blob: 6a036576a87b0884be458867931b5a2675cacbae [file] [log] [blame]
// Copyright 2023 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/native/Adapter.h"
#include <algorithm>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "dawn/common/Log.h"
#include "dawn/native/ChainUtils.h"
#include "dawn/native/Device.h"
#include "dawn/native/Instance.h"
#include "dawn/native/PhysicalDevice.h"
#include "partition_alloc/pointers/raw_ptr.h"
namespace dawn::native {
namespace {
static constexpr DeviceDescriptor kDefaultDeviceDesc = {};
} // anonymous namespace
AdapterBase::AdapterBase(Ref<PhysicalDeviceBase> physicalDevice,
FeatureLevel featureLevel,
const TogglesState& requiredAdapterToggles,
wgpu::PowerPreference powerPreference)
: mPhysicalDevice(std::move(physicalDevice)),
mFeatureLevel(featureLevel),
mTogglesState(requiredAdapterToggles),
mPowerPreference(powerPreference) {
DAWN_ASSERT(mPhysicalDevice->SupportsFeatureLevel(featureLevel));
DAWN_ASSERT(mTogglesState.GetStage() == ToggleStage::Adapter);
// Cache the supported features of this adapter. Note that with device toggles overriding, a
// device created by this adapter may support features not in this set and vice versa.
mSupportedFeatures = mPhysicalDevice->GetSupportedFeatures(mTogglesState);
}
AdapterBase::~AdapterBase() = default;
void AdapterBase::SetUseTieredLimits(bool useTieredLimits) {
mUseTieredLimits = useTieredLimits;
}
FeaturesSet AdapterBase::GetSupportedFeatures() const {
return mSupportedFeatures;
}
PhysicalDeviceBase* AdapterBase::GetPhysicalDevice() {
return mPhysicalDevice.Get();
}
const PhysicalDeviceBase* AdapterBase::GetPhysicalDevice() const {
return mPhysicalDevice.Get();
}
InstanceBase* AdapterBase::APIGetInstance() const {
InstanceBase* instance = mPhysicalDevice->GetInstance();
DAWN_ASSERT(instance != nullptr);
instance->APIAddRef();
return instance;
}
bool AdapterBase::APIGetLimits(SupportedLimits* limits) const {
DAWN_ASSERT(limits != nullptr);
InstanceBase* instance = mPhysicalDevice->GetInstance();
UnpackedPtr<SupportedLimits> unpacked;
if (instance->ConsumedError(ValidateAndUnpack(limits), &unpacked)) {
return false;
}
if (mUseTieredLimits) {
limits->limits = ApplyLimitTiers(mPhysicalDevice->GetLimits().v1);
} else {
limits->limits = mPhysicalDevice->GetLimits().v1;
}
if (auto* subgroupLimits = unpacked.Get<DawnExperimentalSubgroupLimits>()) {
if (!mTogglesState.IsEnabled(Toggle::AllowUnsafeAPIs)) {
// If AllowUnsafeAPIs is not enabled, return the default-initialized
// DawnExperimentalSubgroupLimits object, where minSubgroupSize and
// maxSubgroupSize are WGPU_LIMIT_U32_UNDEFINED.
*subgroupLimits = DawnExperimentalSubgroupLimits{};
} else {
*subgroupLimits = mPhysicalDevice->GetLimits().experimentalSubgroupLimits;
}
}
return true;
}
void AdapterBase::APIGetProperties(AdapterProperties* properties) const {
DAWN_ASSERT(properties != nullptr);
InstanceBase* instance = mPhysicalDevice->GetInstance();
UnpackedPtr<AdapterProperties> unpacked;
if (instance->ConsumedError(ValidateAndUnpack(properties), &unpacked)) {
return;
}
if (unpacked.Get<AdapterPropertiesMemoryHeaps>() != nullptr &&
!mSupportedFeatures.IsEnabled(wgpu::FeatureName::AdapterPropertiesMemoryHeaps)) {
[[maybe_unused]] bool hadError = instance->ConsumedError(
DAWN_VALIDATION_ERROR("Feature AdapterPropertiesMemoryHeaps is not available."));
}
if (unpacked.Get<AdapterPropertiesD3D>() != nullptr &&
!mSupportedFeatures.IsEnabled(wgpu::FeatureName::AdapterPropertiesD3D)) {
[[maybe_unused]] bool hadError = instance->ConsumedError(
DAWN_VALIDATION_ERROR("Feature AdapterPropertiesD3D is not available."));
}
if (unpacked.Get<AdapterPropertiesVk>() != nullptr &&
!mSupportedFeatures.IsEnabled(wgpu::FeatureName::AdapterPropertiesVk)) {
[[maybe_unused]] bool hadError = instance->ConsumedError(
DAWN_VALIDATION_ERROR("Feature AdapterPropertiesVk is not available."));
}
if (auto* powerPreferenceDesc = unpacked.Get<DawnAdapterPropertiesPowerPreference>()) {
powerPreferenceDesc->powerPreference = mPowerPreference;
}
mPhysicalDevice->PopulateBackendProperties(unpacked);
properties->vendorID = mPhysicalDevice->GetVendorId();
properties->deviceID = mPhysicalDevice->GetDeviceId();
properties->adapterType = mPhysicalDevice->GetAdapterType();
properties->backendType = mPhysicalDevice->GetBackendType();
properties->compatibilityMode = mFeatureLevel == FeatureLevel::Compatibility;
// Get lengths, with null terminators.
