blob: 08dc366c73077def05f897ee1d28be7291e4aec8 [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// WGSL builtin definition file //
// //
// This file is used to generate parts of the Tint BuiltinTable, various //
// enum definition files, as well as test .wgsl files. //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Enumerators //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#builtin-values
enum builtin_value {
position
vertex_index
instance_index
front_facing
frag_depth
local_invocation_id
local_invocation_index
global_invocation_id
workgroup_id
num_workgroups
sample_index
sample_mask
@internal point_size
}
// https://gpuweb.github.io/gpuweb/wgsl/#extension
enum extension {
// WGSL Extension "f16"
f16
// An extension for the experimental feature "chromium_experimental_dp4a".
// See crbug.com/tint/1497 for more details
chromium_experimental_dp4a
// A Chromium-specific extension for disabling uniformity analysis.
chromium_disable_uniformity_analysis
// A Chromium-specific extension for push constants
chromium_experimental_push_constant
// A Chromium-specific extension that enables passing of uniform, storage and workgroup
// address-spaced pointers as parameters, as well as pointers into sub-objects.
chromium_experimental_full_ptr_parameters
}
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class
enum address_space {
@internal none
function
private
workgroup
uniform
storage
push_constant
@internal handle
@internal in
@internal out
}
// https://gpuweb.github.io/gpuweb/wgsl/#memory-access-mode
enum access {
read
write
read_write
}
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
enum texel_format {
bgra8unorm
rgba8unorm
rgba8snorm
rgba8uint
rgba8sint
rgba16uint
rgba16sint
rgba16float
r32uint
r32sint
r32float
rg32uint
rg32sint
rg32float
rgba32uint
rgba32sint
rgba32float
}
// https://www.w3.org/TR/WGSL/#interpolation
enum interpolation_type {
perspective
linear
flat
}
// https://www.w3.org/TR/WGSL/#interpolation
enum interpolation_sampling {
center
centroid
sample
}
enum short_name {
// https://www.w3.org/TR/WGSL/#matrix-types
mat2x2f
mat2x2h
mat2x3f
mat2x3h
mat2x4f
mat2x4h
mat3x2f
mat3x2h
mat3x3f
mat3x3h
mat3x4f
mat3x4h
mat4x2f
mat4x2h
mat4x3f
mat4x3h
mat4x4f
mat4x4h
// https://www.w3.org/TR/WGSL/#vector-types
vec2f
vec2h
vec2i
vec2u
vec3f
vec3h
vec3i
vec3u
vec4f
vec4h
vec4i
vec4u
}
////////////////////////////////////////////////////////////////////////////////
// WGSL primitive types //
// Types may be decorated with @precedence(N) to prioritize which type //
// will be picked when multiple types of a matcher match. //
// This is used to ensure that abstract numerical types materialize to the //
// concrete type with the lowest conversion rank. //
// Types with higher the precedence values will be matched first. //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
type bool
@precedence(5) @display("abstract-int") type ia
@precedence(4) @display("abstract-float") type fa
@precedence(3) type i32
@precedence(2) type u32
@precedence(1) type f32
@precedence(0) type f16
type vec2<T>
type vec3<T>
type vec4<T>
type mat2x2<T>
type mat2x3<T>
type mat2x4<T>
type mat3x2<T>
type mat3x3<T>
type mat3x4<T>
type mat4x2<T>
type mat4x3<T>
type mat4x4<T>
@display("vec{N}<{T}>") type vec<N: num, T>
@display("mat{N}x{M}<{T}>") type mat<N: num, M: num, T>
type ptr<S: address_space, T, A: access>
type atomic<T>
type array<T>
type sampler
type sampler_comparison
type texture_1d<T>
type texture_2d<T>
type texture_2d_array<T>
type texture_3d<T>
type texture_cube<T>
type texture_cube_array<T>
type texture_multisampled_2d<T>
type texture_depth_2d
type texture_depth_2d_array
type texture_depth_cube
type texture_depth_cube_array
type texture_depth_multisampled_2d
type texture_storage_1d<F: texel_format, A: access>
type texture_storage_2d<F: texel_format, A: access>
type texture_storage_2d_array<F: texel_format, A: access>
type texture_storage_3d<F: texel_format, A: access>
type texture_external
@display("__modf_result_{T}") type __modf_result<T>
@display("__modf_result_vec{N}_{T}") type __modf_result_vec<N: num, T>
@display("__frexp_result_{T}") type __frexp_result<T>
@display("__frexp_result_vec{N}_{T}") type __frexp_result_vec<N: num, T>
type __atomic_compare_exchange_result<T>
////////////////////////////////////////////////////////////////////////////////
// Type matchers //
// //
// A type matcher that can match one or more types. //
////////////////////////////////////////////////////////////////////////////////
match scalar: ia | fa | f32 | f16 | i32 | u32 | bool
match concrete_scalar: f32 | f16 | i32 | u32 | bool
match scalar_no_f32: ia | fa | i32 | f16 | u32 | bool
match scalar_no_f16: ia | fa | f32 | i32 | u32 | bool
match scalar_no_i32: ia | fa | f32 | f16 | u32 | bool
match scalar_no_u32: ia | fa | f32 | f16 | i32 | bool
match scalar_no_bool: ia | fa | f32 | f16 | i32 | u32
match fia_fiu32_f16: fa | ia | f32 | i32 | u32 | f16
match fia_fi32_f16: fa | ia | f32 | i32 | f16
match fia_fiu32: fa | ia | f32 | i32 | u32
match fa_f32: fa | f32
match fa_f32_f16: fa | f32 | f16
match ia_iu32: ia | i32 | u32
match ia_i32: ia | i32
match fiu32_f16: f32 | i32 | u32 | f16
match fiu32: f32 | i32 | u32
match fi32_f16: f32 | i32 | f16
match fi32: f32 | i32
match f32_f16: f32 | f16
match iu32: i32 | u32
////////////////////////////////////////////////////////////////////////////////
// Enum matchers //
// //
// A number matcher that can match one or more enumerator values. //
// All enumerator values listed in the match declaration need to be from the //
// same enum. //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
match f32_texel_format
: texel_format.bgra8unorm
| texel_format.rgba8unorm
| texel_format.rgba8snorm
| texel_format.rgba16float
| texel_format.r32float
| texel_format.rg32float
| texel_format.rgba32float
match i32_texel_format
: texel_format.rgba8sint
| texel_format.rgba16sint
| texel_format.r32sint
