| // Copyright 2025 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/spirv/reader/lower/decompose_strided_matrix.h" |
| |
| #include <utility> |
| |
| #include "src/tint/lang/core/ir/builder.h" |
| #include "src/tint/lang/core/ir/module.h" |
| #include "src/tint/lang/core/ir/validator.h" |
| #include "src/tint/lang/core/type/matrix.h" |
| #include "src/tint/lang/spirv/type/explicit_layout_array.h" |
| |
| namespace tint::spirv::reader::lower { |
| namespace { |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| |
| /// PIMPL state for the transform. |
| struct State { |
| /// The IR module. |
| core::ir::Module& ir; |
| |
| /// The IR builder. |
| core::ir::Builder b{ir}; |
| |
| /// The type manager. |
| core::type::Manager& ty{ir.Types()}; |
| |
| /// The symbol manager. |
| SymbolTable& sym{ir.symbols}; |
| |
| /// A map from a type to its replacement type (which may be the same as the original). |
| struct TypeAndStride { |
| const core::type::Type* type; |
| uint32_t stride; |
| |
| bool operator==(const TypeAndStride& other) const { |
| return type == other.type && stride == other.stride; |
| } |
| |
| tint::HashCode HashCode() const { return Hash(type, stride); } |
| }; |
| Hashmap<TypeAndStride, const core::type::Type*, 32> type_map{}; |
| |
| /// A map from rewritten structs to original structs. |
| Hashmap<const core::type::Struct*, const core::type::Struct*, 4> struct_to_original{}; |
| |
| /// Process the module. |
| void Process() { |
| Vector<core::ir::Access*, 32> access_worklist; |
| Vector<core::ir::Construct*, 32> construct_worklist; |
| for (auto* inst : ir.Instructions()) { |
| // Replace all constant operands where the type will be changed due to it containing a |
| // structure that uses a matrix stride attribute. |
| for (uint32_t i = 0; i < inst->Operands().Length(); ++i) { |
| if (auto* constant = As<core::ir::Constant>(inst->Operands()[i])) { |
| auto* new_constant = RewriteConstant(constant->Value()); |
| if (new_constant != constant->Value()) { |
| inst->SetOperand(i, b.Constant(new_constant)); |
| } |
| } |
| } |
| |
| // Update any instruction result that contains a matrix stride attribute. |
| for (auto* result : inst->Results()) { |
| result->SetType(RewriteType(result->Type())); |
| } |
| |
| // Track instructions that may need to be updated later. |
| if (auto* access = inst->As<core::ir::Access>()) { |
| access_worklist.Push(access); |
| } |
| if (auto* construct = inst->As<core::ir::Construct>()) { |
| construct_worklist.Push(construct); |
| } |
| } |
| |
| // Update the types of any function parameters and function return types that contain |
| // matrices with non-default strides. |
| for (auto func : ir.functions) { |
| for (auto* param : func->Params()) { |
| param->SetType(RewriteType(param->Type())); |
| } |
| func->SetReturnType(RewriteType(func->ReturnType())); |
| } |
| |
| // Update any access instructions that produce strided matrices. |
| for (auto* access : access_worklist) { |
| UpdateAccessInstruction(access, /* source_is_strided */ false); |
| } |
| |
| // Convert strided matrix operands for construct instructions. |
| for (auto* construct : construct_worklist) { |
| ConvertConstructOperands(construct); |
| } |
| } |
| |
| /// Rewrite a type to replace structure members that have matrix strides. |
| const core::type::Type* RewriteType(const core::type::Type* type, uint32_t stride = 0) { |
| return type_map.GetOrAdd(TypeAndStride{type, stride}, [&] { |
| return tint::Switch( |
| type, // |
| [&](const core::type::Matrix* mat) -> const core::type::Type* { |
| if (stride == 0 || stride == mat->ColumnStride()) { |
| return mat; |
| } |
| // Replace the matrix with a strided array of column vectors. |
| TINT_ASSERT(stride % mat->ColumnStride() == 0); |
| return ty.Get<spirv::type::ExplicitLayoutArray>( |
| mat->ColumnType(), ty.Get<core::type::ConstantArrayCount>(mat->Columns()), |
| stride * mat->Columns(), stride); |
| }, |
| [&](const core::type::Array* arr) { return RewriteArray(arr, stride); }, |
| [&](const core::type::Struct* str) { return RewriteStruct(str); }, |
| [&](const core::type::Pointer* ptr) { |
| return ty.ptr(ptr->AddressSpace(), RewriteType(ptr->StoreType()), |
| ptr->Access()); |
| }, |
| [&](Default) { return type; }); |
| }); |
| } |
| |
| /// Rewrite an array type if necessary. |
| const core::type::Array* RewriteArray(const core::type::Array* arr, uint32_t matrix_stride) { |
| auto* new_element_type = RewriteType(arr->ElemType(), matrix_stride); |
| if (new_element_type == arr->ElemType()) { |