size_t vendorNameCLen = mPhysicalDevice->GetVendorName().length() + 1;
size_t architectureCLen = mPhysicalDevice->GetArchitectureName().length() + 1;
size_t nameCLen = mPhysicalDevice->GetName().length() + 1;
size_t driverDescriptionCLen = mPhysicalDevice->GetDriverDescription().length() + 1;
// Allocate space for all strings.
char* ptr = new char[vendorNameCLen + architectureCLen + nameCLen + driverDescriptionCLen];
properties->vendorName = ptr;
memcpy(ptr, mPhysicalDevice->GetVendorName().c_str(), vendorNameCLen);
ptr += vendorNameCLen;
properties->architecture = ptr;
memcpy(ptr, mPhysicalDevice->GetArchitectureName().c_str(), architectureCLen);
ptr += architectureCLen;
properties->name = ptr;
memcpy(ptr, mPhysicalDevice->GetName().c_str(), nameCLen);
ptr += nameCLen;
properties->driverDescription = ptr;
memcpy(ptr, mPhysicalDevice->GetDriverDescription().c_str(), driverDescriptionCLen);
ptr += driverDescriptionCLen;
}
void APIAdapterPropertiesFreeMembers(WGPUAdapterProperties properties) {
// This single delete is enough because everything is a single allocation.
delete[] properties.vendorName;
}
void APIAdapterPropertiesMemoryHeapsFreeMembers(
WGPUAdapterPropertiesMemoryHeaps memoryHeapProperties) {
delete[] memoryHeapProperties.heapInfo;
}
void APIDrmFormatCapabilitiesFreeMembers(WGPUDrmFormatCapabilities capabilities) {
delete[] capabilities.properties;
}
bool AdapterBase::APIHasFeature(wgpu::FeatureName feature) const {
return mSupportedFeatures.IsEnabled(feature);
}
size_t AdapterBase::APIEnumerateFeatures(wgpu::FeatureName* features) const {
return mSupportedFeatures.EnumerateFeatures(features);
}
// TODO(https://crbug.com/dawn/2465) Could potentially re-implement via AllowSpontaneous async mode.
DeviceBase* AdapterBase::APICreateDevice(const DeviceDescriptor* descriptor) {
if (descriptor == nullptr) {
descriptor = &kDefaultDeviceDesc;
}
auto [lostEvent, result] = CreateDevice(descriptor);
mPhysicalDevice->GetInstance()->GetEventManager()->TrackEvent(lostEvent);
Ref<DeviceBase> device;
if (mPhysicalDevice->GetInstance()->ConsumedError(std::move(result), &device)) {
return nullptr;
}
return ReturnToAPI(std::move(device));
}
ResultOrError<Ref<DeviceBase>> AdapterBase::CreateDeviceInternal(
const DeviceDescriptor* rawDescriptor,
Ref<DeviceBase::DeviceLostEvent> lostEvent) {
DAWN_ASSERT(rawDescriptor != nullptr);
// Create device toggles state from required toggles descriptor and inherited adapter toggles
// state.
UnpackedPtr<DeviceDescriptor> descriptor;
DAWN_TRY_ASSIGN(descriptor, ValidateAndUnpack(rawDescriptor));
auto* deviceTogglesDesc = descriptor.Get<DawnTogglesDescriptor>();
// Create device toggles state.
