blob: e153b0c5479f23bc7f6dbd65aa97753f755c348e [file] [log] [blame] [edit]
// Copyright 2018 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <array>
#include <string>
#include <vector>
#include "dawn/common/Assert.h"
#include "dawn/common/Constants.h"
#include "dawn/common/Math.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
constexpr static unsigned int kRTSize = 64;
constexpr wgpu::TextureFormat kDefaultFormat = wgpu::TextureFormat::RGBA8Unorm;
constexpr uint32_t kBytesPerTexel = 4;
namespace {
wgpu::Texture Create2DTexture(wgpu::Device device,
uint32_t width,
uint32_t height,
uint32_t arrayLayerCount,
uint32_t mipLevelCount,
wgpu::TextureUsage usage) {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = width;
descriptor.size.height = height;
descriptor.size.depthOrArrayLayers = arrayLayerCount;
descriptor.sampleCount = 1;
descriptor.format = kDefaultFormat;
descriptor.mipLevelCount = mipLevelCount;
descriptor.usage = usage;
return device.CreateTexture(&descriptor);
}
wgpu::Texture Create3DTexture(wgpu::Device device,
wgpu::Extent3D size,
uint32_t mipLevelCount,
wgpu::TextureUsage usage) {
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e3D;
descriptor.size = size;
descriptor.sampleCount = 1;
descriptor.format = kDefaultFormat;
descriptor.mipLevelCount = mipLevelCount;
descriptor.usage = usage;
return device.CreateTexture(&descriptor);
}
wgpu::ShaderModule CreateDefaultVertexShaderModule(wgpu::Device device) {
return utils::CreateShaderModule(device, R"(
struct VertexOut {
@location(0) texCoord : vec2<f32>,
@builtin(position) position : vec4<f32>,
}
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> VertexOut {
var output : VertexOut;
var pos = array<vec2<f32>, 6>(
vec2<f32>(-2., -2.),
vec2<f32>(-2., 2.),
vec2<f32>( 2., -2.),
vec2<f32>(-2., 2.),
vec2<f32>( 2., -2.),
vec2<f32>( 2., 2.));
var texCoord = array<vec2<f32>, 6>(
vec2<f32>(0., 0.),
vec2<f32>(0., 1.),
vec2<f32>(1., 0.),
vec2<f32>(0., 1.),
vec2<f32>(1., 0.),
vec2<f32>(1., 1.));
output.position = vec4<f32>(pos[VertexIndex], 0., 1.);
output.texCoord = texCoord[VertexIndex];
return output;
}
)");
}
} // anonymous namespace
class TextureViewSamplingTest : public DawnTest {
protected:
// Generates an arbitrary pixel value per-layer-per-level, used for the "actual" uploaded
// textures and the "expected" results.
static int GenerateTestPixelValue(uint32_t layer, uint32_t level) {
return static_cast<int>(level * 10) + static_cast<int>(layer + 1);
}
void SetUp() override {
DawnTest::SetUp();
mRenderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
wgpu::FilterMode kFilterMode = wgpu::FilterMode::Nearest;
wgpu::AddressMode kAddressMode = wgpu::AddressMode::ClampToEdge;
wgpu::SamplerDescriptor samplerDescriptor = {};
samplerDescriptor.minFilter = kFilterMode;
samplerDescriptor.magFilter = kFilterMode;
samplerDescriptor.mipmapFilter = kFilterMode;
samplerDescriptor.addressModeU = kAddressMode;
samplerDescriptor.addressModeV = kAddressMode;
samplerDescriptor.addressModeW = kAddressMode;
mSampler = device.CreateSampler(&samplerDescriptor);
mVSModule = CreateDefaultVertexShaderModule(device);
}
void InitTexture(uint32_t arrayLayerCount, uint32_t mipLevelCount) {
ASSERT(arrayLayerCount > 0 && mipLevelCount > 0);
const uint32_t textureWidthLevel0 = 1 << mipLevelCount;
const uint32_t textureHeightLevel0 = 1 << mipLevelCount;
constexpr wgpu::TextureUsage kUsage =
wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
mTexture = Create2DTexture(device, textureWidthLevel0, textureHeightLevel0, arrayLayerCount,
mipLevelCount, kUsage);
mDefaultTextureViewDescriptor.dimension = wgpu::TextureViewDimension::e2DArray;
mDefaultTextureViewDescriptor.format = kDefaultFormat;
mDefaultTextureViewDescriptor.baseMipLevel = 0;
mDefaultTextureViewDescriptor.mipLevelCount = mipLevelCount;
mDefaultTextureViewDescriptor.baseArrayLayer = 0;
mDefaultTextureViewDescriptor.arrayLayerCount = arrayLayerCount;
// Create a texture with pixel = (0, 0, 0, level * 10 + layer + 1) at level `level` and
// layer `layer`.