| texel_format.rg32sint
| texel_format.rgba32sint
match u32_texel_format
: texel_format.rgba8uint
| texel_format.rgba16uint
| texel_format.r32uint
| texel_format.rg32uint
| texel_format.rgba32uint
match write: access.write
match read_write: access.read_write
match function_private_workgroup
: address_space.function
| address_space.private
| address_space.workgroup
match workgroup_or_storage
: address_space.workgroup
| address_space.storage
match storage
: address_space.storage
match workgroup
: address_space.workgroup
////////////////////////////////////////////////////////////////////////////////
// Builtin Functions //
// //
// The builtin function declarations below declare all the built-in //
// functions supported by the WGSL language. This builtin definition //
// language supports simple static-type function declarations, as well as //
// single overload declarations that can match a number of different //
// argument types via the use of template types and template numbers //
// //
// * Basic example: //
// //
// fn isInf(f32) -> bool //
// //
// Declares an overload of the function 'isInf' that accepts a single //
// parameter of type 'f32' and returns a 'bool'. //
// //
// A template type is a type determined by the arguments to the builtin. //
// //
// * Template type example without constraint: //
// //
// fn arrayLength<T>(array<T>) -> u32 //
// //
// Declares an overload of the function 'arrayLength' that accepts a //
// single argument of an array type with no constraints on the array //
// element type. This overload will always return a value of the same type //
// as its single argument. //
// //
// * Template type example with constraint: //
// //
// fn abs<T: fiu32>(T) -> T //
// //
// Declares an overload of the function 'abs' that accepts a single //
// argument of type 'f32', 'i32' or 'u32', which returns a value of the //
// same argument type. //
// //
// Similarly a template number is a number or enumerator that is determined //
// by the arguments to the builtin. //
// //
// * Template number example: //
// //
// fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> //
// //
// Declares an overload of the function 'dpdx' that accepts a single //
// argument of a variable-sized vector of 'f32', which returns a value of //
// the same argument type. //
// //
// //
// Matching algorithm for a single overload: //
// ----------------------------------------- //
// //
// The goal of matching is to compare a function call's arguments and any //
// explicitly provided template types in the program source against an //
// overload declaration in this file, and determine if the call satisfies //
// the form and type constraints of the overload. If the call matches an //
// overload, then the overload is added to the list of 'overload candidates' //
// used for overload resolution (described below). //
// //
// Prior to matching an overload, all template types are undefined. //
// //
// Template types are first defined with the type of the leftmost argument //
// that matches against that template type name. Subsequent arguments that //
// attempt to match against the template type name will either reject the //
// overload or refine the template, in one of 3 ways: //
// (a) Fail to match, causing the overload to be immediately rejected. //
// (b) Match the existing template type, either exactly or via implicit //
// conversion, and overload resolution continues. //
// (c) Match via implicit conversion of the currently defined template type //
// to the argument type. In this situation, the template type is refined //
// with the more constrained argument type, and overload resolution //
// continues. //
// //
// To better understand, let's consider the following hypothetical overload //
// declaration: //
// //
// fn foo<T: scalar>(T, T); //
// //
// T - is the template type name //
// scalar - is a matcher for the types 'f32', 'i32', 'u32' or 'bool' //
// (declared above) //
// <T: scalar> - declares the template type T, with the constraint that T //
// must match one of 'f32', 'i32', 'u32' or 'bool'. //
// //
// The process for resolving this overload is as follows: //
// //
// (1) The overload resolver begins by attempting to match the argument //
// types from left to right. //
// The first parameter type is compared against the argument type T. //
// As the template type T has not been defined yet, T is defined as the //
// type of the first argument. //
// There's no verification that the T type is a scalar at this stage. //
// (2) The second parameter is then compared against the second argument. //
// As the template type T is now defined the argument type is compared //
// against the value of the defined type of T. Depending on the //
// comparison of the argument type to the template type, either the //
// actions of (a), (b) or (c) from above will occur. //
// (3) If all the parameters matched, constraints on the template types //
// need to be checked next. If the defined type does not match the //
// 'match' constraint, then the overload is no longer considered. //
// //
// This algorithm for matching a single overload is less general than the //
// algorithm described in the WGSL spec. But it makes the same decisions //
// because the overloads defined by WGSL are monotonic in the sense that once //
// a template parameter has been refined, there is never a need to backtrack //
// and un-refine it to match a later argument. //
// //
// The algorithm for matching template numbers is similar to matching //
// template types, except numbers need to exactly match across all uses - //
// there is no implicit conversion. Template numbers may match integer //
// numbers or enumerators. //
// //
// //
// Overload resolution for candidate overloads //
// ------------------------------------------- //
// //
// If multiple candidate overloads match a given set of arguments, then a //
