8:
switch (aspect) {
case Aspect::Depth:
return DXGI_FORMAT_R32_FLOAT;
case Aspect::Stencil:
return DXGI_FORMAT_R8_UINT;
default:
UNREACHABLE();
}
default:
ASSERT(HasOneBit(GetFormat().aspects));
return GetD3D12Format();
}
}
MaybeError Texture::SynchronizeImportedTextureBeforeUse() {
if (mD3D11on12Resource != nullptr) {
DAWN_TRY(mD3D11on12Resource->AcquireKeyedMutex());
}
// Perform the wait only on the first call.
Device* device = ToBackend(GetDevice());
for (Ref<Fence>& fence : mWaitFences) {
DAWN_TRY(CheckHRESULT(device->GetCommandQueue()->Wait(fence->GetD3D12Fence(),
fence->GetFenceValue()),
"D3D12 fence wait"););
// Keep D3D12 fence alive since we'll clear the waitFences list below.
device->ReferenceUntilUnused(fence->GetD3D12Fence());
}
mWaitFences.clear();
return {};
}
MaybeError Texture::SynchronizeImportedTextureAfterUse() {
// In PIX's D3D12-only mode, there is no way to determine frame boundaries
// for WebGPU since Dawn does not manage DXGI swap chains. Without assistance,
// PIX will wait forever for a present that never happens.
// If we know we're dealing with a swapbuffer texture, inform PIX we've
// "presented" the texture so it can determine frame boundaries and use its
// contents for the UI.
Device* device = ToBackend(GetDevice());
if (mSwapChainTexture) {
ID3D12SharingContract* d3dSharingContract = device->GetSharingContract();
if (d3dSharingContract != nullptr) {
d3dSharingContract->Present(mResourceAllocation.GetD3D12Resource(), 0, 0);
}
}
if (mD3D11on12Resource != nullptr) {
DAWN_TRY(mD3D11on12Resource->ReleaseKeyedMutex());
} else {
// NextSerial() will be called after this - this is also checked in EndAccess().
mSignalFenceValue = device->GetPendingCommandSerial();
}
return {};
}
void Texture::TrackUsageAndTransitionNow(CommandRecordingContext* commandContext,
wgpu::TextureUsage usage,
const SubresourceRange& range) {
TrackUsageAndTransitionNow(commandContext, D3D12TextureUsage(usage, GetFormat()), range);
}
void Texture::TrackAllUsageAndTransitionNow(CommandRecordingContext* commandContext,
wgpu::TextureUsage usage) {
TrackUsageAndTransitionNow(commandContext, D3D12TextureUsage(usage, GetFormat()),
GetAllSubresources());
}
void Texture::TrackAllUsageAndTransitionNow(CommandRecordingContext* commandContext,
D3D12_RESOURCE_STATES newState) {
TrackUsageAndTransitionNow(commandContext, newState, GetAllSubresources());
}
void Texture::TrackUsageAndTransitionNow(CommandRecordingContext* commandContext,
D3D12_RESOURCE_STATES newState,
const SubresourceRange& range) {
if (mResourceAllocation.GetInfo().mMethod != AllocationMethod::kExternal) {
// Track the underlying heap to ensure residency.
Heap* heap = ToBackend(mResourceAllocation.GetResourceHeap());
commandContext->TrackHeapUsage(heap, GetDevice()->GetPendingCommandSerial());
}
std::vector<D3D12_RESOURCE_BARRIER> barriers;
// TODO(enga): Consider adding a Count helper.
uint32_t aspectCount = 0;
for (Aspect aspect : IterateEnumMask(range.aspects)) {
aspectCount++;
DAWN_UNUSED(aspect);
}
barriers.reserve(range.levelCount * range.layerCount * aspectCount);
TransitionUsageAndGetResourceBarrier(commandContext, &barriers, newState, range);
if (barriers.size()) {
commandContext->GetCommandList()->ResourceBarrier(barriers.size(), barriers.data());
}
}
void Texture::TransitionSubresourceRange(std::vector<D3D12_RESOURCE_BARRIER>* barriers,
const SubresourceRange& range,
StateAndDecay* state,
D3D12_RESOURCE_STATES newState,
ExecutionSerial pendingCommandSerial) const {
D3D12_RESOURCE_STATES lastState = state->lastState;
// If the transition is from-UAV-to-UAV, then a UAV barrier is needed.
