blob: c418ea49ef26bf3e964a4f6b7ad6d5f4dc4397b3 [file] [log] [blame]
#include <metal_stdlib>
using namespace metal;
template<typename T, size_t N>
struct tint_array {
const constant T& operator[](size_t i) const constant { return elements[i]; }
device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; }
T elements[N];
};
#define TINT_ISOLATE_UB(VOLATILE_NAME) \
volatile bool VOLATILE_NAME = true; \
if (VOLATILE_NAME)
struct Buf {
/* 0x0000 */ uint count;
/* 0x0004 */ tint_array<uint, 50> data;
};
uint tint_mod(uint lhs, uint rhs) {
return (lhs % select(rhs, 1u, (rhs == 0u)));
}
kernel void tint_symbol(device Buf* tint_symbol_1 [[buffer(0)]]) {
uint i = 0u;
TINT_ISOLATE_UB(tint_volatile_true) while(true) {
if ((i >= (*(tint_symbol_1)).count)) {
break;
}
uint const p_save = i;
if ((tint_mod(i, 2u) == 0u)) {
{
(*(tint_symbol_1)).data[p_save] = ((*(tint_symbol_1)).data[p_save] * 2u);
i = (i + 1u);
}
continue;
}
(*(tint_symbol_1)).data[p_save] = 0u;
{
(*(tint_symbol_1)).data[p_save] = ((*(tint_symbol_1)).data[p_save] * 2u);
i = (i + 1u);
}
}
return;
}