// final overload resolution pass needs to be performed. The arguments and //
// overload parameter types for each candidate overload are compared, //
// following the algorithm described at: //
// https://www.w3.org/TR/WGSL/#overload-resolution-section //
// //
// If the candidate list contains a single entry, then that single candidate //
// is picked, and no overload resolution needs to be performed. //
// //
// If the candidate list is empty, then the call fails to resolve and an //
// error diagnostic is raised. //
// //
// //
// More examples //
// ------------- //
// //
// fn F() //
// - Function called F. //
// No template types or numbers, no parameters, no return value //
// //
// fn F() -> RETURN_TYPE //
// - Function with RETURN_TYPE as the return type value //
// //
// fn F(f32, i32) //
// - Two fixed-type, anonymous parameters //
// //
// fn F(USAGE : f32) //
// - Single parameter with name USAGE. //
// Note: Parameter names are used by Tint to infer parameter order for //
// some builtin functions //
// //
// fn F<T>(T) //
// - Single parameter of unconstrained template type T (any type) //
// //
// fn F<T: scalar>(T) //
// - Single parameter of constrained template type T (must be a scalar) //
// //
// fn F<T: fiu32>(T) -> T //
// - Single parameter of constrained template type T (must be a one of //
// fiu32) Return type matches parameter type //
// //
// fn F<T, N: num>(vec<N, T>) //
// - Single parameter of vector type with template number size N and //
// element template type T //
// //
// fn F<A: access>(texture_storage_1d<f32_texel_format, A>) //
// - Single parameter of texture_storage_1d type with template number //
// access-control C, and of a texel format that is listed in //
// f32_texel_format //
// //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#builtin-functions
@const fn abs<T: fia_fiu32_f16>(T) -> T
@const fn abs<N: num, T: fia_fiu32_f16>(vec<N, T>) -> vec<N, T>
@const fn acos<T: fa_f32_f16>(@test_value(0.96891242171) T) -> T
@const fn acos<N: num, T: fa_f32_f16>(@test_value(0.96891242171) vec<N, T>) -> vec<N, T>
@const fn acosh<T: fa_f32_f16>(@test_value(2.0) T) -> T
@const fn acosh<N: num, T: fa_f32_f16>(@test_value(2.0) vec<N, T>) -> vec<N, T>
@const fn all(bool) -> bool
@const fn all<N: num>(vec<N, bool>) -> bool
@const fn any(bool) -> bool
@const fn any<N: num>(vec<N, bool>) -> bool
fn arrayLength<T, A: access>(ptr<storage, array<T>, A>) -> u32
@const fn asin<T: fa_f32_f16>(@test_value(0.479425538604) T) -> T
@const fn asin<N: num, T: fa_f32_f16>(@test_value(0.479425538604) vec<N, T>) -> vec<N, T>
@const fn asinh<T: fa_f32_f16>(T) -> T
@const fn asinh<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn atan<T: fa_f32_f16>(T) -> T
@const fn atan<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn atan2<T: fa_f32_f16>(T, T) -> T
@const fn atan2<T: fa_f32_f16, N: num>(vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn atanh<T: fa_f32_f16>(@test_value(0.5) T) -> T
@const fn atanh<N: num, T: fa_f32_f16>(@test_value(0.5) vec<N, T>) -> vec<N, T>
@const fn ceil<T: fa_f32_f16>(@test_value(1.5) T) -> T
@const fn ceil<N: num, T: fa_f32_f16>(@test_value(1.5) vec<N, T>) -> vec<N, T>
@const fn clamp<T: fia_fiu32_f16>(T, T, T) -> T
@const fn clamp<T: fia_fiu32_f16, N: num>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn cos<T: fa_f32_f16>(@test_value(0) T) -> T
@const fn cos<N: num, T: fa_f32_f16>(@test_value(0) vec<N, T>) -> vec<N, T>
@const fn cosh<T: fa_f32_f16>(@test_value(0) T) -> T
@const fn cosh<N: num, T: fa_f32_f16>(@test_value(0) vec<N, T>) -> vec<N, T>
@const fn countLeadingZeros<T: iu32>(T) -> T
@const fn countLeadingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn countOneBits<T: iu32>(T) -> T
@const fn countOneBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn countTrailingZeros<T: iu32>(T) -> T
@const fn countTrailingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn cross<T: fa_f32_f16>(vec3<T>, vec3<T>) -> vec3<T>
@const fn degrees<T: fa_f32_f16>(T) -> T
@const fn degrees<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn determinant<N: num, T: fa_f32_f16>(mat<N, N, T>) -> T
@const fn distance<T: fa_f32_f16>(T, T) -> T
@const fn distance<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>) -> T
@const fn dot<N: num, T: fia_fiu32_f16>(vec<N, T>, vec<N, T>) -> T
fn dot4I8Packed(u32, u32) -> i32
fn dot4U8Packed(u32, u32) -> u32
@stage("fragment") fn dpdx(f32) -> f32
@stage("fragment") fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn dpdxCoarse(f32) -> f32
@stage("fragment") fn dpdxCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn dpdxFine(f32) -> f32
@stage("fragment") fn dpdxFine<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn dpdy(f32) -> f32
@stage("fragment") fn dpdy<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn dpdyCoarse(f32) -> f32
@stage("fragment") fn dpdyCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn dpdyFine(f32) -> f32
@stage("fragment") fn dpdyFine<N: num>(vec<N, f32>) -> vec<N, f32>
@const fn exp<T: fa_f32_f16>(T) -> T
@const fn exp<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn exp2<T: fa_f32_f16>(T) -> T
@const fn exp2<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn extractBits<T: iu32>(T, u32, u32) -> T
@const fn extractBits<N: num, T: iu32>(vec<N, T>, u32, u32) -> vec<N, T>
@const fn faceForward<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn firstLeadingBit<T: iu32>(T) -> T
@const fn firstLeadingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn firstTrailingBit<T: iu32>(T) -> T
@const fn firstTrailingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn floor<T: fa_f32_f16>(@test_value(1.5) T) -> T
@const fn floor<N: num, T: fa_f32_f16>(@test_value(1.5) vec<N, T>) -> vec<N, T>
@const fn fma<T: fa_f32_f16>(T, T, T) -> T
@const fn fma<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn fract<T: fa_f32_f16>(@test_value(1.25) T) -> T