// If one of the usages isn't UAV, then other barriers are used.
bool needsUAVBarrier = lastState == D3D12_RESOURCE_STATE_UNORDERED_ACCESS &&
newState == D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
if (needsUAVBarrier) {
D3D12_RESOURCE_BARRIER barrier;
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_UAV;
barrier.Flags = D3D12_RESOURCE_BARRIER_FLAG_NONE;
barrier.UAV.pResource = GetD3D12Resource();
barriers->push_back(barrier);
return;
}
// Reuse the subresource(s) directly and avoid transition when it isn't needed, and
// return false.
if (lastState == newState) {
return;
}
// The COMMON state represents a state where no write operations can be pending, and
// where all pixels are uncompressed. This makes it possible to transition to and
// from some states without synchronization (i.e. without an explicit
// ResourceBarrier call). Textures can be implicitly promoted to 1) a single write
// state, or 2) multiple read states. Textures will implicitly decay to the COMMON
// state when all of the following are true: 1) the texture is accessed on a command
// list, 2) the ExecuteCommandLists call that uses that command list has ended, and
// 3) the texture was promoted implicitly to a read-only state and is still in that
// state.
// https://docs.microsoft.com/en-us/windows/desktop/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12#implicit-state-transitions
// To track implicit decays, we must record the pending serial on which that
// transition will occur. When that texture is used again, the previously recorded
// serial must be compared to the last completed serial to determine if the texture
// has implicity decayed to the common state.
if (state->isValidToDecay && pendingCommandSerial > state->lastDecaySerial) {
lastState = D3D12_RESOURCE_STATE_COMMON;
}
// Update the tracked state.
state->lastState = newState;
// Destination states that qualify for an implicit promotion for a
// non-simultaneous-access texture: NON_PIXEL_SHADER_RESOURCE,
// PIXEL_SHADER_RESOURCE, COPY_SRC, COPY_DEST.
{
const D3D12_RESOURCE_STATES kD3D12PromotableReadOnlyStates =
D3D12_RESOURCE_STATE_COPY_SOURCE | D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE |
D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE;
if (lastState == D3D12_RESOURCE_STATE_COMMON) {
if (IsSubset(newState, kD3D12PromotableReadOnlyStates)) {
// Implicit texture state decays can only occur when the texture was implicitly
// transitioned to a read-only state. isValidToDecay is needed to differentiate
// between resources that were implictly or explicitly transitioned to a
// read-only state.
state->isValidToDecay = true;
state->lastDecaySerial = pendingCommandSerial;
return;
} else if (newState == D3D12_RESOURCE_STATE_COPY_DEST) {
state->isValidToDecay = false;
return;
}
}
}
D3D12_RESOURCE_BARRIER barrier;
barrier.Type = D3D12_RESOURCE_BARRIER_TYPE_TRANSITION;
barrier.Flags = D3D12_RESOURCE_BARRIER_FLAG_NONE;
barrier.Transition.pResource = GetD3D12Resource();
barrier.Transition.StateBefore = lastState;
barrier.Transition.StateAfter = newState;
bool isFullRange = range.baseArrayLayer == 0 && range.baseMipLevel == 0 &&
range.layerCount == GetArrayLayers() &&
range.levelCount == GetNumMipLevels() &&
range.aspects == GetFormat().aspects;
// Use a single transition for all subresources if possible.
if (isFullRange) {
barrier.Transition.Subresource = D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES;
barriers->push_back(barrier);
} else {
for (Aspect aspect : IterateEnumMask(range.aspects)) {
for (uint32_t arrayLayer = 0; arrayLayer < range.layerCount; ++arrayLayer) {
for (uint32_t mipLevel = 0; mipLevel < range.levelCount; ++mipLevel) {
barrier.Transition.Subresource = GetSubresourceIndex(
range.baseMipLevel + mipLevel, range.baseArrayLayer + arrayLayer, aspect);
barriers->push_back(barrier);
}
}
}
}
state->isValidToDecay = false;
}
void Texture::HandleTransitionSpecialCases(CommandRecordingContext* commandContext) {
// Externally allocated textures can be written from other graphics queues. Hence, they must be
// acquired before command list submission to ensure work from the other queues has finished.