static_assert((kTextureBytesPerRowAlignment % sizeof(utils::RGBA8)) == 0,
"Texture bytes per row alignment must be a multiple of sizeof(RGBA8).");
constexpr uint32_t kPixelsPerRowPitch = kTextureBytesPerRowAlignment / sizeof(utils::RGBA8);
ASSERT_LE(textureWidthLevel0, kPixelsPerRowPitch);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
for (uint32_t layer = 0; layer < arrayLayerCount; ++layer) {
for (uint32_t level = 0; level < mipLevelCount; ++level) {
const uint32_t texWidth = textureWidthLevel0 >> level;
const uint32_t texHeight = textureHeightLevel0 >> level;
const int pixelValue = GenerateTestPixelValue(layer, level);
constexpr uint32_t kPaddedTexWidth = kPixelsPerRowPitch;
std::vector<utils::RGBA8> data(kPaddedTexWidth * texHeight,
utils::RGBA8(0, 0, 0, pixelValue));
wgpu::Buffer stagingBuffer = utils::CreateBufferFromData(
device, data.data(), data.size() * sizeof(utils::RGBA8),
wgpu::BufferUsage::CopySrc);
wgpu::ImageCopyBuffer imageCopyBuffer =
utils::CreateImageCopyBuffer(stagingBuffer, 0, kTextureBytesPerRowAlignment);
wgpu::ImageCopyTexture imageCopyTexture =
utils::CreateImageCopyTexture(mTexture, level, {0, 0, layer});
wgpu::Extent3D copySize = {texWidth, texHeight, 1};
encoder.CopyBufferToTexture(&imageCopyBuffer, &imageCopyTexture, &copySize);
}
}
wgpu::CommandBuffer copy = encoder.Finish();
queue.Submit(1, &copy);
}
void Verify(const wgpu::TextureView& textureView, const char* fragmentShader, int expected) {
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragmentShader);
utils::ComboRenderPipelineDescriptor textureDescriptor;
textureDescriptor.vertex.module = mVSModule;
textureDescriptor.cFragment.module = fsModule;
textureDescriptor.cTargets[0].format = mRenderPass.colorFormat;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&textureDescriptor);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, mSampler}, {1, textureView}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&mRenderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
utils::RGBA8 expectedPixel(0, 0, 0, expected);
EXPECT_PIXEL_RGBA8_EQ(expectedPixel, mRenderPass.color, 0, 0);
EXPECT_PIXEL_RGBA8_EQ(expectedPixel, mRenderPass.color, mRenderPass.width - 1,
mRenderPass.height - 1);
// TODO(jiawei.shao@intel.com): add tests for 3D textures once Dawn supports 3D textures
}
void Texture2DViewTest(uint32_t textureArrayLayers,
uint32_t textureMipLevels,
uint32_t textureViewBaseLayer,
uint32_t textureViewBaseMipLevel) {
ASSERT(textureViewBaseLayer < textureArrayLayers);
ASSERT(textureViewBaseMipLevel < textureMipLevels);
InitTexture(textureArrayLayers, textureMipLevels);
wgpu::TextureViewDescriptor descriptor = mDefaultTextureViewDescriptor;
descriptor.dimension = wgpu::TextureViewDimension::e2D;
descriptor.baseArrayLayer = textureViewBaseLayer;
descriptor.arrayLayerCount = 1;
descriptor.baseMipLevel = textureViewBaseMipLevel;
descriptor.mipLevelCount = 1;
wgpu::TextureView textureView = mTexture.CreateView(&descriptor);
const char* fragmentShader = R"(
@group(0) @binding(0) var sampler0 : sampler;
@group(0) @binding(1) var texture0 : texture_2d<f32>;
@fragment
fn main(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
return textureSample(texture0, sampler0, texCoord);
}
)";
const int expected = GenerateTestPixelValue(textureViewBaseLayer, textureViewBaseMipLevel);
Verify(textureView, fragmentShader, expected);
}
void Texture2DArrayViewTest(uint32_t textureArrayLayers,
uint32_t textureMipLevels,
uint32_t textureViewBaseLayer,
uint32_t textureViewBaseMipLevel) {
ASSERT(textureViewBaseLayer < textureArrayLayers);
ASSERT(textureViewBaseMipLevel < textureMipLevels);
// We always set the layer count of the texture view to be 3 to match the fragment shader in
// this test.