@const fn fract<N: num, T: fa_f32_f16>(@test_value(1.25) vec<N, T>) -> vec<N, T>
@const fn frexp<T: fa_f32_f16>(T) -> __frexp_result<T>
@const fn frexp<N: num, T: fa_f32_f16>(vec<N, T>) -> __frexp_result_vec<N, T>
@stage("fragment") fn fwidth(f32) -> f32
@stage("fragment") fn fwidth<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn fwidthCoarse(f32) -> f32
@stage("fragment") fn fwidthCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
@stage("fragment") fn fwidthFine(f32) -> f32
@stage("fragment") fn fwidthFine<N: num>(vec<N, f32>) -> vec<N, f32>
@const fn insertBits<T: iu32>(T, T, u32, u32) -> T
@const fn insertBits<N: num, T: iu32>(vec<N, T>, vec<N, T>, u32, u32) -> vec<N, T>
@const fn inverseSqrt<T: fa_f32_f16>(T) -> T
@const fn inverseSqrt<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn ldexp<T: fa_f32_f16, U: ia_i32>(T, U) -> T
@const fn ldexp<N: num, T: fa_f32_f16, U: ia_i32>(vec<N, T>, vec<N, U>) -> vec<N, T>
@const fn length<T: fa_f32_f16>(@test_value(0.0) T) -> T
@const fn length<N: num, T: fa_f32_f16>(@test_value(0.0) vec<N, T>) -> T
@const fn log<T: fa_f32_f16>(T) -> T
@const fn log<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn log2<T: fa_f32_f16>(T) -> T
@const fn log2<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn max<T: fia_fiu32_f16>(T, T) -> T
@const fn max<N: num, T: fia_fiu32_f16>(vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn min<T: fia_fiu32_f16>(T, T) -> T
@const fn min<N: num, T: fia_fiu32_f16>(vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn mix<T: fa_f32_f16>(T, T, T) -> T
@const fn mix<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn mix<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>, T) -> vec<N, T>
@const fn modf<T: fa_f32_f16>(@test_value(-1.5) T) -> __modf_result<T>
@const fn modf<N: num, T: fa_f32_f16>(@test_value(-1.5) vec<N, T>) -> __modf_result_vec<N, T>
@const fn normalize<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn pack2x16float(vec2<f32>) -> u32
@const fn pack2x16snorm(vec2<f32>) -> u32
@const fn pack2x16unorm(vec2<f32>) -> u32
@const fn pack4x8snorm(vec4<f32>) -> u32
@const fn pack4x8unorm(vec4<f32>) -> u32
@const fn pow<T: fa_f32_f16>(T, T) -> T
@const fn pow<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn quantizeToF16(f32) -> f32
@const fn quantizeToF16<N: num>(vec<N, f32>) -> vec<N, f32>
@const fn radians<T: fa_f32_f16>(T) -> T
@const fn radians<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn reflect<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>) -> vec<N, T>
@const fn refract<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>, T) -> vec<N, T>
@const fn reverseBits<T: iu32>(T) -> T
@const fn reverseBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
@const fn round<T: fa_f32_f16>(@test_value(3.4) T) -> T
@const fn round<N: num, T: fa_f32_f16>(@test_value(3.4) vec<N, T>) -> vec<N, T>
@const fn saturate<T: fa_f32_f16>(@test_value(2) T) -> T
@const fn saturate<T: fa_f32_f16, N: num>(@test_value(2) vec<N, T>) -> vec<N, T>
@const("select_bool") fn select<T: scalar>(T, T, bool) -> T
@const("select_bool") fn select<T: scalar, N: num>(vec<N, T>, vec<N, T>, bool) -> vec<N, T>
@const("select_boolvec") fn select<N: num, T: scalar>(vec<N, T>, vec<N, T>, vec<N, bool>) -> vec<N, T>
@const fn sign<T: fia_fi32_f16>(T) -> T
@const fn sign<N: num, T: fia_fi32_f16>(vec<N, T>) -> vec<N, T>
@const fn sin<T: fa_f32_f16>(T) -> T
@const fn sin<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn sinh<T: fa_f32_f16>(T) -> T
@const fn sinh<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn smoothstep<T: fa_f32_f16>(@test_value(2) T, @test_value(4) T, @test_value(3) T) -> T
@const fn smoothstep<N: num, T: fa_f32_f16>(@test_value(2) vec<N, T>, @test_value(4) vec<N, T>, @test_value(3) vec<N, T>) -> vec<N, T>
@const fn sqrt<T: fa_f32_f16>(T) -> T
@const fn sqrt<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn step<T: fa_f32_f16>(T, T) -> T
@const fn step<N: num, T: fa_f32_f16>(vec<N, T>, vec<N, T>) -> vec<N, T>
@stage("compute") fn storageBarrier()
@const fn tan<T: fa_f32_f16>(T) -> T
@const fn tan<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn tanh<T: fa_f32_f16>(T) -> T
@const fn tanh<N: num, T: fa_f32_f16>(vec<N, T>) -> vec<N, T>
@const fn transpose<M: num, N: num, T: fa_f32_f16>(mat<M, N, T>) -> mat<N, M, T>
@const fn trunc<T: fa_f32_f16>(@test_value(1.5) T) -> T
@const fn trunc<N: num, T: fa_f32_f16>(@test_value(1.5) vec<N, T>) -> vec<N, T>
@const fn unpack2x16float(u32) -> vec2<f32>
@const fn unpack2x16snorm(u32) -> vec2<f32>
@const fn unpack2x16unorm(u32) -> vec2<f32>
@const fn unpack4x8snorm(u32) -> vec4<f32>
@const fn unpack4x8unorm(u32) -> vec4<f32>
@stage("compute") fn workgroupBarrier()
@stage("compute") fn workgroupUniformLoad<T>(ptr<workgroup, T, read_write>) -> T
fn textureDimensions<T: fiu32>(texture: texture_1d<T>) -> u32
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_1d<T>, level: L) -> u32
fn textureDimensions<T: fiu32>(texture: texture_2d<T>) -> vec2<u32>
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_2d<T>, level: L) -> vec2<u32>
fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>) -> vec2<u32>
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_2d_array<T>, level: L) -> vec2<u32>
fn textureDimensions<T: fiu32>(texture: texture_3d<T>) -> vec3<u32>
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_3d<T>, level: L) -> vec3<u32>
fn textureDimensions<T: fiu32>(texture: texture_cube<T>) -> vec2<u32>
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_cube<T>, level: L) -> vec2<u32>
fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>) -> vec2<u32>
fn textureDimensions<T: fiu32, L: iu32>(texture: texture_cube_array<T>, level: L) -> vec2<u32>
fn textureDimensions<T: fiu32>(texture: texture_multisampled_2d<T>) -> vec2<u32>
fn textureDimensions(texture: texture_depth_2d) -> vec2<u32>
fn textureDimensions<L: iu32>(texture: texture_depth_2d, level: L) -> vec2<u32>