// See CommandRecordingContext::ExecuteCommandList.
if (mResourceAllocation.GetInfo().mMethod == AllocationMethod::kExternal) {
commandContext->AddToSharedTextureList(this);
}
}
void Texture::TransitionUsageAndGetResourceBarrier(CommandRecordingContext* commandContext,
std::vector<D3D12_RESOURCE_BARRIER>* barrier,
wgpu::TextureUsage usage,
const SubresourceRange& range) {
TransitionUsageAndGetResourceBarrier(commandContext, barrier,
D3D12TextureUsage(usage, GetFormat()), range);
}
void Texture::TransitionUsageAndGetResourceBarrier(CommandRecordingContext* commandContext,
std::vector<D3D12_RESOURCE_BARRIER>* barriers,
D3D12_RESOURCE_STATES newState,
const SubresourceRange& range) {
HandleTransitionSpecialCases(commandContext);
const ExecutionSerial pendingCommandSerial = ToBackend(GetDevice())->GetPendingCommandSerial();
mSubresourceStateAndDecay.Update(range, [&](const SubresourceRange& updateRange,
StateAndDecay* state) {
TransitionSubresourceRange(barriers, updateRange, state, newState, pendingCommandSerial);
});
}
void Texture::TrackUsageAndGetResourceBarrierForPass(CommandRecordingContext* commandContext,
std::vector<D3D12_RESOURCE_BARRIER>* barriers,
const TextureSubresourceUsage& textureUsages) {
if (mResourceAllocation.GetInfo().mMethod != AllocationMethod::kExternal) {
// Track the underlying heap to ensure residency.
Heap* heap = ToBackend(mResourceAllocation.GetResourceHeap());
commandContext->TrackHeapUsage(heap, GetDevice()->GetPendingCommandSerial());
}
HandleTransitionSpecialCases(commandContext);
const ExecutionSerial pendingCommandSerial = ToBackend(GetDevice())->GetPendingCommandSerial();
mSubresourceStateAndDecay.Merge(
textureUsages,
[&](const SubresourceRange& mergeRange, StateAndDecay* state, wgpu::TextureUsage usage) {
// Skip if this subresource is not used during the current pass
if (usage == wgpu::TextureUsage::None) {
return;
}
D3D12_RESOURCE_STATES newState = D3D12TextureUsage(usage, GetFormat());
TransitionSubresourceRange(barriers, mergeRange, state, newState, pendingCommandSerial);
});
}
D3D12_RENDER_TARGET_VIEW_DESC Texture::GetRTVDescriptor(const Format& format,
uint32_t mipLevel,
uint32_t baseSlice,
uint32_t sliceCount) const {
D3D12_RENDER_TARGET_VIEW_DESC rtvDesc;
rtvDesc.Format = D3D12TextureFormat(format.format);
if (IsMultisampledTexture()) {
ASSERT(GetDimension() == wgpu::TextureDimension::e2D);
ASSERT(GetNumMipLevels() == 1);
ASSERT(sliceCount == 1);
ASSERT(baseSlice == 0);
ASSERT(mipLevel == 0);
rtvDesc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DMS;
return rtvDesc;
}
switch (GetDimension()) {
case wgpu::TextureDimension::e2D:
// Currently we always use D3D12_TEX2D_ARRAY_RTV because we cannot specify base
// array layer and layer count in D3D12_TEX2D_RTV. For 2D texture views, we treat
// them as 1-layer 2D array textures. (Just like how we treat SRVs)