| return arr; |
| } |
| |
| // The element type is the only thing that will change. That does not affect the stride of |
| // the array itself, which may either be the natural stride or an larger stride in the case |
| // of an explicitly laid out array. |
| if (auto* ex = arr->As<spirv::type::ExplicitLayoutArray>()) { |
| return ty.Get<spirv::type::ExplicitLayoutArray>(new_element_type, arr->Count(), |
| arr->Size(), ex->Stride()); |
| } |
| return ty.Get<core::type::Array>(new_element_type, arr->Count(), arr->Size()); |
| } |
| |
| /// Rewrite a structure type to replace structure members that have matrix stride attributes. |
| const core::type::Struct* RewriteStruct(const core::type::Struct* old_struct) { |
| bool made_changes = false; |
| |
| Vector<const core::type::StructMember*, 8> new_members; |
| new_members.Reserve(old_struct->Members().Length()); |
| for (auto* member : old_struct->Members()) { |
| auto* new_member_type = RewriteType(member->Type(), member->MatrixStride()); |
| if (member->HasMatrixStride() || new_member_type != member->Type()) { |
| // Recreate the struct member without the stride attribute, and using the new type. |
| new_members.Push(ty.Get<core::type::StructMember>( |
| member->Name(), new_member_type, member->Index(), member->Offset(), |
| member->Align(), member->Size(), member->Attributes())); |
| made_changes = true; |
| } else { |
| new_members.Push(member); |
| } |
| } |
| if (!made_changes) { |
| return old_struct; |
| } |
| |
| // Create the new struct and record the mapping to the old struct. |
| auto* new_struct = ty.Struct(sym.New(old_struct->Name().Name()), std::move(new_members)); |
| struct_to_original.Add(new_struct, old_struct); |
| return new_struct; |
| } |
| |
| /// Rewrite a constant to replace strided matrix constants with the equivalent strided array |
| /// of column vector constants. |
| const core::constant::Value* RewriteConstant(const core::constant::Value* constant, |
| uint32_t stride = 0) { |
| auto* new_type = RewriteType(constant->Type(), stride); |
| if (new_type == constant->Type()) { |
| return constant; |
| } |
| |
| Vector<const core::constant::Value*, 16> elements; |
| for (uint32_t i = 0; i < constant->NumElements(); i++) { |
| auto* value = constant->Index(i); |
| |
| // If this is a struct member, we need to check if the type has changed. |
| if (auto* new_struct_type = new_type->As<core::type::Struct>()) { |
| auto* new_member_type = new_struct_type->Members()[i]->Type(); |
| if (new_member_type != value->Type()) { |
| // Create a new constant using the strided array type. |
| // If the type changed, it must have had a MatrixStride decoration and will have |
| // been rewritten as an array type (or it already was an array). |
| auto* array = new_member_type->As<core::type::Array>(); |
| TINT_ASSERT(array); |
| |
| auto* old_struct_type = constant->Type()->As<core::type::Struct>(); |
| auto member_stride = old_struct_type->Members()[i]->MatrixStride(); |
| |
| Vector<const core::constant::Value*, 4> new_elements; |
| for (uint32_t j = 0; j < array->ConstantCount().value(); j++) { |
| new_elements.Push(RewriteConstant(value->Index(j), member_stride)); |
| } |
| value = ir.constant_values.Composite(array, std::move(new_elements)); |
| } |
| } |
| |
| elements.Push(RewriteConstant(value, stride)); |
| } |
| return ir.constant_values.Composite(new_type, std::move(elements)); |
| } |
| |
| /// Convert strided matrix operands to strided arrays for a construct instruction. |
| void ConvertConstructOperands(core::ir::Construct* construct) { |
| auto* struct_type = construct->Result()->Type()->As<core::type::Struct>(); |
| if (!struct_type) { |
| return; |
| } |
| |
| b.InsertBefore(construct, [&] { |
| Vector<core::ir::Value*, 8> new_operands; |
| for (uint32_t i = 0; i < construct->Operands().Length(); i++) { |
| auto* operand = construct->Operands()[i]; |
| auto* member_type = struct_type->Members()[i]->Type(); |
| if (member_type != operand->Type()) { |
| new_operands.Push(Convert(member_type, operand)); |
| } else { |
| new_operands.Push(operand); |
| } |
| } |
| construct->SetOperands(new_operands); |
| }); |
| } |
| |
| /// Update the result type of an access instruction if needed, and the uses of that result. |
| void UpdateAccessInstruction(core::ir::Access* access, bool source_is_strided) { |
| // Determine the result type based on the potentially modified object type. |
| bool indexed_through_strided_member = source_is_strided; |
| auto* current_type = access->Object()->Type()->UnwrapPtr(); |