constexpr uint32_t kTextureViewLayerCount = 3;
ASSERT(textureArrayLayers >= textureViewBaseLayer + kTextureViewLayerCount);
InitTexture(textureArrayLayers, textureMipLevels);
wgpu::TextureViewDescriptor descriptor = mDefaultTextureViewDescriptor;
descriptor.dimension = wgpu::TextureViewDimension::e2DArray;
descriptor.baseArrayLayer = textureViewBaseLayer;
descriptor.arrayLayerCount = kTextureViewLayerCount;
descriptor.baseMipLevel = textureViewBaseMipLevel;
descriptor.mipLevelCount = 1;
wgpu::TextureView textureView = mTexture.CreateView(&descriptor);
const char* fragmentShader = R"(
@group(0) @binding(0) var sampler0 : sampler;
@group(0) @binding(1) var texture0 : texture_2d_array<f32>;
@fragment
fn main(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
return textureSample(texture0, sampler0, texCoord, 0) +
textureSample(texture0, sampler0, texCoord, 1) +
textureSample(texture0, sampler0, texCoord, 2);
}
)";
int expected = 0;
for (int i = 0; i < static_cast<int>(kTextureViewLayerCount); ++i) {
expected += GenerateTestPixelValue(textureViewBaseLayer + i, textureViewBaseMipLevel);
}
Verify(textureView, fragmentShader, expected);
}
std::string CreateFragmentShaderForCubeMapFace(uint32_t layer, bool isCubeMapArray) {
// Reference: https://en.wikipedia.org/wiki/Cube_mapping
const std::array<std::string, 6> kCoordsToCubeMapFace = {{
" 1., tc, -sc", // Positive X
"-1., tc, sc", // Negative X
" sc, 1., -tc", // Positive Y
" sc, -1., tc", // Negative Y
" sc, tc, 1.", // Positive Z
"-sc, tc, -1.", // Negative Z
}};
const std::string textureType = isCubeMapArray ? "texture_cube_array" : "texture_cube";
const uint32_t cubeMapArrayIndex = layer / 6;
const std::string coordToCubeMapFace = kCoordsToCubeMapFace[layer % 6];
std::ostringstream stream;
stream << R"(
@group(0) @binding(0) var sampler0 : sampler;
@group(0) @binding(1) var texture0 : )"
<< textureType << R"(<f32>;
@fragment
fn main(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
var sc : f32 = 2.0 * texCoord.x - 1.0;
var tc : f32 = 2.0 * texCoord.y - 1.0;
return textureSample(texture0, sampler0, vec3<f32>()"
<< coordToCubeMapFace << ")";
if (isCubeMapArray) {
stream << ", " << cubeMapArrayIndex;
}
stream << R"();
})";
return stream.str();
}
void TextureCubeMapTest(uint32_t textureArrayLayers,
uint32_t textureViewBaseLayer,
uint32_t textureViewLayerCount,
bool isCubeMapArray) {
// TODO(crbug.com/dawn/1300): OpenGLES does not support cube map arrays.
DAWN_TEST_UNSUPPORTED_IF(isCubeMapArray && IsOpenGLES());
constexpr uint32_t kMipLevels = 1u;
InitTexture(textureArrayLayers, kMipLevels);
ASSERT_TRUE((textureViewLayerCount == 6) ||
(isCubeMapArray && textureViewLayerCount % 6 == 0));
wgpu::TextureViewDimension dimension = (isCubeMapArray)
? wgpu::TextureViewDimension::CubeArray
: wgpu::TextureViewDimension::Cube;
wgpu::TextureViewDescriptor descriptor = mDefaultTextureViewDescriptor;
descriptor.dimension = dimension;
descriptor.baseArrayLayer = textureViewBaseLayer;
descriptor.arrayLayerCount = textureViewLayerCount;
wgpu::TextureView cubeMapTextureView = mTexture.CreateView(&descriptor);
// Check the data in the every face of the cube map (array) texture view.
for (uint32_t layer = 0; layer < textureViewLayerCount; ++layer) {
const std::string& fragmentShader =
CreateFragmentShaderForCubeMapFace(layer, isCubeMapArray);
int expected = GenerateTestPixelValue(textureViewBaseLayer + layer, 0);
Verify(cubeMapTextureView, fragmentShader.c_str(), expected);
}
}
wgpu::Sampler mSampler;
wgpu::Texture mTexture;
wgpu::TextureViewDescriptor mDefaultTextureViewDescriptor;
wgpu::ShaderModule mVSModule;
utils::BasicRenderPass mRenderPass;
};
// Test drawing a rect with a 2D array texture.
TEST_P(TextureViewSamplingTest, Default2DArrayTexture) {
// TODO(cwallez@chromium.org) understand what the issue is
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsNvidia());
constexpr uint32_t kLayers = 3;
constexpr uint32_t kMipLevels = 1;
InitTexture(kLayers, kMipLevels);
wgpu::TextureViewDescriptor descriptor;
descriptor.dimension = wgpu::TextureViewDimension::e2DArray;
wgpu::TextureView textureView = mTexture.CreateView(&descriptor);
const char* fragmentShader = R"(
@group(0) @binding(0) var sampler0 : sampler;
@group(0) @binding(1) var texture0 : texture_2d_array<f32>;
@fragment
fn main(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
return textureSample(texture0, sampler0, texCoord, 0) +
textureSample(texture0, sampler0, texCoord, 1) +
textureSample(texture0, sampler0, texCoord, 2);
}
)";
const int expected =
GenerateTestPixelValue(0, 0) + GenerateTestPixelValue(1, 0) + GenerateTestPixelValue(2, 0);
Verify(textureView, fragmentShader, expected);
}
// Test sampling from a 2D texture view created on a 2D array texture.
TEST_P(TextureViewSamplingTest, Texture2DViewOn2DArrayTexture) {
Texture2DViewTest(6, 1, 4, 0);
}
// Test sampling from a 2D array texture view created on a 2D array texture.