// https://docs.microsoft.com/en-us/windows/desktop/api/d3d12/ns-d3d12-d3d12_tex2d_rtv
// https://docs.microsoft.com/en-us/windows/desktop/api/d3d12/ns-d3d12-d3d12_tex2d_array
// _rtv
rtvDesc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DARRAY;
rtvDesc.Texture2DArray.FirstArraySlice = baseSlice;
rtvDesc.Texture2DArray.ArraySize = sliceCount;
rtvDesc.Texture2DArray.MipSlice = mipLevel;
rtvDesc.Texture2DArray.PlaneSlice = 0;
break;
case wgpu::TextureDimension::e3D:
rtvDesc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE3D;
rtvDesc.Texture3D.MipSlice = mipLevel;
rtvDesc.Texture3D.FirstWSlice = baseSlice;
rtvDesc.Texture3D.WSize = sliceCount;
break;
case wgpu::TextureDimension::e1D:
UNREACHABLE();
break;
}
return rtvDesc;
}
D3D12_DEPTH_STENCIL_VIEW_DESC Texture::GetDSVDescriptor(uint32_t mipLevel,
uint32_t baseArrayLayer,
uint32_t layerCount,
Aspect aspects,
bool depthReadOnly,
bool stencilReadOnly) const {
D3D12_DEPTH_STENCIL_VIEW_DESC dsvDesc;
dsvDesc.Format = GetD3D12Format();
dsvDesc.Flags = D3D12_DSV_FLAG_NONE;
if (depthReadOnly && aspects & Aspect::Depth) {
dsvDesc.Flags |= D3D12_DSV_FLAG_READ_ONLY_DEPTH;
}
if (stencilReadOnly && aspects & Aspect::Stencil) {
dsvDesc.Flags |= D3D12_DSV_FLAG_READ_ONLY_STENCIL;
}
if (IsMultisampledTexture()) {
ASSERT(GetNumMipLevels() == 1);
ASSERT(layerCount == 1);
ASSERT(baseArrayLayer == 0);
ASSERT(mipLevel == 0);
dsvDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2DMS;
} else {
dsvDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2DARRAY;
dsvDesc.Texture2DArray.FirstArraySlice = baseArrayLayer;
dsvDesc.Texture2DArray.ArraySize = layerCount;
dsvDesc.Texture2DArray.MipSlice = mipLevel;
}
return dsvDesc;
}
MaybeError Texture::ClearTexture(CommandRecordingContext* commandContext,
const SubresourceRange& range,
TextureBase::ClearValue clearValue) {
ID3D12GraphicsCommandList* commandList = commandContext->GetCommandList();
Device* device = ToBackend(GetDevice());
uint8_t clearColor = (clearValue == TextureBase::ClearValue::Zero) ? 0 : 1;
float fClearColor = (clearValue == TextureBase::ClearValue::Zero) ? 0.f : 1.f;
if ((mD3D12ResourceFlags & D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL) != 0) {
TrackUsageAndTransitionNow(commandContext, D3D12_RESOURCE_STATE_DEPTH_WRITE, range);
for (uint32_t level = range.baseMipLevel; level < range.baseMipLevel + range.levelCount;
++level) {
for (uint32_t layer = range.baseArrayLayer;
layer < range.baseArrayLayer + range.layerCount; ++layer) {
// Iterate the aspects individually to determine which clear flags to use.
D3D12_CLEAR_FLAGS clearFlags = {};
for (Aspect aspect : IterateEnumMask(range.aspects)) {
if (clearValue == TextureBase::ClearValue::Zero &&
IsSubresourceContentInitialized(
SubresourceRange::SingleMipAndLayer(level, layer, aspect))) {
// Skip lazy clears if already initialized.