TogglesState deviceToggles =
TogglesState::CreateFromTogglesDescriptor(deviceTogglesDesc, ToggleStage::Device);
deviceToggles.InheritFrom(mTogglesState);
// Default toggles for all backend
deviceToggles.Default(Toggle::LazyClearResourceOnFirstUse, true);
deviceToggles.Default(Toggle::TimestampQuantization, true);
if (mPhysicalDevice->GetInstance()->IsBackendValidationEnabled()) {
deviceToggles.Default(Toggle::UseUserDefinedLabelsInBackend, true);
}
// Backend-specific forced and default device toggles
mPhysicalDevice->SetupBackendDeviceToggles(&deviceToggles);
// Validate all required features are supported by the adapter and suitable under device
// toggles. Note that certain toggles in device toggles state may be overriden by user and
// different from the adapter toggles state, and in this case a device may support features
// that not supported by the adapter. We allow such toggles overriding for the convinience e.g.
// creating a deivce for internal usage with AllowUnsafeAPI enabled from an adapter that
// disabled AllowUnsafeAPIS.
for (uint32_t i = 0; i < descriptor->requiredFeatureCount; ++i) {
wgpu::FeatureName feature = descriptor->requiredFeatures[i];
FeatureValidationResult result =
mPhysicalDevice->ValidateFeatureSupportedWithToggles(feature, deviceToggles);
DAWN_INVALID_IF(!result.success, "Invalid feature required: %s",
result.errorMessage.c_str());
}
if (descriptor->requiredLimits != nullptr) {
// Only consider limits in RequiredLimits structure, and currently no chained structure
// supported.
DAWN_INVALID_IF(descriptor->requiredLimits->nextInChain != nullptr,
"can not chain after requiredLimits.");
SupportedLimits supportedLimits;
bool success = APIGetLimits(&supportedLimits);
DAWN_ASSERT(success);
DAWN_TRY_CONTEXT(ValidateLimits(supportedLimits.limits, descriptor->requiredLimits->limits),
"validating required limits");
}
return mPhysicalDevice->CreateDevice(this, descriptor, deviceToggles, std::move(lostEvent));
}
std::pair<Ref<DeviceBase::DeviceLostEvent>, ResultOrError<Ref<DeviceBase>>>
AdapterBase::CreateDevice(const DeviceDescriptor* descriptor) {
DAWN_ASSERT(descriptor != nullptr);
Ref<DeviceBase::DeviceLostEvent> lostEvent = DeviceBase::DeviceLostEvent::Create(descriptor);
auto result = CreateDeviceInternal(descriptor, lostEvent);
if (result.IsError()) {
lostEvent->mReason = wgpu::DeviceLostReason::FailedCreation;
lostEvent->mMessage = "Failed to create device.";
mPhysicalDevice->GetInstance()->GetEventManager()->SetFutureReady(lostEvent.Get());
}
return {lostEvent, std::move(result)};
}
void AdapterBase::APIRequestDevice(const DeviceDescriptor* descriptor,
WGPURequestDeviceCallback callback,
void* userdata) {
// Default legacy callback mode for RequestDevice is spontaneous.
APIRequestDeviceF(descriptor,
{nullptr, wgpu::CallbackMode::AllowSpontaneous, callback, userdata});
}
Future AdapterBase::APIRequestDeviceF(const DeviceDescriptor* descriptor,
const RequestDeviceCallbackInfo& callbackInfo) {
struct RequestDeviceEvent final : public EventManager::TrackedEvent {
WGPURequestDeviceCallback mCallback;
raw_ptr<void> mUserdata;
WGPURequestDeviceStatus mStatus;
Ref<DeviceBase> mDevice = nullptr;
std::string mMessage;
RequestDeviceEvent(const RequestDeviceCallbackInfo& callbackInfo, Ref<DeviceBase> device)
: TrackedEvent(callbackInfo.mode, TrackedEvent::Completed{}),
mCallback(callbackInfo.callback),
mUserdata(callbackInfo.userdata),
mStatus(WGPURequestDeviceStatus_Success),
mDevice(std::move(device)) {}
RequestDeviceEvent(const RequestDeviceCallbackInfo& callbackInfo,
const std::string& message)
: TrackedEvent(callbackInfo.mode, TrackedEvent::Completed{}),
mCallback(callbackInfo.callback),
mUserdata(callbackInfo.userdata),
mStatus(WGPURequestDeviceStatus_Error),
mMessage(message) {}