fn textureDimensions(texture: texture_depth_2d_array) -> vec2<u32>
fn textureDimensions<L: iu32>(texture: texture_depth_2d_array, level: L) -> vec2<u32>
fn textureDimensions(texture: texture_depth_cube) -> vec2<u32>
fn textureDimensions<L: iu32>(texture: texture_depth_cube, level: L) -> vec2<u32>
fn textureDimensions(texture: texture_depth_cube_array) -> vec2<u32>
fn textureDimensions<L: iu32>(texture: texture_depth_cube_array, level: L) -> vec2<u32>
fn textureDimensions(texture: texture_depth_multisampled_2d) -> vec2<u32>
fn textureDimensions<F: texel_format, A: write>(texture: texture_storage_1d<F, A>) -> u32
fn textureDimensions<F: texel_format, A: write>(texture: texture_storage_2d<F, A>) -> vec2<u32>
fn textureDimensions<F: texel_format, A: write>(texture: texture_storage_2d_array<F, A>) -> vec2<u32>
fn textureDimensions<F: texel_format, A: write>(texture: texture_storage_3d<F, A>) -> vec3<u32>
fn textureDimensions(texture: texture_external) -> vec2<u32>
fn textureGather<T: fiu32, C: iu32>(@const component: C, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>) -> vec4<T>
fn textureGather<T: fiu32, C: iu32>(@const component: C, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<T>
fn textureGather<T: fiu32, C: iu32, A: iu32>(@const component: C, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: A) -> vec4<T>
fn textureGather<T: fiu32, C: iu32, A: iu32>(@const component: C, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: A, @const offset: vec2<i32>) -> vec4<T>
fn textureGather<T: fiu32, C: iu32>(@const component: C, texture: texture_cube<T>, sampler: sampler, coords: vec3<f32>) -> vec4<T>
fn textureGather<T: fiu32, C: iu32, A: iu32>(@const component: C, texture: texture_cube_array<T>, sampler: sampler, coords: vec3<f32>, array_index: A) -> vec4<T>
fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32>
fn textureGather<A: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A) -> vec4<f32>
fn textureGather<A: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A, @const offset: vec2<i32>) -> vec4<f32>
fn textureGather(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
fn textureGather<A: iu32>(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: A) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> vec4<f32>
fn textureGatherCompare<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32, @const offset: vec2<i32>) -> vec4<f32>
fn textureGatherCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> vec4<f32>
fn textureGatherCompare<A: iu32>(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: A, depth_ref: f32) -> vec4<f32>
fn textureNumLayers<T: fiu32>(texture: texture_2d_array<T>) -> u32
fn textureNumLayers<T: fiu32>(texture: texture_cube_array<T>) -> u32
fn textureNumLayers(texture: texture_depth_2d_array) -> u32
fn textureNumLayers(texture: texture_depth_cube_array) -> u32
fn textureNumLayers<F: texel_format, A: write>(texture: texture_storage_2d_array<F, A>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_1d<T>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_2d<T>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_2d_array<T>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_3d<T>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_cube<T>) -> u32
fn textureNumLevels<T: fiu32>(texture: texture_cube_array<T>) -> u32
fn textureNumLevels(texture: texture_depth_2d) -> u32
fn textureNumLevels(texture: texture_depth_2d_array) -> u32
fn textureNumLevels(texture: texture_depth_cube) -> u32
fn textureNumLevels(texture: texture_depth_cube_array) -> u32
fn textureNumSamples<T: fiu32>(texture: texture_multisampled_2d<T>) -> u32
fn textureNumSamples(texture: texture_depth_multisampled_2d) -> u32
@stage("fragment") fn textureSample(texture: texture_1d<f32>, sampler: sampler, coords: f32) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32>
@stage("fragment") fn textureSample<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A) -> vec4<f32>
@stage("fragment") fn textureSample<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, @const offset: vec2<i32>) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, @const offset: vec3<i32>) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
@stage("fragment") fn textureSample<A: iu32>(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: A) -> vec4<f32>
@stage("fragment") fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> f32
@stage("fragment") fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> f32
@stage("fragment") fn textureSample<A: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A) -> f32
@stage("fragment") fn textureSample<A: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A, @const offset: vec2<i32>) -> f32
@stage("fragment") fn textureSample(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> f32
@stage("fragment") fn textureSample<A: iu32>(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: A) -> f32
@stage("fragment") fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32) -> vec4<f32>
@stage("fragment") fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32, @const offset: vec2<i32>) -> vec4<f32>
@stage("fragment") fn textureSampleBias<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, bias: f32) -> vec4<f32>
@stage("fragment") fn textureSampleBias<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, bias: f32, @const offset: vec2<i32>) -> vec4<f32>
@stage("fragment") fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
@stage("fragment") fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32, @const offset: vec3<i32>) -> vec4<f32>
@stage("fragment") fn textureSampleBias(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
@stage("fragment") fn textureSampleBias<A: iu32>(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: A, bias: f32) -> vec4<f32>
@stage("fragment") fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32
@stage("fragment") fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> f32