continue;
}
switch (aspect) {
case Aspect::Depth:
clearFlags |= D3D12_CLEAR_FLAG_DEPTH;
break;
case Aspect::Stencil:
clearFlags |= D3D12_CLEAR_FLAG_STENCIL;
break;
default:
UNREACHABLE();
}
}
if (clearFlags == 0) {
continue;
}
CPUDescriptorHeapAllocation dsvHandle;
DAWN_TRY_ASSIGN(
dsvHandle,
device->GetDepthStencilViewAllocator()->AllocateTransientCPUDescriptors());
const D3D12_CPU_DESCRIPTOR_HANDLE baseDescriptor = dsvHandle.GetBaseDescriptor();
D3D12_DEPTH_STENCIL_VIEW_DESC dsvDesc =
GetDSVDescriptor(level, layer, 1, range.aspects, false, false);
device->GetD3D12Device()->CreateDepthStencilView(GetD3D12Resource(), &dsvDesc,
baseDescriptor);
commandList->ClearDepthStencilView(baseDescriptor, clearFlags, fClearColor,
clearColor, 0, nullptr);
}
}
} else if ((mD3D12ResourceFlags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET) != 0) {
TrackUsageAndTransitionNow(commandContext, D3D12_RESOURCE_STATE_RENDER_TARGET, range);
const float clearColorRGBA[4] = {fClearColor, fClearColor, fClearColor, fClearColor};
ASSERT(range.aspects == Aspect::Color);
for (uint32_t level = range.baseMipLevel; level < range.baseMipLevel + range.levelCount;
++level) {
for (uint32_t layer = range.baseArrayLayer;
layer < range.baseArrayLayer + range.layerCount; ++layer) {
if (clearValue == TextureBase::ClearValue::Zero &&
IsSubresourceContentInitialized(
SubresourceRange::SingleMipAndLayer(level, layer, Aspect::Color))) {
// Skip lazy clears if already initialized.
continue;
}
CPUDescriptorHeapAllocation rtvHeap;
DAWN_TRY_ASSIGN(
rtvHeap,
device->GetRenderTargetViewAllocator()->AllocateTransientCPUDescriptors());
const D3D12_CPU_DESCRIPTOR_HANDLE rtvHandle = rtvHeap.GetBaseDescriptor();
uint32_t baseSlice = layer;
uint32_t sliceCount = 1;
if (GetDimension() == wgpu::TextureDimension::e3D) {
baseSlice = 0;
sliceCount = std::max(GetDepth() >> level, 1u);
}
D3D12_RENDER_TARGET_VIEW_DESC rtvDesc =
GetRTVDescriptor(GetFormat(), level, baseSlice, sliceCount);
device->GetD3D12Device()->CreateRenderTargetView(GetD3D12Resource(), &rtvDesc,
rtvHandle);
commandList->ClearRenderTargetView(rtvHandle, clearColorRGBA, 0, nullptr);
}
}
} else {
ASSERT(!IsMultisampledTexture());
// create temp buffer with clear color to copy to the texture image
TrackUsageAndTransitionNow(commandContext, D3D12_RESOURCE_STATE_COPY_DEST, range);
for (Aspect aspect : IterateEnumMask(range.aspects)) {
const TexelBlockInfo& blockInfo = GetFormat().GetAspectInfo(aspect).block;
Extent3D largestMipSize = GetMipLevelSingleSubresourcePhysicalSize(range.baseMipLevel);
uint32_t bytesPerRow =
Align((largestMipSize.width / blockInfo.width) * blockInfo.byteSize,
kTextureBytesPerRowAlignment);
uint64_t bufferSize = bytesPerRow * (largestMipSize.height / blockInfo.height) *
largestMipSize.depthOrArrayLayers;
DynamicUploader* uploader = device->GetDynamicUploader();
UploadHandle uploadHandle;
DAWN_TRY_ASSIGN(uploadHandle,
uploader->Allocate(bufferSize, device->GetPendingCommandSerial(),
blockInfo.byteSize));
memset(uploadHandle.mappedBuffer, clearColor, bufferSize);
for (uint32_t level = range.baseMipLevel; level < range.baseMipLevel + range.levelCount;
++level) {
// compute d3d12 texture copy locations for texture and buffer
Extent3D copySize = GetMipLevelSingleSubresourcePhysicalSize(level);
for (uint32_t layer = range.baseArrayLayer;
layer < range.baseArrayLayer + range.layerCount; ++layer) {
if (clearValue == TextureBase::ClearValue::Zero &&
IsSubresourceContentInitialized(
SubresourceRange::SingleMipAndLayer(level, layer, aspect))) {
// Skip lazy clears if already initialized.