TEST_P(TextureViewSamplingTest, Texture2DArrayViewOn2DArrayTexture) {
Texture2DArrayViewTest(6, 1, 2, 0);
}
// Test sampling from a 2D array texture view created on a 2D texture with one layer.
// Regression test for crbug.com/dawn/1309.
TEST_P(TextureViewSamplingTest, Texture2DArrayViewOnSingleLayer2DTexture) {
InitTexture(1 /* array layer count */, 1 /* mip level count */);
wgpu::TextureViewDescriptor descriptor = mDefaultTextureViewDescriptor;
descriptor.dimension = wgpu::TextureViewDimension::e2DArray;
descriptor.baseArrayLayer = 0;
descriptor.arrayLayerCount = 1;
descriptor.baseMipLevel = 0;
descriptor.mipLevelCount = 1;
wgpu::TextureView textureView = mTexture.CreateView(&descriptor);
const char* fragmentShader = R"(
@group(0) @binding(0) var sampler0 : sampler;
@group(0) @binding(1) var texture0 : texture_2d_array<f32>;
@fragment
fn main(@location(0) texCoord : vec2<f32>) -> @location(0) vec4<f32> {
return textureSample(texture0, sampler0, texCoord, 0);
}
)";
int expected = GenerateTestPixelValue(0, 0);
Verify(textureView, fragmentShader, expected);
}
// Test sampling from a 2D texture view created on a mipmap level of a 2D texture.
TEST_P(TextureViewSamplingTest, Texture2DViewOnOneLevelOf2DTexture) {
Texture2DViewTest(1, 6, 0, 4);
}
// Test sampling from a 2D texture view created on a mipmap level of a 2D array texture layer.
TEST_P(TextureViewSamplingTest, Texture2DViewOnOneLevelOf2DArrayTexture) {
Texture2DViewTest(6, 6, 3, 4);
}
// Test sampling from a 2D array texture view created on a mipmap level of a 2D array texture.
TEST_P(TextureViewSamplingTest, Texture2DArrayViewOnOneLevelOf2DArrayTexture) {
Texture2DArrayViewTest(6, 6, 2, 4);
}
// Test that an RGBA8 texture may be interpreted as RGBA8UnormSrgb and sampled from.
// More extensive color value checks and format tests are left for the CTS.
TEST_P(TextureViewSamplingTest, SRGBReinterpretation) {
// TODO(crbug.com/dawn/1360): OpenGLES doesn't support view format reinterpretation.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.format = wgpu::TextureFormat::RGBA8UnormSrgb;
wgpu::TextureDescriptor textureDesc = {};
textureDesc.size = {2, 2, 1};
textureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
textureDesc.format = wgpu::TextureFormat::RGBA8Unorm;
textureDesc.viewFormats = &viewDesc.format;
textureDesc.viewFormatCount = 1;
wgpu::Texture texture = device.CreateTexture(&textureDesc);
wgpu::ImageCopyTexture dst = {};
dst.texture = texture;
std::array<utils::RGBA8, 4> rgbaTextureData = {
utils::RGBA8(180, 0, 0, 255),
utils::RGBA8(0, 84, 0, 127),
utils::RGBA8(0, 0, 62, 100),
utils::RGBA8(62, 180, 84, 90),
};
wgpu::TextureDataLayout dataLayout = {};
dataLayout.bytesPerRow = textureDesc.size.width * sizeof(utils::RGBA8);
queue.WriteTexture(&dst, rgbaTextureData.data(), rgbaTextureData.size() * sizeof(utils::RGBA8),
&dataLayout, &textureDesc.size);
wgpu::TextureView textureView = texture.CreateView(&viewDesc);
utils::ComboRenderPipelineDescriptor pipelineDesc;
pipelineDesc.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 6>(
vec2<f32>(-1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
}
)");
pipelineDesc.cFragment.module = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var texture : texture_2d<f32>;
@fragment
fn main(@builtin(position) coord: vec4<f32>) -> @location(0) vec4<f32> {
return textureLoad(texture, vec2<i32>(coord.xy), 0);
}
)");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(
device, textureDesc.size.width, textureDesc.size.height, wgpu::TextureFormat::RGBA8Unorm);
pipelineDesc.cTargets[0].format = renderPass.colorFormat;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, textureView}});
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(116, 0, 0, 255), //
utils::RGBA8(117, 0, 0, 255), renderPass.color, 0, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 23, 0, 127), //
utils::RGBA8(0, 24, 0, 127), renderPass.color, 1, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 0, 12, 100), //
utils::RGBA8(0, 0, 13, 100), renderPass.color, 0, 1);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(12, 116, 23, 90), //
utils::RGBA8(13, 117, 24, 90), renderPass.color, 1, 1);
}
// Test sampling from a cube map texture view that covers a whole 2D array texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapOnWholeTexture) {
constexpr uint32_t kTotalLayers = 6;
TextureCubeMapTest(kTotalLayers, 0, kTotalLayers, false);
}
// Test sampling from a cube map texture view that covers a sub part of a 2D array texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapViewOnPartOfTexture) {
TextureCubeMapTest(10, 2, 6, false);
}
// Test sampling from a cube map texture view that covers the last layer of a 2D array texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapViewCoveringLastLayer) {
constexpr uint32_t kTotalLayers = 10;
constexpr uint32_t kBaseLayer = 4;
TextureCubeMapTest(kTotalLayers, kBaseLayer, kTotalLayers - kBaseLayer, false);
}
// Test sampling from a cube map texture array view that covers a whole 2D array texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapArrayOnWholeTexture) {
constexpr uint32_t kTotalLayers = 12;
TextureCubeMapTest(kTotalLayers, 0, kTotalLayers, true);
}
// Test sampling from a cube map texture array view that covers a sub part of a 2D array texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapArrayViewOnPartOfTexture) {
TextureCubeMapTest(20, 3, 12, true);
}
// Test sampling from a cube map texture array view that covers the last layer of a 2D array
// texture.