| for (auto* idx : access->Indices()) { |
| if (auto* struct_type = current_type->As<core::type::Struct>()) { |
| auto const_idx = idx->As<core::ir::Constant>()->Value()->ValueAs<uint32_t>(); |
| current_type = current_type->Element(const_idx); |
| |
| // Check if we are indexing into a member that has a non-natural matrix stride. |
| auto* original_struct = struct_to_original.GetOr(struct_type, nullptr); |
| if (!original_struct) { |
| // The structure type has not changed so cannot have any matrix strides. |
| continue; |
| } |
| auto* member = original_struct->Members()[const_idx]; |
| if (member->HasMatrixStride() && current_type != member->Type()) { |
| indexed_through_strided_member = true; |
| } |
| } else { |
| current_type = current_type->Elements().type; |
| } |
| } |
| if (!indexed_through_strided_member || current_type->Is<core::type::Vector>()) { |
| return; |
| } |
| |
| if (auto* ptr = access->Result()->Type()->As<core::type::Pointer>()) { |
| ReplaceMatrixPointerWithArrayPointer(ptr, current_type, access); |
| } else { |
| // We were extracting a strided matrix from a structure, so we need to convert the |
| // strided array back to that matrix type. |
| b.InsertAfter(access, [&] { |
| auto* extracted_array = b.InstructionResult(current_type); |
| access->Result()->ReplaceAllUsesWith( |
| Convert(access->Result()->Type(), extracted_array)); |
| access->SetResult(extracted_array); |
| }); |
| } |
| } |
| |
| /// Change the type of a pointer instruction result that contains a strided matrix, and then |
| /// update any instructions that use that result. |
| void ReplaceMatrixPointerWithArrayPointer(const core::type::Pointer* old_ptr, |
| const core::type::Type* new_store_type, |
| core::ir::Instruction* instruction) { |
| auto* old_store_type = old_ptr->StoreType(); |
| auto* new_ptr = ty.ptr(old_ptr->AddressSpace(), new_store_type, old_ptr->Access()); |
| |
| Vector<core::ir::Instruction*, 8> worklist{instruction}; |
| while (!worklist.IsEmpty()) { |
| auto* inst = worklist.Pop(); |
| inst->Result()->SetType(new_ptr); |
| inst->Result()->ForEachUseUnsorted([&](const core::ir::Usage& use) { |
| tint::Switch( |
| use.instruction, // |
| [&](core::ir::Access* access) { |
| UpdateAccessInstruction(access, /* source_is_strided */ true); |
| }, |
| [&](core::ir::Let* let) { worklist.Push(let); }, |
| [&](core::ir::Load* load) { |
| // Convert the value to the original type. |
| b.InsertAfter(load, [&] { |
| auto* new_load_result = b.InstructionResult(new_store_type); |
| auto* converted = Convert(old_store_type, new_load_result); |
| load->Result()->ReplaceAllUsesWith(converted); |
| load->SetResult(new_load_result); |
| }); |
| }, |
| [&](core::ir::Store* store) { |
| // Convert the value to the new type. |
| b.InsertBefore(store, [&] { // |
| store->SetFrom(Convert(new_store_type, store->From())); |
| }); |
| }, |
| TINT_ICE_ON_NO_MATCH); |
| }); |
| } |
| } |
| |
| /// Convert a value between an [array of] strided matrix and an [array of] strided array. |
| core::ir::Value* Convert(const core::type::Type* dst, core::ir::Value* src) { |
| auto dst_elements = dst->Elements(); |
| auto src_elements = src->Type()->Elements(); |
| TINT_ASSERT(dst_elements.count == src_elements.count); |
| Vector<core::ir::Value*, 8> elements; |
| elements.Reserve(dst_elements.count); |
| for (uint32_t i = 0; i < dst_elements.count; i++) { |
| // Extract the element from the source value. |
| core::ir::Value* el = nullptr; |
| if (auto* constant = src->As<core::ir::Constant>()) { |
| el = b.Constant(constant->Value()->Index(i)); |
| } else { |
| el = b.Access(src_elements.type, src, u32(i))->Result(); |
| } |
| |
| // Recurse to convert strided matrices nested in arrays if needed. |
| if (src_elements.type != dst_elements.type) { |
| el = Convert(dst_elements.type, el); |
| } |
| |
| elements.Push(el); |
| } |
| return b.Construct(dst, std::move(elements))->Result(); |
| } |
| }; |
| |
| } // namespace |
| |
| Result<SuccessType> DecomposeStridedMatrix(core::ir::Module& ir) { |
| TINT_CHECK_RESULT( |
| ValidateAndDumpIfNeeded(ir, "spirv.DecomposeStridedMatrix", |
| core::ir::Capabilities{ |
| core::ir::Capability::kAllowMultipleEntryPoints, |
| core::ir::Capability::kAllowStructMatrixDecorations, |
| core::ir::Capability::kAllowNonCoreTypes, |
| core::ir::Capability::kAllowOverrides, |
| core::ir::Capability::kAllowPointerToHandle, |
| })); |
| |
| State{ir}.Process(); |
| |
| return Success; |
| } |
| |
| } // namespace tint::spirv::reader::lower |