continue;
}
TextureCopy textureCopy;
textureCopy.texture = this;
textureCopy.origin = {0, 0, layer};
textureCopy.mipLevel = level;
textureCopy.aspect = aspect;
RecordBufferTextureCopyWithBufferHandle(
BufferTextureCopyDirection::B2T, commandList,
ToBackend(uploadHandle.stagingBuffer)->GetD3D12Resource(),
uploadHandle.startOffset, bytesPerRow, largestMipSize.height, textureCopy,
copySize);
}
}
}
}
if (clearValue == TextureBase::ClearValue::Zero) {
SetIsSubresourceContentInitialized(true, range);
GetDevice()->IncrementLazyClearCountForTesting();
}
return {};
}
void Texture::SetLabelHelper(const char* prefix) {
SetDebugName(ToBackend(GetDevice()), mResourceAllocation.GetD3D12Resource(), prefix,
GetLabel());
}
void Texture::SetLabelImpl() {
SetLabelHelper("Dawn_InternalTexture");
}
MaybeError Texture::EnsureSubresourceContentInitialized(CommandRecordingContext* commandContext,
const SubresourceRange& range) {
if (!ToBackend(GetDevice())->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse)) {
return {};
}
if (!IsSubresourceContentInitialized(range)) {
// If subresource has not been initialized, clear it to black as it could contain
// dirty bits from recycled memory
DAWN_TRY(ClearTexture(commandContext, range, TextureBase::ClearValue::Zero));
}
return {};
}
bool Texture::StateAndDecay::operator==(const Texture::StateAndDecay& other) const {
return lastState == other.lastState && lastDecaySerial == other.lastDecaySerial &&
isValidToDecay == other.isValidToDecay;
}
// static
Ref<TextureView> TextureView::Create(TextureBase* texture,
const TextureViewDescriptor* descriptor) {
return AcquireRef(new TextureView(texture, descriptor));
}
TextureView::TextureView(TextureBase* texture, const TextureViewDescriptor* descriptor)
: TextureViewBase(texture, descriptor) {
mSrvDesc.Format = D3D12TextureFormat(descriptor->format);
mSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
UINT planeSlice = 0;
const Format& textureFormat = texture->GetFormat();
if (textureFormat.HasDepthOrStencil()) {
// Configure the SRV descriptor to reinterpret the texture allocated as
// TYPELESS as a single-plane shader-accessible view.
switch (textureFormat.format) {
case wgpu::TextureFormat::Depth32Float:
case wgpu::TextureFormat::Depth24Plus:
mSrvDesc.Format = DXGI_FORMAT_R32_FLOAT;
break;
case wgpu::TextureFormat::Depth16Unorm:
mSrvDesc.Format = DXGI_FORMAT_R16_UNORM;
break;
case wgpu::TextureFormat::Stencil8: {
Aspect aspects = SelectFormatAspects(textureFormat, descriptor->aspect);
ASSERT(aspects != Aspect::None);
if (!HasZeroOrOneBits(aspects)) {
// A single aspect is not selected. The texture view must not be
// sampled.
mSrvDesc.Format = DXGI_FORMAT_UNKNOWN;
break;
}
switch (aspects) {
case Aspect::Depth:
planeSlice = 0;
mSrvDesc.Format = DXGI_FORMAT_R24_UNORM_X8_TYPELESS;
break;
case Aspect::Stencil:
planeSlice = 1;
mSrvDesc.Format = DXGI_FORMAT_X24_TYPELESS_G8_UINT;
// Stencil is accessed using the .g component in the shader.