~RequestDeviceEvent() override { EnsureComplete(EventCompletionType::Shutdown); }
void Complete(EventCompletionType completionType) override {
if (completionType == EventCompletionType::Shutdown) {
mStatus = WGPURequestDeviceStatus_InstanceDropped;
mDevice = nullptr;
mMessage = "A valid external Instance reference no longer exists.";
}
mCallback(mStatus, ToAPI(ReturnToAPI(std::move(mDevice))),
mMessage.empty() ? nullptr : mMessage.c_str(), mUserdata.ExtractAsDangling());
}
};
if (descriptor == nullptr) {
descriptor = &kDefaultDeviceDesc;
}
FutureID futureID = kNullFutureID;
auto [lostEvent, result] = CreateDevice(descriptor);
if (result.IsSuccess()) {
futureID = mPhysicalDevice->GetInstance()->GetEventManager()->TrackEvent(
AcquireRef(new RequestDeviceEvent(callbackInfo, result.AcquireSuccess())));
} else {
futureID = mPhysicalDevice->GetInstance()->GetEventManager()->TrackEvent(AcquireRef(
new RequestDeviceEvent(callbackInfo, result.AcquireError()->GetFormattedMessage())));
}
mPhysicalDevice->GetInstance()->GetEventManager()->TrackEvent(std::move(lostEvent));
return {futureID};
}
bool AdapterBase::APIGetFormatCapabilities(wgpu::TextureFormat format,
FormatCapabilities* capabilities) {
InstanceBase* instance = mPhysicalDevice->GetInstance();
if (!mSupportedFeatures.IsEnabled(wgpu::FeatureName::FormatCapabilities)) {
[[maybe_unused]] bool hadError = instance->ConsumedError(
DAWN_VALIDATION_ERROR("Feature FormatCapabilities is not available."));
return false;
}
DAWN_ASSERT(capabilities != nullptr);
UnpackedPtr<FormatCapabilities> unpacked;
if (instance->ConsumedError(ValidateAndUnpack(capabilities), &unpacked)) {
return false;
}
if (unpacked.Get<DrmFormatCapabilities>() != nullptr &&
!mSupportedFeatures.IsEnabled(wgpu::FeatureName::DrmFormatCapabilities)) {
[[maybe_unused]] bool hadError = instance->ConsumedError(
DAWN_VALIDATION_ERROR("Feature DrmFormatCapabilities is not available."));
return false;
}
mPhysicalDevice->PopulateBackendFormatCapabilities(format, unpacked);
return true;
}
const TogglesState& AdapterBase::GetTogglesState() const {
return mTogglesState;
}
FeatureLevel AdapterBase::GetFeatureLevel() const {
return mFeatureLevel;
}
const std::string& AdapterBase::GetName() const {
return mPhysicalDevice->GetName();
}
std::vector<Ref<AdapterBase>> SortAdapters(std::vector<Ref<AdapterBase>> adapters,
const RequestAdapterOptions* options) {
const bool highPerformance =
options != nullptr && options->powerPreference == wgpu::PowerPreference::HighPerformance;
const auto ComputeAdapterTypeRank = [&](const Ref<AdapterBase>& a) {
switch (a->GetPhysicalDevice()->GetAdapterType()) {
case wgpu::AdapterType::DiscreteGPU:
return highPerformance ? 0 : 1;
case wgpu::AdapterType::IntegratedGPU:
return highPerformance ? 1 : 0;
case wgpu::AdapterType::CPU:
return 2;
case wgpu::AdapterType::Unknown:
return 3;
}
DAWN_UNREACHABLE();
};
const auto ComputeBackendTypeRank = [](const Ref<AdapterBase>& a) {
switch (a->GetPhysicalDevice()->GetBackendType()) {
// Sort backends generally in order of Core -> Compat -> Testing,
// while preferring OS-specific backends like Metal/D3D.
case wgpu::BackendType::Metal:
case wgpu::BackendType::D3D12:
return 0;
case wgpu::BackendType::Vulkan:
return 1;
case wgpu::BackendType::D3D11:
return 2;
case wgpu::BackendType::OpenGLES:
return 3;
case wgpu::BackendType::OpenGL:
return 4;
case wgpu::BackendType::WebGPU:
return 5;
case wgpu::BackendType::Null:
return 6;
case wgpu::BackendType::Undefined:
break;
}
DAWN_UNREACHABLE();
};
std::sort(adapters.begin(), adapters.end(),
[&](const Ref<AdapterBase>& a, const Ref<AdapterBase>& b) -> bool {
return std::tuple(ComputeAdapterTypeRank(a), ComputeBackendTypeRank(a)) <
std::tuple(ComputeAdapterTypeRank(b), ComputeBackendTypeRank(b));
});
return adapters;
}
} // namespace dawn::native