TEST_P(TextureViewSamplingTest, TextureCubeMapArrayViewCoveringLastLayer) {
constexpr uint32_t kTotalLayers = 20;
constexpr uint32_t kBaseLayer = 8;
TextureCubeMapTest(kTotalLayers, kBaseLayer, kTotalLayers - kBaseLayer, true);
}
// Test sampling from a cube map array texture view that only has a single cube map.
TEST_P(TextureViewSamplingTest, TextureCubeMapArrayViewSingleCubeMap) {
TextureCubeMapTest(20, 7, 6, true);
}
class TextureViewRenderingTest : public DawnTest {
protected:
void TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension dimension,
uint32_t layerCount,
uint32_t levelCount,
uint32_t textureViewBaseLayer,
uint32_t textureViewBaseLevel,
uint32_t textureWidthLevel0,
uint32_t textureHeightLevel0) {
ASSERT(dimension == wgpu::TextureViewDimension::e2D ||
dimension == wgpu::TextureViewDimension::e2DArray);
ASSERT_LT(textureViewBaseLayer, layerCount);
ASSERT_LT(textureViewBaseLevel, levelCount);
constexpr wgpu::TextureUsage kUsage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture texture = Create2DTexture(device, textureWidthLevel0, textureHeightLevel0,
layerCount, levelCount, kUsage);
wgpu::TextureViewDescriptor descriptor;
descriptor.format = kDefaultFormat;
descriptor.dimension = dimension;
descriptor.baseArrayLayer = textureViewBaseLayer;
descriptor.arrayLayerCount = 1;
descriptor.baseMipLevel = textureViewBaseLevel;
descriptor.mipLevelCount = 1;
wgpu::TextureView textureView = texture.CreateView(&descriptor);
wgpu::ShaderModule vsModule = CreateDefaultVertexShaderModule(device);
// Clear textureView with Red(255, 0, 0, 255) and render Green(0, 255, 0, 255) into it
utils::ComboRenderPassDescriptor renderPassInfo({textureView});
renderPassInfo.cColorAttachments[0].clearValue = {1.0f, 0.0f, 0.0f, 1.0f};
const char* oneColorFragmentShader = R"(
@fragment fn main(@location(0) texCoord : vec2<f32>) ->
@location(0) vec4<f32> {
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
}
)";
wgpu::ShaderModule oneColorFsModule =
utils::CreateShaderModule(device, oneColorFragmentShader);
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = vsModule;
pipelineDescriptor.cFragment.module = oneColorFsModule;
pipelineDescriptor.cTargets[0].format = kDefaultFormat;
wgpu::RenderPipeline oneColorPipeline = device.CreateRenderPipeline(&pipelineDescriptor);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassInfo);
pass.SetPipeline(oneColorPipeline);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Check if the right pixels (Green) have been written into the right part of the texture.
uint32_t textureViewWidth = std::max(1u, textureWidthLevel0 >> textureViewBaseLevel);
uint32_t textureViewHeight = std::max(1u, textureHeightLevel0 >> textureViewBaseLevel);
uint32_t bytesPerRow =
Align(kBytesPerTexel * textureWidthLevel0, kTextureBytesPerRowAlignment);
uint32_t expectedDataSize =
bytesPerRow / kBytesPerTexel * (textureWidthLevel0 - 1) + textureHeightLevel0;
constexpr utils::RGBA8 kExpectedPixel(0, 255, 0, 255);
std::vector<utils::RGBA8> expected(expectedDataSize, kExpectedPixel);
EXPECT_TEXTURE_EQ(expected.data(), texture, {0, 0, textureViewBaseLayer},
{textureViewWidth, textureViewHeight}, textureViewBaseLevel);
}
};
// Test rendering into a 2D texture view created on a mipmap level of a 2D texture.
TEST_P(TextureViewRenderingTest, Texture2DViewOnALevelOf2DTextureAsColorAttachment) {
constexpr uint32_t kLayers = 1;
constexpr uint32_t kMipLevels = 4;
constexpr uint32_t kBaseLayer = 0;
// Rendering into the first level
{
constexpr uint32_t kBaseLevel = 0;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
// Rendering into the last level
{
constexpr uint32_t kBaseLevel = kMipLevels - 1;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
}
// Test rendering into a 2D texture view created on a mipmap level of a rectangular 2D texture.