// Map it to the zeroth component to match other APIs.
mSrvDesc.Shader4ComponentMapping = D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(
D3D12_SHADER_COMPONENT_MAPPING_FROM_MEMORY_COMPONENT_1,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1);
break;
default:
UNREACHABLE();
break;
}
break;
}
case wgpu::TextureFormat::Depth24PlusStencil8:
case wgpu::TextureFormat::Depth32FloatStencil8: {
Aspect aspects = SelectFormatAspects(textureFormat, descriptor->aspect);
ASSERT(aspects != Aspect::None);
if (!HasZeroOrOneBits(aspects)) {
// A single aspect is not selected. The texture view must not be
// sampled.
mSrvDesc.Format = DXGI_FORMAT_UNKNOWN;
break;
}
switch (aspects) {
case Aspect::Depth:
planeSlice = 0;
mSrvDesc.Format = DXGI_FORMAT_R32_FLOAT_X8X24_TYPELESS;
break;
case Aspect::Stencil:
planeSlice = 1;
mSrvDesc.Format = DXGI_FORMAT_X32_TYPELESS_G8X24_UINT;
// Stencil is accessed using the .g component in the shader.
// Map it to the zeroth component to match other APIs.
mSrvDesc.Shader4ComponentMapping = D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(
D3D12_SHADER_COMPONENT_MAPPING_FROM_MEMORY_COMPONENT_1,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1);
break;
default:
UNREACHABLE();
break;
}
break;
}
default:
UNREACHABLE();
break;
}
}
// Per plane view formats must have the plane slice number be the index of the plane in the
// array of textures.
if (texture->GetFormat().IsMultiPlanar()) {
const Aspect planeAspect = ConvertViewAspect(GetFormat(), descriptor->aspect);
planeSlice = GetAspectIndex(planeAspect);
mSrvDesc.Format =
D3D12TextureFormat(texture->GetFormat().GetAspectInfo(planeAspect).format);
}
// Currently we always use D3D12_TEX2D_ARRAY_SRV because we cannot specify base array layer
// and layer count in D3D12_TEX2D_SRV. For 2D texture views, we treat them as 1-layer 2D
// array textures.
// Multisampled textures may only be one array layer, so we use
// D3D12_SRV_DIMENSION_TEXTURE2DMS.
// https://docs.microsoft.com/en-us/windows/desktop/api/d3d12/ns-d3d12-d3d12_tex2d_srv
// https://docs.microsoft.com/en-us/windows/desktop/api/d3d12/ns-d3d12-d3d12_tex2d_array_srv
if (GetTexture()->IsMultisampledTexture()) {
switch (descriptor->dimension) {
case wgpu::TextureViewDimension::e2DArray:
ASSERT(texture->GetArrayLayers() == 1);
[[fallthrough]];
case wgpu::TextureViewDimension::e2D:
ASSERT(texture->GetDimension() == wgpu::TextureDimension::e2D);
mSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2DMS;
break;
default:
UNREACHABLE();
}
} else {
switch (descriptor->dimension) {
case wgpu::TextureViewDimension::e1D:
mSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE1D;
mSrvDesc.Texture1D.MipLevels = descriptor->mipLevelCount;
mSrvDesc.Texture1D.MostDetailedMip = descriptor->baseMipLevel;
mSrvDesc.Texture1D.ResourceMinLODClamp = 0;
break;
case wgpu::TextureViewDimension::e2D:
case wgpu::TextureViewDimension::e2DArray:
ASSERT(texture->GetDimension() == wgpu::TextureDimension::e2D);
mSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2DARRAY;
mSrvDesc.Texture2DArray.ArraySize = descriptor->arrayLayerCount;
mSrvDesc.Texture2DArray.FirstArraySlice = descriptor->baseArrayLayer;
mSrvDesc.Texture2DArray.MipLevels = descriptor->mipLevelCount;