@stage("fragment") fn textureSampleCompare<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32) -> f32
@stage("fragment") fn textureSampleCompare<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32, @const offset: vec2<i32>) -> f32
@stage("fragment") fn textureSampleCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32
@stage("fragment") fn textureSampleCompare<A: iu32>(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: A, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32
fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> f32
fn textureSampleCompareLevel<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32) -> f32
fn textureSampleCompareLevel<A: iu32>(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: A, depth_ref: f32, @const offset: vec2<i32>) -> f32
fn textureSampleCompareLevel(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32
fn textureSampleCompareLevel<A: iu32>(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: A, depth_ref: f32) -> f32
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, ddx: vec2<f32>, ddy: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>, @const offset: vec3<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad<A: iu32>(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: A, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32, @const offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, level: f32) -> vec4<f32>
fn textureSampleLevel<A: iu32>(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: A, level: f32, @const offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32, @const offset: vec3<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel<A: iu32>(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: A, level: f32) -> vec4<f32>
fn textureSampleLevel<L: iu32>(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: L) -> f32
fn textureSampleLevel<L: iu32>(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: L, @const offset: vec2<i32>) -> f32
fn textureSampleLevel<A: iu32, L: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A, level: L) -> f32
fn textureSampleLevel<A: iu32, L: iu32>(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: A, level: L, @const offset: vec2<i32>) -> f32
fn textureSampleLevel<L: iu32>(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>, level: L) -> f32
fn textureSampleLevel<A: iu32, L: iu32>(texture: texture_depth_cube_array,sampler: sampler, coords: vec3<f32>, array_index: A, level: L) -> f32
fn textureSampleBaseClampToEdge(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureSampleBaseClampToEdge(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureStore<C: iu32>(texture: texture_storage_1d<f32_texel_format, write>, coords: C, value: vec4<f32>)
fn textureStore<C: iu32>(texture: texture_storage_2d<f32_texel_format, write>, coords: vec2<C>, value: vec4<f32>)
fn textureStore<C: iu32, A: iu32>(texture: texture_storage_2d_array<f32_texel_format, write>, coords: vec2<C>, array_index: A, value: vec4<f32>)
fn textureStore<C: iu32>(texture: texture_storage_3d<f32_texel_format, write>, coords: vec3<C>, value: vec4<f32>)
fn textureStore<C: iu32>(texture: texture_storage_1d<i32_texel_format, write>, coords: C, value: vec4<i32>)
fn textureStore<C: iu32>(texture: texture_storage_2d<i32_texel_format, write>, coords: vec2<C>, value: vec4<i32>)
fn textureStore<C: iu32, A: iu32>(texture: texture_storage_2d_array<i32_texel_format, write>, coords: vec2<C>, array_index: A, value: vec4<i32>)
fn textureStore<C: iu32>(texture: texture_storage_3d<i32_texel_format, write>, coords: vec3<C>, value: vec4<i32>)
fn textureStore<C: iu32>(texture: texture_storage_1d<u32_texel_format, write>, coords: C, value: vec4<u32>)
fn textureStore<C: iu32>(texture: texture_storage_2d<u32_texel_format, write>, coords: vec2<C>, value: vec4<u32>)
fn textureStore<C: iu32, A: iu32>(texture: texture_storage_2d_array<u32_texel_format, write>, coords: vec2<C>, array_index: A, value: vec4<u32>)
fn textureStore(texture: texture_storage_3d<u32_texel_format, write>, coords: vec3<i32>, value: vec4<u32>)
fn textureLoad<T: fiu32, C: iu32, L: iu32>(texture: texture_1d<T>, coords: C, level: L) -> vec4<T>
fn textureLoad<T: fiu32, C: iu32, L: iu32>(texture: texture_2d<T>, coords: vec2<C>, level: L) -> vec4<T>
fn textureLoad<T: fiu32, C: iu32, A: iu32, L: iu32>(texture: texture_2d_array<T>, coords: vec2<C>, array_index: A, level: L) -> vec4<T>
fn textureLoad<T: fiu32, C: iu32, L: iu32>(texture: texture_3d<T>, coords: vec3<C>, level: L) -> vec4<T>
fn textureLoad<T: fiu32, C: iu32, S: iu32>(texture: texture_multisampled_2d<T>, coords: vec2<C>, sample_index: S) -> vec4<T>
fn textureLoad<C: iu32, L: iu32>(texture: texture_depth_2d, coords: vec2<C>, level: L) -> f32
fn textureLoad<C: iu32, A: iu32, L: iu32>(texture: texture_depth_2d_array, coords: vec2<C>, array_index: A, level: L) -> f32
fn textureLoad<C: iu32, S: iu32>(texture: texture_depth_multisampled_2d, coords: vec2<C>, sample_index: S) -> f32
fn textureLoad<C: iu32>(texture: texture_external, coords: vec2<C>) -> vec4<f32>
@stage("fragment", "compute") fn atomicLoad<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>) -> T
@stage("fragment", "compute") fn atomicStore<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T)
@stage("fragment", "compute") fn atomicAdd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicSub<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicMax<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicMin<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicAnd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicOr<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicXor<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicExchange<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T
@stage("fragment", "compute") fn atomicCompareExchangeWeak<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T, T) -> __atomic_compare_exchange_result<T>