TEST_P(TextureViewRenderingTest, Texture2DViewOnALevelOfRectangular2DTextureAsColorAttachment) {
constexpr uint32_t kLayers = 1;
constexpr uint32_t kMipLevels = 4;
constexpr uint32_t kBaseLayer = 0;
// Rendering into the first level
{
constexpr uint32_t kBaseLevel = 0;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels,
1 << (kMipLevels - 2));
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << (kMipLevels - 2),
1 << kMipLevels);
}
// Rendering into the last level
{
constexpr uint32_t kBaseLevel = kMipLevels - 1;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels,
1 << (kMipLevels - 2));
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << (kMipLevels - 2),
1 << kMipLevels);
}
}
// Test rendering into a 2D texture view created on a layer of a 2D array texture.
TEST_P(TextureViewRenderingTest, Texture2DViewOnALayerOf2DArrayTextureAsColorAttachment) {
constexpr uint32_t kMipLevels = 1;
constexpr uint32_t kBaseLevel = 0;
constexpr uint32_t kLayers = 10;
// Rendering into the first layer
{
constexpr uint32_t kBaseLayer = 0;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
// Rendering into the last layer
{
constexpr uint32_t kBaseLayer = kLayers - 1;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2D, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
}
// Test rendering into a 1-layer 2D array texture view created on a mipmap level of a 2D texture.
TEST_P(TextureViewRenderingTest, Texture2DArrayViewOnALevelOf2DTextureAsColorAttachment) {
constexpr uint32_t kLayers = 1;
constexpr uint32_t kMipLevels = 4;
constexpr uint32_t kBaseLayer = 0;
// Rendering into the first level
{
constexpr uint32_t kBaseLevel = 0;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2DArray, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
// Rendering into the last level
{
constexpr uint32_t kBaseLevel = kMipLevels - 1;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2DArray, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
}
// Test rendering into a 1-layer 2D array texture view created on a layer of a 2D array texture.
TEST_P(TextureViewRenderingTest, Texture2DArrayViewOnALayerOf2DArrayTextureAsColorAttachment) {
constexpr uint32_t kMipLevels = 1;
constexpr uint32_t kBaseLevel = 0;
constexpr uint32_t kLayers = 10;
// Rendering into the first layer
{
constexpr uint32_t kBaseLayer = 0;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2DArray, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
// Rendering into the last layer
{
constexpr uint32_t kBaseLayer = kLayers - 1;
TextureLayerAsColorAttachmentTest(wgpu::TextureViewDimension::e2DArray, kLayers, kMipLevels,
kBaseLayer, kBaseLevel, 1 << kMipLevels, 1 << kMipLevels);
}
}
// Test that an RGBA8 texture may be interpreted as RGBA8UnormSrgb and rendered to.
// More extensive color value checks and format tests are left for the CTS.
TEST_P(TextureViewRenderingTest, SRGBReinterpretationRenderAttachment) {
// TODO(crbug.com/dawn/1360): OpenGLES doesn't support view format reinterpretation.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
// Test will render into an SRGB view
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.format = wgpu::TextureFormat::RGBA8UnormSrgb;
// Make an RGBA8Unorm texture to back the SRGB view.
wgpu::TextureDescriptor textureDesc = {};
textureDesc.size = {2, 2, 1};
textureDesc.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment;
textureDesc.format = wgpu::TextureFormat::RGBA8Unorm;
textureDesc.viewFormats = &viewDesc.format;
textureDesc.viewFormatCount = 1;
wgpu::Texture texture = device.CreateTexture(&textureDesc);
// Make an RGBA8Unorm sampled texture as the source.
textureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
wgpu::Texture sampledTexture = device.CreateTexture(&textureDesc);
// Initial non-SRGB data to upload to |sampledTexture|.
std::array<utils::RGBA8, 4> rgbaTextureData = {
utils::RGBA8(117, 0, 0, 255),
utils::RGBA8(0, 23, 0, 127),
utils::RGBA8(0, 0, 12, 100),
utils::RGBA8(13, 117, 24, 90),
};
wgpu::ImageCopyTexture dst = {};
wgpu::TextureDataLayout dataLayout = {};
// Upload |rgbaTextureData| into |sampledTexture|.
dst.texture = sampledTexture;
dataLayout.bytesPerRow = textureDesc.size.width * sizeof(utils::RGBA8);
queue.WriteTexture(&dst, rgbaTextureData.data(), rgbaTextureData.size() * sizeof(utils::RGBA8),
&dataLayout, &textureDesc.size);
// View both the attachment as SRGB.
wgpu::TextureView textureView = texture.CreateView(&viewDesc);
// Create a render pipeline to blit |sampledTexture| into |textureView|.
utils::ComboRenderPipelineDescriptor pipelineDesc;
pipelineDesc.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 6>(
vec2<f32>(-1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
}
)");
pipelineDesc.cFragment.module = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var texture : texture_2d<f32>;
@fragment
fn main(@builtin(position) coord: vec4<f32>) -> @location(0) vec4<f32> {
return textureLoad(texture, vec2<i32>(coord.xy), 0);
}
)");
pipelineDesc.cTargets[0].format = viewDesc.format;
// Submit a render pass to perform the blit from |sampledTexture| to |textureView|.