mSrvDesc.Texture2DArray.MostDetailedMip = descriptor->baseMipLevel;
mSrvDesc.Texture2DArray.PlaneSlice = planeSlice;
mSrvDesc.Texture2DArray.ResourceMinLODClamp = 0;
break;
case wgpu::TextureViewDimension::Cube:
case wgpu::TextureViewDimension::CubeArray:
ASSERT(texture->GetDimension() == wgpu::TextureDimension::e2D);
ASSERT(descriptor->arrayLayerCount % 6 == 0);
mSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURECUBEARRAY;
mSrvDesc.TextureCubeArray.First2DArrayFace = descriptor->baseArrayLayer;
mSrvDesc.TextureCubeArray.NumCubes = descriptor->arrayLayerCount / 6;
mSrvDesc.TextureCubeArray.MostDetailedMip = descriptor->baseMipLevel;
mSrvDesc.TextureCubeArray.MipLevels = descriptor->mipLevelCount;
mSrvDesc.TextureCubeArray.ResourceMinLODClamp = 0;
break;
case wgpu::TextureViewDimension::e3D:
ASSERT(texture->GetDimension() == wgpu::TextureDimension::e3D);
mSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE3D;
mSrvDesc.Texture3D.MostDetailedMip = descriptor->baseMipLevel;
mSrvDesc.Texture3D.MipLevels = descriptor->mipLevelCount;
mSrvDesc.Texture3D.ResourceMinLODClamp = 0;
break;
case wgpu::TextureViewDimension::Undefined:
UNREACHABLE();
}
}
}
DXGI_FORMAT TextureView::GetD3D12Format() const {
return D3D12TextureFormat(GetFormat().format);
}
const D3D12_SHADER_RESOURCE_VIEW_DESC& TextureView::GetSRVDescriptor() const {
ASSERT(mSrvDesc.Format != DXGI_FORMAT_UNKNOWN);
return mSrvDesc;
}
D3D12_RENDER_TARGET_VIEW_DESC TextureView::GetRTVDescriptor() const {
return ToBackend(GetTexture())
->GetRTVDescriptor(GetFormat(), GetBaseMipLevel(), GetBaseArrayLayer(), GetLayerCount());
}
D3D12_DEPTH_STENCIL_VIEW_DESC TextureView::GetDSVDescriptor(bool depthReadOnly,
bool stencilReadOnly) const {
ASSERT(GetLevelCount() == 1);
return ToBackend(GetTexture())
->GetDSVDescriptor(GetBaseMipLevel(), GetBaseArrayLayer(), GetLayerCount(), GetAspects(),
depthReadOnly, stencilReadOnly);
}
D3D12_UNORDERED_ACCESS_VIEW_DESC TextureView::GetUAVDescriptor() const {
D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc;
uavDesc.Format = GetD3D12Format();
ASSERT(!GetTexture()->IsMultisampledTexture());
switch (GetDimension()) {
case wgpu::TextureViewDimension::e1D:
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE1D;
uavDesc.Texture1D.MipSlice = GetBaseMipLevel();
break;
case wgpu::TextureViewDimension::e2D:
case wgpu::TextureViewDimension::e2DArray:
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2DARRAY;
uavDesc.Texture2DArray.FirstArraySlice = GetBaseArrayLayer();
uavDesc.Texture2DArray.ArraySize = GetLayerCount();
uavDesc.Texture2DArray.MipSlice = GetBaseMipLevel();
uavDesc.Texture2DArray.PlaneSlice = 0;
break;
case wgpu::TextureViewDimension::e3D:
uavDesc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE3D;
uavDesc.Texture3D.FirstWSlice = 0;
uavDesc.Texture3D.WSize = GetTexture()->GetDepth() >> GetBaseMipLevel();
uavDesc.Texture3D.MipSlice = GetBaseMipLevel();
break;
// Cube and Cubemap can't be used as storage texture. So there is no need to create UAV
// descriptor for them.
case wgpu::TextureViewDimension::Cube:
case wgpu::TextureViewDimension::CubeArray:
case wgpu::TextureViewDimension::Undefined:
UNREACHABLE();
}
return uavDesc;
}
} // namespace dawn::native::d3d12