////////////////////////////////////////////////////////////////////////////////
// Type initializers //
////////////////////////////////////////////////////////////////////////////////
// Zero value initializers
@const("Zero") init i32() -> i32
@const("Zero") init u32() -> u32
@const("Zero") init f32() -> f32
@const("Zero") init f16() -> f16
@const("Zero") init bool() -> bool
@const("Zero") init vec2<T: concrete_scalar>() -> vec2<T>
@const("Zero") init vec3<T: concrete_scalar>() -> vec3<T>
@const("Zero") init vec4<T: concrete_scalar>() -> vec4<T>
@const("Zero") init mat2x2<T: f32_f16>() -> mat2x2<T>
@const("Zero") init mat2x3<T: f32_f16>() -> mat2x3<T>
@const("Zero") init mat2x4<T: f32_f16>() -> mat2x4<T>
@const("Zero") init mat3x2<T: f32_f16>() -> mat3x2<T>
@const("Zero") init mat3x3<T: f32_f16>() -> mat3x3<T>
@const("Zero") init mat3x4<T: f32_f16>() -> mat3x4<T>
@const("Zero") init mat4x2<T: f32_f16>() -> mat4x2<T>
@const("Zero") init mat4x3<T: f32_f16>() -> mat4x3<T>
@const("Zero") init mat4x4<T: f32_f16>() -> mat4x4<T>
// Identity initializers
@const("Identity") init i32(i32) -> i32
@const("Identity") init u32(u32) -> u32
@const("Identity") init f32(f32) -> f32
@const("Identity") init f16(f16) -> f16
@const("Identity") init bool(bool) -> bool
@const("Identity") init vec2<T: scalar>(vec2<T>) -> vec2<T>
@const("Identity") init vec3<T: scalar>(vec3<T>) -> vec3<T>
@const("Identity") init vec4<T: scalar>(vec4<T>) -> vec4<T>
@const("Identity") init mat2x2<T: f32_f16>(mat2x2<T>) -> mat2x2<T>
@const("Identity") init mat2x3<T: f32_f16>(mat2x3<T>) -> mat2x3<T>
@const("Identity") init mat2x4<T: f32_f16>(mat2x4<T>) -> mat2x4<T>
@const("Identity") init mat3x2<T: f32_f16>(mat3x2<T>) -> mat3x2<T>
@const("Identity") init mat3x3<T: f32_f16>(mat3x3<T>) -> mat3x3<T>
@const("Identity") init mat3x4<T: f32_f16>(mat3x4<T>) -> mat3x4<T>
@const("Identity") init mat4x2<T: f32_f16>(mat4x2<T>) -> mat4x2<T>
@const("Identity") init mat4x3<T: f32_f16>(mat4x3<T>) -> mat4x3<T>
@const("Identity") init mat4x4<T: f32_f16>(mat4x4<T>) -> mat4x4<T>
// Vector initializers (splat)
@const("VecSplat") init vec2<T: scalar>(T) -> vec2<T>
@const("VecSplat") init vec3<T: scalar>(T) -> vec3<T>
@const("VecSplat") init vec4<T: scalar>(T) -> vec4<T>
// Vector initializers (scalar)
@const("VecInitS") init vec2<T: scalar>(x: T, y: T) -> vec2<T>
@const("VecInitS") init vec3<T: scalar>(x: T, y: T, z: T) -> vec3<T>
@const("VecInitS") init vec4<T: scalar>(x: T, y: T, z: T, w: T) -> vec4<T>
// Vector initializers (mixed)
@const("VecInitM") init vec3<T: scalar>(xy: vec2<T>, z: T) -> vec3<T>
@const("VecInitM") init vec3<T: scalar>(x: T, yz: vec2<T>) -> vec3<T>
@const("VecInitM") init vec4<T: scalar>(xy: vec2<T>, z: T, w: T) -> vec4<T>
@const("VecInitM") init vec4<T: scalar>(x: T, yz: vec2<T>, w: T) -> vec4<T>
@const("VecInitM") init vec4<T: scalar>(x: T, y: T, zw: vec2<T>) -> vec4<T>
@const("VecInitM") init vec4<T: scalar>(xy: vec2<T>, zw: vec2<T>) -> vec4<T>
@const("VecInitM") init vec4<T: scalar>(xyz: vec3<T>, w: T) -> vec4<T>
@const("VecInitM") init vec4<T: scalar>(x: T, zyw: vec3<T>) -> vec4<T>
// Matrix initializers (scalar)
@const("MatInitS")
init mat2x2<T: fa_f32_f16>(T, T,
T, T) -> mat2x2<T>
@const("MatInitS")
init mat2x3<T: fa_f32_f16>(T, T, T,
T, T, T) -> mat2x3<T>
@const("MatInitS")
init mat2x4<T: fa_f32_f16>(T, T, T, T,
T, T, T, T) -> mat2x4<T>
@const("MatInitS")
init mat3x2<T: fa_f32_f16>(T, T,
T, T,
T, T) -> mat3x2<T>
@const("MatInitS")
init mat3x3<T: fa_f32_f16>(T, T, T,
T, T, T,
T, T, T) -> mat3x3<T>
@const("MatInitS")
init mat3x4<T: fa_f32_f16>(T, T, T, T,
T, T, T, T,
T, T, T, T) -> mat3x4<T>
@const("MatInitS")
init mat4x2<T: fa_f32_f16>(T, T,
T, T,
T, T,
T, T) -> mat4x2<T>
@const("MatInitS")
init mat4x3<T: fa_f32_f16>(T, T, T,
T, T, T,
T, T, T,
T, T, T) -> mat4x3<T>
@const("MatInitS")
init mat4x4<T: fa_f32_f16>(T, T, T, T,
T, T, T, T,
T, T, T, T,
T, T, T, T) -> mat4x4<T>
// Matrix initializers (column vectors)
@const("MatInitV")
init mat2x2<T: fa_f32_f16>(vec2<T>, vec2<T>) -> mat2x2<T>
@const("MatInitV")
init mat2x3<T: fa_f32_f16>(vec3<T>, vec3<T>) -> mat2x3<T>
@const("MatInitV")
init mat2x4<T: fa_f32_f16>(vec4<T>, vec4<T>) -> mat2x4<T>
@const("MatInitV")
init mat3x2<T: fa_f32_f16>(vec2<T>, vec2<T>, vec2<T>) -> mat3x2<T>
@const("MatInitV")
init mat3x3<T: fa_f32_f16>(vec3<T>, vec3<T>, vec3<T>) -> mat3x3<T>
@const("MatInitV")
init mat3x4<T: fa_f32_f16>(vec4<T>, vec4<T>, vec4<T>) -> mat3x4<T>
@const("MatInitV")
init mat4x2<T: fa_f32_f16>(vec2<T>, vec2<T>, vec2<T>, vec2<T>) -> mat4x2<T>
@const("MatInitV")
init mat4x3<T: fa_f32_f16>(vec3<T>, vec3<T>, vec3<T>, vec3<T>) -> mat4x3<T>
@const("MatInitV")
init mat4x4<T: fa_f32_f16>(vec4<T>, vec4<T>, vec4<T>, vec4<T>) -> mat4x4<T>
////////////////////////////////////////////////////////////////////////////////
// Type conversions //
////////////////////////////////////////////////////////////////////////////////
@const conv f32<T: scalar_no_f32>(T) -> f32
@const conv f16<T: scalar_no_f16>(T) -> f16
@const conv i32<T: scalar_no_i32>(T) -> i32
@const conv u32<T: scalar_no_u32>(T) -> u32
@const conv bool<T: scalar_no_bool>(T) -> bool
@const conv vec2<T: f32, U: scalar_no_f32>(vec2<U>) -> vec2<f32>
@const conv vec2<T: f16, U: scalar_no_f16>(vec2<U>) -> vec2<f16>
@const conv vec2<T: i32, U: scalar_no_i32>(vec2<U>) -> vec2<i32>
@const conv vec2<T: u32, U: scalar_no_u32>(vec2<U>) -> vec2<u32>
@const conv vec2<T: bool, U: scalar_no_bool>(vec2<U>) -> vec2<bool>
@const conv vec3<T: f32, U: scalar_no_f32>(vec3<U>) -> vec3<f32>
@const conv vec3<T: f16, U: scalar_no_f16>(vec3<U>) -> vec3<f16>
@const conv vec3<T: i32, U: scalar_no_i32>(vec3<U>) -> vec3<i32>
@const conv vec3<T: u32, U: scalar_no_u32>(vec3<U>) -> vec3<u32>
@const conv vec3<T: bool, U: scalar_no_bool>(vec3<U>) -> vec3<bool>
@const conv vec4<T: f32, U: scalar_no_f32>(vec4<U>) -> vec4<f32>
@const conv vec4<T: f16, U: scalar_no_f16>(vec4<U>) -> vec4<f16>