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDesc);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, sampledTexture.CreateView()}});
utils::ComboRenderPassDescriptor renderPassInfo({textureView});
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Check the results. This is the sRGB encoding for the same non-SRGB colors
// represented by |initialData|.
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(180, 0, 0, 255), //
utils::RGBA8(181, 0, 0, 255), texture, 0, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 85, 0, 127), //
utils::RGBA8(0, 86, 0, 127), texture, 1, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 0, 61, 100), //
utils::RGBA8(0, 0, 62, 100), texture, 0, 1);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(64, 180, 86, 90), //
utils::RGBA8(15, 181, 87, 90), texture, 1, 1);
}
// Test that an RGBA8 texture may be interpreted as RGBA8UnormSrgb and resolved to.
// More extensive color value checks and format tests are left for the CTS.
// This test samples the RGBA8Unorm texture into an RGBA8Unorm multisample texture viewed as SRGB,
// and resolves it into an RGBA8Unorm texture, viewed as SRGB.
TEST_P(TextureViewRenderingTest, SRGBReinterpretionResolveAttachment) {
// TODO(crbug.com/dawn/1360): OpenGLES doesn't support view format reinterpretation.
DAWN_TEST_UNSUPPORTED_IF(IsOpenGLES());
// Test will resolve into an SRGB view
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.format = wgpu::TextureFormat::RGBA8UnormSrgb;
// Make an RGBA8Unorm texture to back the SRGB view.
wgpu::TextureDescriptor textureDesc = {};
textureDesc.size = {2, 2, 1};
textureDesc.format = wgpu::TextureFormat::RGBA8Unorm;
textureDesc.viewFormats = &viewDesc.format;
textureDesc.viewFormatCount = 1;
textureDesc.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment;
wgpu::Texture resolveTexture = device.CreateTexture(&textureDesc);
// Make an RGBA8Unorm multisampled texture for the color attachment.
textureDesc.sampleCount = 4;
textureDesc.usage = wgpu::TextureUsage::RenderAttachment;
wgpu::Texture multisampledTexture = device.CreateTexture(&textureDesc);
// Make an RGBA8Unorm sampled texture as the source.
textureDesc.sampleCount = 1;
textureDesc.format = wgpu::TextureFormat::RGBA8Unorm;
textureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
wgpu::Texture sampledTexture = device.CreateTexture(&textureDesc);
// Initial non-SRGB data to upload to |sampledTexture|.
std::array<utils::RGBA8, 4> rgbaTextureData = {
utils::RGBA8(117, 0, 0, 255),
utils::RGBA8(0, 23, 0, 127),
utils::RGBA8(0, 0, 12, 100),
utils::RGBA8(13, 117, 24, 90),
};
wgpu::ImageCopyTexture dst = {};
wgpu::TextureDataLayout dataLayout = {};
// Upload |rgbaTextureData| into |sampledTexture|.
dst.texture = sampledTexture;
dataLayout.bytesPerRow = textureDesc.size.width * sizeof(utils::RGBA8);
queue.WriteTexture(&dst, rgbaTextureData.data(), rgbaTextureData.size() * sizeof(utils::RGBA8),
&dataLayout, &textureDesc.size);
// View both the multisampled texture and the resolve texture as SRGB.
wgpu::TextureView resolveView = resolveTexture.CreateView(&viewDesc);
wgpu::TextureView multisampledTextureView = multisampledTexture.CreateView(&viewDesc);
// Create a render pipeline to blit |sampledTexture| into |multisampledTextureView|.
utils::ComboRenderPipelineDescriptor pipelineDesc;
pipelineDesc.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 6>(
vec2<f32>(-1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
}
)");
pipelineDesc.cFragment.module = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var texture : texture_2d<f32>;
@fragment
fn main(@builtin(position) coord: vec4<f32>) -> @location(0) vec4<f32> {
return textureLoad(texture, vec2<i32>(coord.xy), 0);
}
)");
pipelineDesc.cTargets[0].format = viewDesc.format;
pipelineDesc.multisample.count = 4;
// Submit a render pass to perform the blit from |sampledTexture| to |multisampledTextureView|.
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDesc);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, sampledTexture.CreateView()}});
utils::ComboRenderPassDescriptor renderPassInfo({multisampledTextureView});
renderPassInfo.cColorAttachments[0].resolveTarget = resolveView;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Check the results. This is the sRGB encoding for the same non-SRGB colors
// represented by |initialData|.
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(180, 0, 0, 255), //
utils::RGBA8(181, 0, 0, 255), resolveTexture, 0, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 85, 0, 127), //
utils::RGBA8(0, 86, 0, 127), resolveTexture, 1, 0);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(0, 0, 61, 100), //
utils::RGBA8(0, 0, 62, 100), resolveTexture, 0, 1);
EXPECT_PIXEL_RGBA8_BETWEEN( //
utils::RGBA8(64, 180, 86, 90), //
utils::RGBA8(15, 181, 87, 90), resolveTexture, 1, 1);
}
DAWN_INSTANTIATE_TEST(TextureViewSamplingTest,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
DAWN_INSTANTIATE_TEST(TextureViewRenderingTest,
D3D12Backend(),
D3D12Backend({}, {"use_d3d12_render_pass"}),
MetalBackend(),
MetalBackend({"emulate_store_and_msaa_resolve"}),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
class TextureViewTest : public DawnTest {};
// This is a regression test for crbug.com/dawn/399 where creating a texture view with only copy
// usage would cause the Vulkan validation layers to warn
TEST_P(TextureViewTest, OnlyCopySrcDst) {
wgpu::TextureDescriptor descriptor;
descriptor.size = {4, 4, 1};
descriptor.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst;
descriptor.format = wgpu::TextureFormat::RGBA8Unorm;
wgpu::Texture texture = device.CreateTexture(&descriptor);
wgpu::TextureView view = texture.CreateView();
}
// Test that a texture view can be created from a destroyed texture without
// backend errors.
TEST_P(TextureViewTest, DestroyedTexture) {
wgpu::TextureDescriptor descriptor;
descriptor.size = {4, 4, 2};
descriptor.usage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopyDst;
descriptor.format = wgpu::TextureFormat::RGBA8Unorm;
wgpu::Texture texture = device.CreateTexture(&descriptor);
texture.Destroy();
wgpu::TextureViewDescriptor viewDesc = {};
viewDesc.baseArrayLayer = 1;
viewDesc.arrayLayerCount = 1;
wgpu::TextureView view = texture.CreateView(&viewDesc);
}
DAWN_INSTANTIATE_TEST(TextureViewTest,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
class TextureView3DTest : public DawnTest {};
// Test that 3D textures and 3D texture views can be created successfully
TEST_P(TextureView3DTest, BasicTest) {
wgpu::Texture texture =
Create3DTexture(device, {4, 4, 4}, 3, wgpu::TextureUsage::TextureBinding);
wgpu::TextureView view = texture.CreateView();
}
DAWN_INSTANTIATE_TEST(TextureView3DTest,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
class TextureView1DTest : public DawnTest {};
// Test that it is possible to create a 1D texture view and sample from it.
TEST_P(TextureView1DTest, Sampling) {
// Create a 1D texture and fill it with some data.
wgpu::TextureDescriptor texDesc;
texDesc.dimension = wgpu::TextureDimension::e1D;
texDesc.format = wgpu::TextureFormat::RGBA8Unorm;
texDesc.usage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopyDst;
texDesc.size = {4, 1, 1};
wgpu::Texture tex = device.CreateTexture(&texDesc);
std::array<utils::RGBA8, 4> data = {utils::RGBA8::kGreen, utils::RGBA8::kRed,
utils::RGBA8::kBlue, utils::RGBA8::kWhite};
wgpu::ImageCopyTexture target = utils::CreateImageCopyTexture(tex, 0, {});
wgpu::TextureDataLayout layout = utils::CreateTextureDataLayout(0, wgpu::kCopyStrideUndefined);
queue.WriteTexture(&target, &data, sizeof(data), &layout, &texDesc.size);
// Create a pipeline that will sample from the 1D texture and output to an attachment.
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
@vertex
fn vs(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec4<f32>, 3>(
vec4<f32>( 0., 2., 0., 1.),
vec4<f32>(-3., -1., 0., 1.),
vec4<f32>( 3., -1., 0., 1.));
return pos[VertexIndex];
}
@group(0) @binding(0) var tex : texture_1d<f32>;
@group(0) @binding(1) var samp : sampler;
@fragment
fn fs(@builtin(position) pos: vec4<f32>) -> @location(0) vec4<f32> {
return textureSample(tex, samp, pos.x / 4.0);
}
)");
utils::ComboRenderPipelineDescriptor pDesc;
pDesc.vertex.module = module;
pDesc.vertex.entryPoint = "vs";
pDesc.cFragment.module = module;
pDesc.cFragment.entryPoint = "fs";
pDesc.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pDesc);
// Do the sample + rendering.
wgpu::BindGroup bg = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, tex.CreateView()}, {1, device.CreateSampler()}});
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
utils::BasicRenderPass rp = utils::CreateBasicRenderPass(device, 4, 1);
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&rp.renderPassInfo);
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bg);
pass.Draw(3);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Check texels got sampled correctly.
EXPECT_PIXEL_RGBA8_EQ(data[0], rp.color, 0, 0);
EXPECT_PIXEL_RGBA8_EQ(data[1], rp.color, 1, 0);
EXPECT_PIXEL_RGBA8_EQ(data[2], rp.color, 2, 0);
EXPECT_PIXEL_RGBA8_EQ(data[3], rp.color, 3, 0);
}
DAWN_INSTANTIATE_TEST(TextureView1DTest,
D3D12Backend(),
MetalBackend(),
VulkanBackend(),
OpenGLBackend(),
OpenGLESBackend());