@const conv vec4<T: i32, U: scalar_no_i32>(vec4<U>) -> vec4<i32>
@const conv vec4<T: u32, U: scalar_no_u32>(vec4<U>) -> vec4<u32>
@const conv vec4<T: bool, U: scalar_no_bool>(vec4<U>) -> vec4<bool>
@const conv mat2x2<T: f16>(mat2x2<f32>) -> mat2x2<f16>
@const conv mat2x2<T: f32>(mat2x2<f16>) -> mat2x2<f32>
@const conv mat2x3<T: f16>(mat2x3<f32>) -> mat2x3<f16>
@const conv mat2x3<T: f32>(mat2x3<f16>) -> mat2x3<f32>
@const conv mat2x4<T: f16>(mat2x4<f32>) -> mat2x4<f16>
@const conv mat2x4<T: f32>(mat2x4<f16>) -> mat2x4<f32>
@const conv mat3x2<T: f16>(mat3x2<f32>) -> mat3x2<f16>
@const conv mat3x2<T: f32>(mat3x2<f16>) -> mat3x2<f32>
@const conv mat3x3<T: f16>(mat3x3<f32>) -> mat3x3<f16>
@const conv mat3x3<T: f32>(mat3x3<f16>) -> mat3x3<f32>
@const conv mat3x4<T: f16>(mat3x4<f32>) -> mat3x4<f16>
@const conv mat3x4<T: f32>(mat3x4<f16>) -> mat3x4<f32>
@const conv mat4x2<T: f16>(mat4x2<f32>) -> mat4x2<f16>
@const conv mat4x2<T: f32>(mat4x2<f16>) -> mat4x2<f32>
@const conv mat4x3<T: f16>(mat4x3<f32>) -> mat4x3<f16>
@const conv mat4x3<T: f32>(mat4x3<f16>) -> mat4x3<f32>
@const conv mat4x4<T: f16>(mat4x4<f32>) -> mat4x4<f16>
@const conv mat4x4<T: f32>(mat4x4<f16>) -> mat4x4<f32>
////////////////////////////////////////////////////////////////////////////////
// Operators //
// //
// The operator declarations below declare all the unary and binary operators //
// supported by the WGSL language (with exception for address-of and //
// dereference unary operators). //
// //
// The syntax is almost identical to builtin functions, except we use 'op' //
// instead of 'fn'. The resolving rules are identical to builtins, which is //
// described in detail above. //
// //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Unary Operators //
////////////////////////////////////////////////////////////////////////////////
@const op ! (bool) -> bool
@const op ! <N: num> (vec<N, bool>) -> vec<N, bool>
@const op ~ <T: ia_iu32>(T) -> T
@const op ~ <T: ia_iu32, N: num> (vec<N, T>) -> vec<N, T>
@const("UnaryMinus") op - <T: fia_fi32_f16>(T) -> T
@const("UnaryMinus") op - <T: fia_fi32_f16, N: num> (vec<N, T>) -> vec<N, T>
////////////////////////////////////////////////////////////////////////////////
// Binary Operators //
////////////////////////////////////////////////////////////////////////////////
@const op + <T: fia_fiu32_f16>(T, T) -> T
@const op + <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op + <T: fia_fiu32_f16, N: num> (vec<N, T>, T) -> vec<N, T>
@const op + <T: fia_fiu32_f16, N: num> (T, vec<N, T>) -> vec<N, T>
@const op + <T: fa_f32_f16, N: num, M: num> (mat<N, M, T>, mat<N, M, T>) -> mat<N, M, T>
@const op - <T: fia_fiu32_f16>(T, T) -> T
@const op - <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op - <T: fia_fiu32_f16, N: num> (vec<N, T>, T) -> vec<N, T>
@const op - <T: fia_fiu32_f16, N: num> (T, vec<N, T>) -> vec<N, T>
@const op - <T: fa_f32_f16, N: num, M: num> (mat<N, M, T>, mat<N, M, T>) -> mat<N, M, T>
@const("Multiply") op * <T: fia_fiu32_f16>(T, T) -> T
@const("Multiply") op * <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const("Multiply") op * <T: fia_fiu32_f16, N: num> (vec<N, T>, T) -> vec<N, T>
@const("Multiply") op * <T: fia_fiu32_f16, N: num> (T, vec<N, T>) -> vec<N, T>
@const("Multiply") op * <T: fa_f32_f16, N: num, M: num> (T, mat<N, M, T>) -> mat<N, M, T>
@const("Multiply") op * <T: fa_f32_f16, N: num, M: num> (mat<N, M, T>, T) -> mat<N, M, T>
@const("MultiplyMatVec") op * <T: fa_f32_f16, C: num, R: num> (mat<C, R, T>, vec<C, T>) -> vec<R, T>
@const("MultiplyVecMat") op * <T: fa_f32_f16, C: num, R: num> (vec<R, T>, mat<C, R, T>) -> vec<C, T>
@const("MultiplyMatMat") op * <T: fa_f32_f16, K: num, C: num, R: num> (mat<K, R, T>, mat<C, K, T>) -> mat<C, R, T>
@const op / <T: fia_fiu32_f16>(T, T) -> T
@const op / <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op / <T: fia_fiu32_f16, N: num> (vec<N, T>, T) -> vec<N, T>
@const op / <T: fia_fiu32_f16, N: num> (T, vec<N, T>) -> vec<N, T>
@const op % <T: fia_fiu32_f16>(T, T) -> T
@const op % <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op % <T: fia_fiu32_f16, N: num> (vec<N, T>, T) -> vec<N, T>
@const op % <T: fia_fiu32_f16, N: num> (T, vec<N, T>) -> vec<N, T>
@const op ^ <T: ia_iu32>(T, T) -> T
@const op ^ <T: ia_iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op & (bool, bool) -> bool
@const op & <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool>
@const op & <T: ia_iu32>(T, T) -> T
@const op & <T: ia_iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op | (bool, bool) -> bool
@const op | <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool>
@const op | <T: ia_iu32>(T, T) -> T
@const op | <T: ia_iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T>
@const op && (bool, bool) -> bool
@const op || (bool, bool) -> bool
@const op == <T: scalar>(T, T) -> bool
@const op == <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op != <T: scalar>(T, T) -> bool
@const op != <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op < <T: fia_fiu32_f16>(T, T) -> bool
@const op < <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op > <T: fia_fiu32_f16>(T, T) -> bool
@const op > <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op <= <T: fia_fiu32_f16>(T, T) -> bool
@const op <= <T: fia_fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op >= <T: fia_fiu32_f16>(T, T) -> bool
@const op >= <T: fiu32_f16, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool>
@const op << <T: ia_iu32>(T, u32) -> T
@const op << <T: ia_iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T>
@const op >> <T: ia_iu32>(T, u32) -> T
@const op >> <T: ia_iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T>
////////////////////////////////////////////////////////////////////////////////
// Tint internal builtins //
////////////////////////////////////////////////////////////////////////////////
@const("Identity") fn _tint_materialize<T>(T) -> T